
ar
X

iv
:1

30
4.

49
10

v1
 [

sta
t.M

L]
 1

7
A

pr
 2

01
3

A Junction Tree Framework for Undirected Graphical Model Selection

Divyanshu Vats1 Robert D. Nowak
Electrical and Computer Engineering Electrical and Computer Engineering

Rice University University of Wisconsin - Madison
dvats@rice.edu nowak@ece.wisc.edu

Abstract

An undirected graphical model is a joint probability distribution defined on an undirected graph G∗,
where the vertices in the graph index a collection of random variables and the edges encode conditional
independence relationships amongst random variables. The undirected graphical model selection (UGMS)
problem is to estimate the graph G∗ given observations drawn from the undirected graphical model.
This paper proposes a framework for decomposing the UGMS problem into multiple subproblems over
clusters and subsets of the separators in a junction tree. The junction tree is constructed using a graph
that contains a superset of the edges in G∗. We highlight three main properties of using junction
trees for UGMS. First, different regularization parameters or different UGMS algorithms can be used
to learn different parts of the graph. This is possible since the subproblems we identify can be solved
independently of each other. Second, under certain conditions, a junction tree based UGMS algorithm can
produce consistent results with exponentially fewer observations than the usual requirements of existing
algorithms. Third, both our theoretical and experimental results show that the junction tree framework
does a significantly better job at finding the weakest edges in a graph than existing methods. This
property is a consequence of both the first and second properties. Finally, we note that our framework is
independent of the choice of the UGMS algorithm and can be used as a wrapper around standard UGMS
algorithms for more accurate graph estimation.

Keywords: Graphical models; Markov random fields; Junction trees; model selection; graphical model
selection; high-dimensional statistics; graph decomposition.

1. Introduction

An undirected graphical model is a joint probability distribution PX of a random vector X defined on
an undirected graph G∗. The graph G∗ consists of a set of vertices V = {1, . . . , p} and a set of edges
E(G∗) ⊆ V ×V . The vertices index the p random variables inX and the edges E(G∗) characterize conditional
independence relationships amongst the random variables in X [25]. We study undirected graphical models
(also known as Markov random fields) so that the graph G∗ is undirected, i.e., if an edge (i, j) ∈ E(G∗),
then (j, i) ∈ E(G∗). The undirected graphical model selection (UGMS) problem is to estimate G∗ given n
observations Xn =

(
X(1), . . . , X(n)

)
drawn from PX . This problem is of interest in many areas including

biological data analysis, financial analysis, and social network analysis; see [22] for some more examples.

This paper studies the following problem: Given the observations Xn drawn from PX and
a graph H that contains all the true edges E(G∗), and possibly some extra edges, estimate the
graph G∗.

A natural question to ask is how can the graph H be selected in the first place? One way of doing so is to
use screening algorithms, such as [13] and [47], to eliminate edges that are clearly non-existent in G∗. Another
method can be to use partial prior information about X to remove unnecessary edges. For example, this
could be based on (i) prior knowledge about statistical properties of genes when analyzing gene expressions,
(ii) prior knowledge about companies when analyzing stock returns, or (iii) demographic information when
modeling social networks. Yet another method can be to use clever model selection algorithms that estimate
more edges than desired. Assuming an initial graph H has been computed, our main contribution in this
paper is to show how a junction tree representation of H can be used as a wrapper around UGMS algorithms
for more accurate graph estimation.

1Also affiliated with the Institute for Mathematics and its Applications, University of Minnesota - Twin Cities.

1

http://arxiv.org/abs/1304.4910v1

1

2 4

3

6

5
7

(a) Graph G∗

1

2 4

3

6

5
7

(b) Graph H

1,3,4,5 1,2,3,5

3,4,5,6 4,5,6,7

1,3,5

3,4,5
4,5,6

(c) Junction tree

1,2,3,5 1,3,4,5 3,4,5,6 4,5,6,7

1,3,5 3,4,5 4,5,6

3,5 4,5

(d) Region graph

Figure 1: We want to estimate the graph in (a) using the graph (b). Our framework computes the junction
tree in (c) and uses a region graph representation in (d) of the junction tree to decompose the UGMS problem
into multiple subproblems.

TV1
V2

Figure 2: Structure of the graph G∗ we assume to analyze the junction tree framework for UGMS.

1.1 Overview of the Junction Tree Framework

A junction tree is a tree-structured representation of an arbitrary graph [39]. The vertices in a junction tree
are clusters of vertices from the original graph. An edge in a junction tree connects two clusters. Junction
trees are used in many applications to reduce the computational complexity of solving various graph related
problems [4]. Figure 1(c) shows an example of a junction tree for the graph in Figure 1(b). Notice that each
edge in the junction tree is labeled by the set of vertices common to both clusters connected by the edge.
These set of vertices are referred to as a separator.

Let H be a graph that contains all the edges in G∗. We show that the UGMS problem can be decomposed
into multiple subproblems over clusters and subsets of the separators in a junction tree representation of H .
In particular, using the junction tree, we construct a region graph, which is a directed graph over clusters
of vertices. An example of a region graph for the junction tree in Figure 1(c) is shown in Figure 1(d). The
first two rows in the region graph are the clusters and separators of the junction tree, respectively. The
rest of the rows contain subsets of the separators2. The multiple subproblems we identify correspond to
estimating a subset of edges over each cluster in the region graph. For example, the subproblem over the
cluster {1, 2, 3, 5} in Figure 1(d) estimates the edges (1, 2), (1, 3), and (1, 5).

We solve the subproblems over the region graph in an iterative manner. First, all subproblems in the
first row of the region graph are solved in parallel. Second, the region graph is updated taking into account
the edges removed in the first step. We keep solving subproblems over rows in the region graph and update
the region graph until all the edges in the graph H have been estimated.

1.2 Advantages of Using Junction Trees

We highlight three main advantages of the junction tree framework for UGMS.

Choosing Regularization Parameters and UGMS Algorithms: UGMS algorithms typically depend
on a regularization parameter that controls the number of estimated edges. This regularization parameter
is usually chosen using model selection algorithms such as cross validation or stability selection. Since each
subproblem we identify in the region graph is solved independently, different regularization parameters can
be used to learn different parts of the graph. This has advantages when the true graph G∗ has different
characteristics in different parts of the graph. Further, since the subproblems are independent, different
UGMS algorithms can be used to learn different parts of the graph. Our numerical simulations clearly show
the advantages of this property.

Reduced Sample Complexity: One of the key results of our work is to show that in many cases, the junc-
tion tree framework is capable of consistently estimating a graph under significantly weaker conditions than

2see Algorithm 1 for details on how to exactly construct the region graph.

2

required by previously proposed methods. For example, we show that if G∗ consists of two main components
that are separated by a relatively small number of vertices (see Figure 2 for a general example), then, under
certain conditions, the number of observations needed for consistent estimation scales like log(pmin), where
pmin is the number of vertices in the smaller of the two components. In contrast, existing methods are con-
sistent if the observations scale like log p, where p is the total number of vertices. If the smaller component
were, for example, exponentially smaller than the larger component, then the junction tree framework is
consistent with about log log p observations. For generic problems, without structure that can be exploited
by the junction tree framework, we recover the standard conditions for consistency.

Learning Weak Edges: A direct consequence of choosing different regularization parameters and the
reduced sample complexity is that certain weak edges, not estimated using standard algorithms, can be
estimated when using the junction tree framework. We show this theoretically and using extensive numerical
simulations on both synthetic and real world data.

1.3 Related Work

Several algorithms have been proposed in the literature for learning undirected graphical models. Some
examples include References [1,5,9,15,20,33,43] for learning Gaussian graphical models, References [23,27,
29, 30] for learning non-Gaussian graphical models, and References [2, 7, 8, 18, 19, 34, 37] for learning discrete
graphical models. Although all of the above algorithms can be modified to take into account prior knowledge
about a graph H that contains all the true edges (see Appendix B for some examples), our junction tree
framework is fundamentally different than the standard modification of these algorithms. The main difference
is that the junction tree framework allows for using the global Markov property of undirected graphical models
(see Definition 2.1) when learning graphs. This allows for improved graph estimation, as illustrated in both
our theoretical results and numerical results. Finally, we note that all of the above algorithms can be used
in conjunction with the junction tree framework.

Junction trees have been used for performing probabilistic inference in graphical models [24]. This
problem differs from the UGMS problem since the graph is assumed to be known in the inference problem.
The use of junction trees for learning graphical models is limited to learning the direction of edges in
directed graphical models [53]. These methods cannot be used to learn undirected graphical models. Recent
work [31,52] has shown that solutions to the graphical lasso (gLasso) [15] problem for UGMS over Gaussian
graphical models can be computed, under certain conditions, by decomposing the problem over connected
components of the graph computed by thresholding the empirical covariance matrix. The methods in [31,52]
are useful for computing solutions to gLasso for particular choices of the regularization parameter and not
for accurately estimating graphs. Thus, when using gLasso for UGMS, we can use the methods in [31,52] to
solve gLasso when performing model selection for choosing suitable regularization parameters.

2. Preliminaries

In this Section, we review some necessary background on graphs and graphical models that we use in this
paper. Section 2.1 reviews some graph theoretic concepts. Section 2.2 reviews undirected graphical models.
Section 2.3 formally defines the undirected graphical model selection (UGMS) problem. Section 2.4 reviews
junction trees, which we use use a tool for decomposing UGMS into multiple subproblems.

2.1 Graph Theoretic Concepts

A graph is a tuple G = (V,E(G)), where V is a set of vertices and E(G) ⊆ V × V are edges connecting
vertices in V . For any graph H , we use the notation E(H) to denote its edges. We only consider undirected
graphs where if (v1, v2) ∈ E(G), then (v2, v1) ∈ E(G) for v1, v2 ∈ V . Some graph theoretic notations that
we use in this paper are summarized as follows:

• Neighbor neG(i): Set of nodes connected to i.

• Path {i, s1, . . . , sd, j}: A sequence of nodes such that (i, s1), (sd, j), (sk, sk+1) ∈ E for k = 1, . . . , d− 1.

• Separator S: A set of nodes such that all paths from i to j contain at least one node in S. The
separator S is minimal if no proper subset of S separates i and j.

3

• Induced Subgraph G[A] = (A,E(G[A])): A graph over the nodes A such that E(G[A]) contains the
edges only involving the nodes in U .

• Complete graph KA: A graph that contains all possible edges over the nodes A.

For two graphs G1 = (V1, E(G1)) and G2 = (V2, E(G2)), define the following operations:

• Graph Union: G1 ∪G2 = (V1 ∪ V2, E1 ∪ E2).

• Graph Difference: G1\G2 = (V1, E1\E2).

2.2 Undirected Graphical Models

Definition 2.1 (Undirected Graphical Model [25]). An undirected graphical model is a probability distri-
bution PX defined on a graph G∗ = (V,E(G∗)), where V = {1, . . . , p} indexes the random vector X =
(X1, . . . , Xp) and the edges E(G∗) encode the following Markov property: for a set of nodes A, B, and S, if
S separates A and B, then XA ⊥⊥ XB|XS.

The Markov property outlined above is referred to as the global Markov property. Undirected graphical
models are also referred to as Markov random fields or Markov networks in the literature. When the joint
probability distribution PX is non-degenerate, i.e., PX > 0, the Markov properties in Definition 2.1 are
equivalent to the pairwise and local Markov properties:

• Pairwise Markov property: For all (i, j) /∈ E, Xi ⊥⊥ Xj |XV \{i,j}.

• Local Markov property: For all i ∈ V , Xi ⊥ XV \{neG(i)∪{i}}|XneG(i).

In this paper, we always assume PX > 0 and say PX is Markov on G to reflect the Markov properties.
Examples of conditional independence relations conveyed by a probability distribution defined on the graph
in Figure 3(d) are X1 ⊥⊥ X6|{X2, X4} and X4 ⊥⊥ X6|{X2, X5, X8}.

2.3 Undirected Graphical Model Section (UGMS)

Definition 2.2 (UGMS). The undirected graphical model selection (UGMS) problem is to estimate a graph
G∗ such that the joint probability distribution PX is Markov on G∗, but not Markov on any subgraph of G∗.

The last statement in Definition 2.2 is important, since, if PX is Markov on G∗, then it is also Markov on
any graph that contains G∗. For example, all probability distributions are Markov on the complete graph.
Thus, the UGMS problem is to find the minimal graph that captures the Markov properties associated with
a joint probability distribution. In the literature, this is also known as finding the minimal I-map.

Let Ψ be an abstract UGMS algorithm that takes as inputs a set of n i.i.d. observations Xn =
{X(1), . . . , X(n)} drawn from PX and a regularization parameter λn. The output of Ψ is a graph Ĝn, where
λn controls the number of edges estimated in Ĝn. Note the dependence of the regularization parameter on
n. We assume Ψ is consistent, which is formalized in the following assumption.

Assumption 1. There exists a λn for which P (Ĝn = G∗)→ 1 as n→∞, where Ĝn = Ψ(Xn,λn).

We give examples of Ψ in Appendix B. Assumption 1 also takes into account the high-dimensional case
when p depends on n in such a way that p→∞ and n→∞.

2.4 Junction Trees

Junction trees [39] are used extensively for efficiently solving various graph related problems, see [4] for some
examples. Reference [24] shows how junction trees can be used for exact inference (computing marginal
distribution given a joint distribution) over graphical models. We use junction trees as a tool for decomposing
the UGMS problem into multiple subproblems.

Definition 2.3 (Junction tree). For an undirected graph G = (V,G(E)), a junction tree J = (C, E(J)) is
a graph over clusters of nodes in V such that

4

1

2 3

4

(a)

1 31 2

2 4 3 4

(b)

1 2 3

2 3 4

(c)

1 2 3

4 5 6

7 8 9

(d)

1 2 4

2 4 5 8

4 7 8

2 5 6 8

2 3 6

6 8 9

(e)

Figure 3: (a) An undirected graph, (b) Not a valid junction tree since {1, 2} separates {1, 3} and {3, 4},but 3 /∈ {1, 2}.

(c) A valid junction tree for the graph in (a). (d) A grid graph. (e) Junction tree representation of (d).

(i) Each node in V is associated with at least one cluster in C.

(ii) For every edge (i, j) ∈ E(G), there exists a cluster Ck ∈ C such that i, j ∈ Ck.

(iii) J satisfies the running intersection property: For all clusters Cu, Cv, and Cw such that Cw separates
Cu and Cv in the tree defined by E(J), Cu ∩ Cv ⊂ Cw.

The first property in Definition 2.3 says that all nodes must be mapped to at least one cluster of the
junction tree. The second property states that each edge of the original graph must be contained within
a cluster. The third property, known as the running intersection property, is the most important since it
restricts the clusters and the trees that can be be formed. For example [49], consider the graph in Figure 3(a).
By simply clustering the nodes over edges, as done in Figure 3(b), we can not get a valid junction tree. By
making appropriate clusters of size three, we get a valid junction tree in Fig. 3(c). In other words, the
running intersection property says that for two clusters with a common node, all the clusters on the path
between the two clusters must contain that common node.

Proposition 2.1 ([39]). Let J = (C, E(J)) be a junction tree of the graph G. Let Suv = Cu ∩ Cv. For
each (Cu, Cv) ∈ E, we have the following properties:

1. Suv += ∅.

2. Suv separates Cu\Suv and Cv\Suv.

The set of nodes Suv on the edges are called the separators of the junction tree. Proposition 2.1 says
that all clusters connected by an edge in the junction tree have at least one common node and the common
nodes separate nodes in each cluster. For example, consider the junction tree in Figure 3(e) of the graph in
Figure 3(d). We can infer that 1 and 5 are separated by 2 and 4. Similarly, we can also infer that 4 and 6
are separated by 2, 5, and 8. It is clear that if a graphical model is defined on the graph, then the separators
can be used to easily define conditional independence relationships. For example, using Figure 3(e), we
can conclude that X1 ⊥⊥ X5 given X2 and X4. As we will see in later Sections, Proposition 2.1 allow the
decomposition of UGMS into multiple subproblems over clusters and subsets of the separators in a junction
tree.

3. Paper Organization

The rest of the paper is organized as follows:

• Section 4 shows how junction trees can be represented as region graphs and outlines an algorithm for
constructing a region graph from a junction tree.

• Section 5 shows how the region graphs can be used to apply a UGMS algorithm to the clusters and
separators of a junction tree.

• Section 6 presents our main framework for using junction trees for UGMS. In particular, we show how
the methods in Sections 4-5 can be used iteratively to estimate a graph.

• Section 7 reviews the PC-Algorithm, which we use to study the theoretical properties of the junction
tree framework.

5

• Section 8 presents theoretical results on the sample complexity of learning graphical models using
the junction tree framework. We also highlight advantages of using the junction tree framework as
summarized in Section 1.2.

• Section 9 presents numerical simulations to highlight the advantages of using junction trees for UGMS
in practice.

• Section 10 summarizes the paper and outlines some future work.

4. Overview of Region Graphs

In this Section, we show how junction trees can be represented as region graphs. As we will see in Section 6,
region graphs allow us to easily decompose the UGMS problem into multiple subproblems. There are many
different types of region graphs and we refer the readers to [54] for a comprehensive discussion about region
graphs and how they are useful for characterizing graphical models. The region graph we present in this
Section differs slightly from the standard definition of region graphs. This is mainly because our goal is to
estimate edges, while the classical region graphs defined in the literature are used for computations over
graphical models.

A region is a collection of nodes, which in our context can be the clusters of the junction tree, separators
of the junction tree, or subsets of the separators. A region graph G = (R, "E(G)) is a directed graph where the
vertices are regions and the edges represent directed edges from one region to another. We use the notation
"E(·) to emphasize that region graphs contain directed edges. A description of region graphs is given as
follows.

• The set "E(G) contains directed edges so that if (R,S) ∈ "E(G), there exists a directed edge from region
R to region S.

• Whenever R −→ S, then S ⊆ R.

Algorithm 1 outlines an algorithm to construct region graphs given a junction tree representation of some
graph H . We associate a label l with every region in R and group regions with the same label to partition
R into L groups R1, . . . ,RL. In Algorithm 1, we initialize R1 and R2 to be the clusters and separators of
a junction tree J , respectively, and then iteratively find R3, . . . ,RL by computing all possible intersections
of regions with the same label. The edges in "E(G) are only drawn from a region in Rl to a region in Rl+1.
Figure 4(c) shows an example of a region graph computed using the junction tree in Figure 4(b).

Algorithm 1: Constructing region graphs

Input: A junction tree J = (C, E(J)) of a graph H .

Output: A region graph G = (R, "E(G)).
1 R1 = C, where C are the clusters of the junction tree J .
2 Let R2 be all the separators of J , i.e., R2 = {Suv = Cu ∩ Cv : (Cu, Cv) ∈ E(J)}.
3 To find R3, find all possible pairwise intersections of regions in R2. Add all intersecting regions with
cardinality greater than one to R3.

4 Repeat previous step to construct R4, . . . ,RL until there are no more intersecting regions of
cardinality greater than one.

5 For R ∈ Rl and S ∈ Rl+1, add the edge (R,S) to "E(G) if S ⊆ R.
6 Let R = {R1, . . . ,RL}.

Remark 4.1. For every junction tree, Algorithm 1 outputs a unique region graph. The junction tree only
characterizes the relationship between the clusters in a junction tree. A region graph extends the junction
tree representation to characterize the relationships between the clusters as well as the separators. For
example, in Figure 4(c), the region {5, 6} is in the third row and is a subset of two separators of the junction
tree. Thus, the only difference between the region graph and the junction tree is the additional set of regions
introduced in R3, . . . ,RL.

6

1

2

3

5

6

74

8

9

(a)

5,6,8,9

3,4,6,72,3,4,6

1,3,5

2,3,5,6

3,5,6,83,5

5,6,83,5,6

2,3,6

3,4,6

C1

C2C3

C4

C5 C6

(b) Junction tree

1,3,5 3,5,6,8 5,6,8,9 2,3,5,6 2,3,4,6 3,4,6,7

3,5,6 5,6,8 2,3,6 3,4,6

3,5 5,6 3,6

3,5

(c) Region graph

Figure 4: (a) An example of H . (b) A junction tree representation of H . (c) A region graph representation
of (b) computed using Algorithm 1.

Remark 4.2. Using methods in [48], we can always construct junction trees such that the region graph
will only have two labels. However, in this case, the size of the regions or clusters may be too large. This
may not be desirable since the computational complexity of applying UGMS algorithms to region graphs, as
shown in Section 6, depends on the size of the regions.

Remark 4.3. From the construction in Algorithm 1, R may have two or more regions that are the same
but have different labels. For example, in Figure 4(c), the region {3, 5} is in both R2 and R3. We can avoid
this situation by removing {3, 5} from R2 and adding an edge from the region {1, 3, 5} in R1 to the region
{3, 5} in R3. For notational simplicity and for the purpose of illustration, we allow for duplicate regions.
This does not change the theory or the algorithms that we develop.

5. Applying UGMS to Region Graphs

Before presenting our framework for decomposing UGMS into multiple subproblems, we first show how
UGMS algorithms can be applied to estimate a subset of edges in a region of a region graph. In particular,
for a region graph G = (R, "E(G)), we want to identify a set of edges in the induced subgraph H [R] that can
be estimated by applying a UGMS algorithm to either R or a set of vertices that contains R. With this goal
in mind, define the children ch(R) of a region R as follows:

Children: ch(R) =
{
S : (R,S) ∈ "E

}
. (1)

We say R connects to S if (R,S) ∈ "E(G). Thus, the children in (1) contains all regions that R connects to.
For example, in Figure 4(c),

ch({2, 3, 4, 6}) = {{2, 3, 6}, {3, 4, 6}} .

If there exists a direct path from S to R, we say S is an ancestor of R. The set of all ancestors of R is
denoted by an(R). For example, in Figure 4(c),

an({5, 6, 8, 9}) = ∅,
an({3, 5, 6}) = {{3, 5, 6, 8}, {2, 3, 5, 6}}, and
an({3, 6}) = {{3, 5, 6}, {2, 3, 6}, {3, 4, 6}, {2, 3, 5, 6}, {2, 3, 4, 6}, {3, 4, 6, 7}, {3, 5, 6, 8}}}.

The notation R takes the union of all regions in an(R) and R so that

R =
⋃

S∈{an(R),R}

S . (2)

Thus, R contains the union of all clusters in the junction tree that contains R. An illustration of some of
the notations defined on region graphs is shown in Figure 5. Using ch(R), define the subgraph H ′

R as 3

H ′
R = H [R]\

{
∪S∈ch(R)KS

}
, (3)

3For graphs G1 and G2, E(G1\G2) = E(G1)\E(G2) and E(G1 ∪G2) = E(G1) ∪E(G2)

7

Algorithm 2: UGMS over regions in a region graph

1: Input: Region graph G = (R, "E(G)), a region R, observations Xn, and a UGMS algorithm Ψ.
2: Compute H ′

R using (3) and R using (2).
3: Apply Ψ to Xn

R
to estimate edges in H ′

R. See Appendix B for examples.

4: Return the estimated edges ÊR.

R

ch(R)

an(R)

Figure 5: Notations defined on region graphs. The children ch(R) are the set of regions that R connects to.
The ancestors an(R) are all the the regions that have a directed path to the region R. The set R takes the
union of all regions in an(R) and R.

where H [R] is the induced subgraph that contains all edges in H over the region R and KS is the complete
graph over S. In words, H ′

R is computed by removing all edges from H [R] that are contained in another
separator. For example, in Figure 4(c), when R = {5, 6, 8}, E(H ′

R) = {(5, 8), (6, 8)}. The subgraph H ′
R is

important since it identifies the edges that can be estimated when applying a UGMS algorithm to the set of
vertices R.

Proposition 5.1. Suppose E(G∗) ⊆ E(H). All edges in H ′
R can be estimated by solving a UGMS problem

over the vertices R.

Proof See Appendix C.

Proposition 5.1 says that all edges in H ′
R can be estimated by applying a UGMS algorithm to the set of

vertices R. The intuition behind the result is that only those edges in the region R can be estimated whose
Markov properties can be deduced using the vertices in R. Moreover, the edges not estimated in H [R] share
an edge with another region that does not contain all the vertices in R. Algorithm 2 summarizes the steps
involved in estimating H ′

R using the UGMS algorithm Ψ defined in Section 2.3. Some examples on how to
use Algorithm 2 to estimate some edges of the graph in Figure 4(a) using the region graph in Figure 4(c)
are described as follows.

1. Let R = {1, 3, 5}. This region only connects to {3, 5}. This means that all edges, except the edge (3, 5)
in H [R], can be estimated by applying Ψ to R.

2. Let R = {3, 5, 6}. The children of this region are {3, 5}, {5, 6}, and {3, 6}. This means that H ′
R = ∅,

i.e., no edge over H [R] can be estimated by applying Ψ to {3, 5, 6}.

3. Let R = {3, 4, 6}. This region only connects to {3, 6}. Thus, all edges except (3, 6) can be estimated.
The regions {2, 3, 4, 6} and {3, 4, 6, 7} connect to R, so Ψ needs to be applied to R = {2, 3, 4, 6, 7}.

6. UGMS Using Junction Trees: A General Framework

In this Section, we present the main junction tree framework for UGMS using the results from Sections 4-5.
Section 6.1 presents the junction tree framework. Section 6.2 discusses the computational complexity of the

8

Notation Description

G∗ = (V,E(G∗)) Unknown graph that we want to estimate.
H Known graph such that E(G∗) ⊆ E(H).
G = (R, "E(G)) Region graph of J constructed using Algorithm 1.
R = (R1, . . . ,RL) Partitioning of the regions in R into L labels.
R The set of vertices used when applying Ψ to estimate edges over R.
H ′

R Edges in H [R] that can be estimated using Algorithm 2. See (3).

Table 1: A summary of some notations.

framework. Section 6.3 highlights the advantages of using junction trees for UGMS using some examples.
We refer to Table 1 for a summary of all the notations that we use in this Section.

6.1 Description of Framework

Recall that Algorithm 2 shows that to estimate a subset of edges in H [R], where R is a region in the region
graph G, the UGMS algorithm Ψ in Assumption 1 needs to be applied to the set R defined in (2). Given
this result, a straightforward approach to decomposing the UGMS problem is to apply Algorithm 2 to each
region R and combine all the estimated edges. This will work since for any R,S ∈ R such that R += S,
E(H ′

R) ∩ E(H ′
S) = ∅. This means that each application of Algorithm 2 estimates a different set of edges in

the graph. However, for some edges, this may require applying a UGMS algorithm to a large set of nodes.
For example, in Figure 4(c), when applying Algorithm 2 to R = {3, 6}, the UGMS algorithm needs to be
applied to R = {2, 3, 4, 5, 6, 7, 8}, which is almost the full set of vertices. To reduce the problem size of the
subproblems, we apply Algorithms 1 and 2 in an iterative manner as outlined in Algorithm 3.

Apply UGMS to a

row of region graph

(Algorithm 2)

Find Junction Tree

and Region Graph
(Algorithm 1)

Have all edges

been estimated?

Xn, H

Output graph

No

Yes

Figure 6: A high level overview of the junction tree framework for UGMS in Algorithm 3.

Figure 6 shows a high level description of Algorithm 3. We first find a junction tree and then a region
graph of the graph H using Algorithm 1. We then find the row in the region graph over which edges can
be estimated and apply Algorithm 2 to each region in that row. We note that when estimating edges over
a region, we use model selection algorithms to choose an appropriate regularization parameter to select the
number of edges to estimate. Next, all estimated edges are added to Ĝ and all edges that are estimated are
removed from H . Thus, H now represents all the edges that are left to be estimated and Ĝ ∪ H contains
all the edges in G∗. We repeat the above steps on a new region graph computed using Ĝ ∪H and stop the
algorithm when H is an empty graph.

An example illustrating the junction tree framework is shown in Figure 7. The region graph in Figure 7(b)
is constructed using the graph H in Figure 7(a). The true graph G∗ we want to estimate is shown in
Figure 1(a). The top and bottom in Figure 7(c) show the graphs Ĝ and H , respectively, after estimating all
the edges in R1 of Figure 7(b). The edges in Ĝ are represented by double lines to distinguish them from the
edges in H . Figure 7(d) shows the region graph of Ĝ ∪H . Figure 7(e) shows the updated Ĝ and H where
only the edges (4, 5) and (5, 6) are left to be estimated. This is done by applying Algorithm 2 to the regions

9

Algorithm 3: Junction Tree Framework for UGMS

See Table 1 for some notations.

Step 1. Initialize Ĝ so that E(Ĝ) = ∅ and find the region graph G of H .

Step 2. Find the smallest # such that there exists a region R ∈ R! such that E(H ′
R) += ∅.

Step 3. Apply Algorithm 2 to each region in Rl.

Step 4. Add all estimated edges to Ĝ and remove edges from H that have been estimated. Now H ∪ Ĝ
contains all the edges in G∗.

Step 5. Compute a new junction tree and region graph G using the graph Ĝ ∪H .

Step 6. If E(H) = ∅, stop the algorithm, else go to Step 2.

1

2 4

3

6

5
7

(a) Graph H

1,2,3,5 1,3,4,5 3,4,5,6 4,5,6,7

1,3,5 3,4,5 4,5,6

3,5 4,5
(b) Region graph of (a)

1

2 4

3

6

5
7

1

2 4

3

6

5
7

Ĝ

H

(c) Steps 2,3, and 4 ap-
plied to (b)

1,3,4,5 4,5,61,2

4,5

5,6,7

5,6
(d) Step 5

1

2 4

3

6

5
7

1

2 4

3

6

5
7

Ĝ

H

(e) Steps 2,3, and 4 ap-
plied to (d)

4,5,6

3,4

5,6,7

4,5

1,3,4 3,4,5

5,6
(f) Step 5

1

2
4

3

6
5

7

(g) Star graph

Figure 7: Example to illustrate the junction tree framework in Section 6.1.

in R2 of Figure 7(f). Notice that we did not include the region {1, 2} in the last region graph since we know
all edges in this region have already been estimated. In general, if E(H [R]) = ∅ for any region R, we can
remove this region and thereby reduce the computational complexity of constructing region graphs.

6.2 Computational Complexity

In this Section, we discuss the computational complexity of the junction tree framework. It is difficult to
write down a closed form expression since the computational complexity depends on the structure of the
junction tree. Moreover, merging clusters in the junction tree can easily control the computations. With
this in mind, the main aim in this Section is to show that the complexity of the framework is roughly the
same as that of applying a standard UGMS algorithm. Consider the following observations.

1. Computing H: Assuming no prior knowledge about H is given, this graph needs to be computed from
the observations. This can be done using standard screening algorithms, such as those in [13, 47], or
by applying a UGMS algorithm with a regularization parameter that selects a larger number of edges
(than that computed by using a standard UGMS algorithm). Thus, the complexity of computing H is
roughly the same as that of applying a UGMS algorithm to all the vertices in the graph.

2. Applying UGMS to regions: Recall from Algorithm 2 that we apply a UGMS algorithm to observations
over R to estimate edges over the vertices R, where R is a region in a region graph representation of

10

H . Since |R| ≤ p, it is clear that the complexity of Algorithm 2 is less than that of applying a UGMS
algorithm to estimate all edges in the graph.

3. Computing junction trees: There are many different junction tree representations of a given graph. In
the literature, an optimal junction tree is defined as having the minimal maximum width, where the
width of a junction tree is the maximum size of the cluster. Finding an optimal junction tree is known
to be computationally intractable [3]. However, several tractable algorithms have been proposed in
the literature that compute a close to optimal junction tree in time at most O(p3) [6, 21]. This time
complexity is less than that of standard UGMS algorithms.

It is clear that the complexity of all the intermediate steps in the framework is less than that of applying
a standard UGMS algorithm. The overall complexity of the framework depends on the number of clusters in
the junction tree and the size of the separators in the junction tree. The size of the separators in a junction
tree can be controlled by merging clusters that share a large separator. This step can be done in linear time.
Removing large separators also reduces the total number of clusters in a junction tree. In the worst case,
if all the separators in H are too large, the junction tree will only have one cluster that contains all the
vertices. In this case, using the junction tree framework will be no different than using a standard UGMS
algorithm.

6.3 Advantages of using Junction Trees and Region Graphs

An alternative approach to estimating G∗ using H is to modify some current UGMS algorithms (see Ap-
pendix B for some concrete examples). For example, neighborhood selection based algorithms first estimate
the neighborhood of each vertex and then combine all the estimated neighborhoods to construct an estimate
Ĝ of G∗ [7, 33, 34, 37]. Two ways in which these algorithms can be modified when given H are described as
follows:

1. A straightforward approach is to decompose the UGMS problem into p different subproblems of esti-
mating the neighborhood of each vertex. The graph H can be used to restrict the estimated neighbors
of each vertex to be subsets of the neighbors in H . For example, in Figure 7(a), the neighborhood of
1 is estimated from the set {2, 3, 4, 5} and the neighborhood of 3 is estimated from the set {1, 4, 5, 6}.
This approach can be compared to independently applying Algorithm 2 to each region in the region
graph. For example, when using the region graph, the edge (1, 4) can be estimated by applying a
UGMS algorithm to {1, 3, 4, 5}. In comparison, when not using region graphs, the edge (1, 4) is es-
timated by applying a UGMS algorithm to {1, 2, 3, 4, 5}. In general, using region graphs results in
smaller subproblems. A good example to illustrate this is the star graph in Figure 7(g). The junction
tree framework only requires applying a UGMS algorithm to a pair of nodes. On the other hand,
neighborhood selection needs to be applied to all the nodes to estimate the neighbors of the central
node 1 which is connected to all other nodes.

2. An alternative approach is to estimate the neighbors of each vertex in an iterative manner. However,
it is not clear what ordering should be chosen for the vertices. The region graph approach outlined in
Section 6.1 leads to a natural choice for choosing which edges to estimate in the graph so as to reduce
the problem size of subsequent subproblems. Moreover, iteratively applying neighborhood selection
may still lead to large subproblems. For example, suppose the star graph in Figure 7(g) is in fact the
true graph. In this case, using neighborhood selection always leads to applying UGMS to all the nodes
in the graph.

From the above discussion, it is clear that using junction trees for UGMS leads to smaller subproblems
and a natural choice of an ordering for estimating edges in the graph. We will see in Section 8 that the
smaller subproblems lead to weaker conditions on the number of observations required for consistent graph
estimation. Moreover, our numerical simulations in Section 9 empirically show the advantages of using
junction tree over neighborhood selection based algorithms.

11

Algorithm 4: PC-Algorithm for UGMS: PC(κ,Xn, H, L)

Inputs:
κ: An integer that controls the computational complexity of PC.
Xn: n i.i.d. observations.
H : A graph that contains all the true edges G∗.
L: A graph that contains the edges that need to be estimated.

Output: A graph Ĝ that contains edges in H ′ that are estimated to be in G∗.

1 Ĝ← L
2 for each k ∈ {0, 1, . . . ,κ} do

3 for each (i, j) ∈ E(Ĝ) do
4 Sij ← Neighbors of i or j in H depending on which one has lower cardinality.
5 if ∃ S ⊂ Sij , |S| = k, s.t. Xi ⊥⊥ Xj |XS (computed using Xn) then

6 Delete edge (i, j) from Ĝ and H .

7 Return Ĝ.

7. PC-Algorithm for UGMS

So far, we have presented the junction tree framework using an abstract undirected graphical model selection
(UMGS) algorithm. This shows that our framework can be used in conjunction with any UGMS algorithm. In
this Section, we review the PC-Algorithm, since we use it to analyze the junction tree framework in Section 8.
The PC-Algorithm was originally proposed in the literature for learning directed graphical models [43]. The
first stage of the PC-Algorithm, which we refer to as PC, estimates an undirected graph using conditional
independence tests. The second stage orients the edges in the undirected graph to estimate a directed
graph. We use the first stage of the PC-Algorithm for UGMS. Algorithm 4 outlines PC. Variants of the
PC-Algorithm for learning undirected graphical models have recently been analyzed in [1, 2]. The main
property used in PC is the global Markov property of undirected graphical models which states that if a set
of vertices S separates i and j, then Xi ⊥⊥ Xj |XS . As seen in Line 5 of Algorithm 4, PC deletes an edge (i, j)
if it identifies a conditional independence relationship. Some properties of PC are summarized as follows:

1. Parameter κ: PC iteratively searches for separators for an edge (i, j) by searching for separators of size
0, 1, . . . ,κ. This is reflected in Line 2 of Algorithm 4. Theoretically, the algorithm can automatically
stop after searching for all possible separators for each edge in the graph. However, this may not be
computationally tractable, which is why κ needs to be specified.

2. Conditional Independence Test: Line 5 of Algorithm 4 uses a conditional independence test to
determine if an edge (i, j) is in the true graph. This makes PC extremely flexible since nonparametric
independence tests may be used, see [16, 36, 56] for some examples. In this paper, for simplicity, we
only consider Gaussian graphical models. In this case, conditional independence can be tested using
the conditional correlation coefficient defined as

Conditional correlation coefficient: ρij|S =
Σij − Σi,SΣ

−1
S,SΣS,j√

Σi,i|SΣj,j|S
, (4)

where PX ∼ N (0,Σ), ΣA,B is the covariance matrix of XA and XB, and ΣA,B|S is the conditional
covariance defined by

ΣA,B|S = ΣA,B − ΣA,SΣ
−1
S,SΣB,S . (5)

Whenever Xi ⊥⊥ Xj |XS , then ρij|S = 0. This motivates the following test for independence:

Conditional Independence Test: |ρ̂ij|S | < λn =⇒ Xi ⊥⊥ Xj |XS , (6)

where ρ̂ij|S is computed using the empirical covariance matrix from the observations Xn. The regular-

ization parameter λn controls the number of edges estimated in Ĝ.

12

3. The graphs H and L: Recall that H contains all the edges in G∗. The graph L contains edges
that need to be estimated since, as seen in Algorithm 2, we apply UGMS to only certain parts of the
graph instead of the whole graph. As an example, to estimate edges in a region R of a region graph
representation of H , we apply Algorithm 4 as follows:

ĜR = PC (η,Xn, H,H ′
R) , (7)

where H ′
R is defined in (3). Notice that we do not use R in (7). This is because Line 4 of Algorithm 4

automatically finds the set of vertices to apply the PC algorithm to. Alternatively, we can apply
Algorithm 4 using R as follows:

ĜR = PC
(
η,Xn

R
,KR, H

′
R

)
, (8)

where KR is the complete graph over R.

4. The set Sij : An important step in Algorithm 4 is specifying the set Sij in Line 4 to restrict the
search space for finding separators for an edge (i, j). This step significantly reduces the computational
complexity of PC and differentiates PC from the first stage of the SGS-Algorithm [44], which specifies
Sij = V \{i, j}.

8. Theoretical Analysis of Junction Tree based PC

We use the PC-algorithm to analyze the junction tree based UGMS algorithm. Our main result, stated in
Theorem 8.1 shows that when using the PC-Algorithm with the junction tree framework, we can potentially
estimate the graph using fewer number of observations than what is required by the standard PC-Algorithm.
As we shall see in Theorem 8.1, the particular gain in performance depends on the structure of the graph.

Section 8.1 discusses the assumptions we place on the graphical model. Section 8.2 presents the main
theoretical result highlighting the advantages of using junction trees. We use standard asymptotic notation
so that f(n) = Ω(g(n)) implies that there exists an N and a constant c such that for all n ≥ N , f(n) ≥ cg(n).
For f(n) = O(g(n)), replace ≥ by ≤.

8.1 Assumptions

(A1) Gaussian graphical model: We assume X = (X1, . . . , Xp) ∼ PX , where PX is a multivariate normal
distribution with mean zero and covariance Σ. Further, PX is Markov on G∗ and not Markov on any
subgraph of G∗. It is well known this is assumption translates into the fact that Σ−1

ij = 0 if and only
if (i, j) /∈ G∗ [41].

(A2) Faithfulness: If Xi ⊥⊥ Xj |XS, then i and j are separated by4 S. This assumption is important for
the PC algorithm to output the correct graph. Further, note that the Markov assumption is different
since it goes the other way: if i and j are separated by S, then Xi ⊥⊥ Xj|XS . Thus, when both (A1)
and (A2) hold, we have that Xi ⊥⊥ Xj|XS ⇐⇒ (i, j) /∈ G∗.

(A3) Separator Size η: For all (i, j) /∈ G∗, there exists a subset of nodes S ⊂ V \{i, j}, where |S| ≤ η,
such that S is a separator for i and j in G∗. This assumption allows us to use κ = η when using PC.

(A4) Conditional Correlation Coefficient ρij|S and Σ: Under (A3), we assume that ρij|S satisfies

sup{|ρij|S | : i, j ∈ V, S ⊂ V, |S| ≤ η}} ≤M < 1 , (9)

where M is a constant. Further, we assume that maxi,S,|S|≤η Σi,i|S ≤ L <∞.

(A5) High-Dimensionality We assume that the number of vertices in the graph p scales with n so that
p → ∞ as n → ∞. Furthermore, both ρij|S and η are assumed to be functions of n and p unless
mentioned otherwise.

4If S is the empty set, this means that there is no edge between i and j.

13

TV1
V2

(a) Structure of the graph in (A5)

V1 ∪ T V2 ∪ T

T

(b) Region graph of (a)

Figure 8: General Structure of the graph we use in showing the advantages of the junction tree framework.

(A6) Structure of G∗: Under (A3), we assume that there exists a set of vertices V1, V2, and T such that
T separates V1 and V2 in G∗ and |T | < η. Figure 8(a) shows the general structure of this assumption.
As we will see in the next Section, this structure of the graph will allow us to apply the junction tree
framework to the region graph representation in Figure 8(b).

8.2 Theoretical Result and Analysis

Recall PC in Algorithm 4. Since we assume (A1), the conditional independence test in (6) can be used in
Line 5 of Algorithm 4. To analyze the junction tree framework, consider the following steps to construct Ĝ
using PC when given n i.i.d. observations Xn:

Step 1. Compute H : Apply PC using a regularization parameter λ0
n such that

H = PC(|T |,Xn,KV ,KV) , (10)

where KV is the complete graph over the nodes V . In the above equation, we apply PC to remove
all edges in G∗ for which there exists a separator of size less than or equal |T |.

Step 2. Estimate a subset of edges over V1 ∪ T and V2 ∪ T using regularization parameters λ1
n and λ2

n,
respectively, such that

ĜVk
= PC

(
η,Xn, H [Vk ∪ T] ∪KT , H

′
Vk∪T

)
, for k = 1, 2. (11)

where H ′
Vk∪T = H [Vk ∪ T]\KT as defined in (3).

Step 3. Estimate edges over T using a regularization parameter λT
n :

ĜT = PC (η,Xn, H [T ∪ neG∗(T)], H [T]) . (12)

Step 4. Final estimate is Ĝ = ĜV1
∪ ĜV2

∪ ĜT .

For the region graph in Figure 8(b), Steps 2 and 3 correspond to applying PC to the regions V1 ∪ T and
V2 ∪ T . Step 4 corresponds to applying PC to the region T and all neighbors of T in G∗. Step 4 corresponds
to applying PC to the region T and all neighbors of T in G∗. Although the neighbors of T are sufficient
to estimate all the edges in T , in general, depending on the graph, a smaller set of vertices is required to
estimate edges in T . The main result is stated using the following terms defined on the graphical model:

p1 = |V1|+ |T | (13)

p2 = |V2|+ |T | (14)

pT = |T ∪ neG∗(T)| (15)

ηT = |T | (16)

ρ0 = inf{|ρij|S | : i, j s.t. |S| ≤ ηT & |ρij|S | > 0} (17)

ρ1 = inf{|ρij|S | : i ∈ V1, j ∈ V1 ∪ T s.t. (i, j) ∈ E(G∗), S ⊆ V1 ∪ T, |S| ≤ η} (18)

ρ2 = inf{|ρij|S | : i ∈ V2, j ∈ V2 ∪ T s.t. (i, j) ∈ E(G∗), S ⊆ V2 ∪ T, |S| ≤ η} (19)

14

ρT = inf{|ρij|S | : i, j ∈ T s.t. (i, j) ∈ E, S ⊆ T ∪ neG(T), ηT < |S| ≤ η} , (20)

The term ρ0 is a measure of how hard it is to learn the graph H in Step 1 so that E(G∗) ⊆ E(H) and
all edges that have a separator of size less than |T | are deleted in H . The terms ρ1 and ρ2 are measures
of how hard it is learn the edges in G∗[V1 ∪ T]\KT and G∗[V2 ∪ T]\KT (Step 2), respectively, given that
E(G∗) ⊆ E(H). The term ρT is a measure of how hard it is learn the graph over the nodes T given that we
know the edges that connect V1 to T and V2 to T .

Theorem 8.1. Under Assumptions (A1)-(A6), there exist a conditional independence test such that if

n = Ω
(
max

{
ρ−2
0 ηT log(p), ρ−2

1 η log(p1), ρ
−2
2 η log(p2), ρ

−2
T η log(pT)

})
, (21)

then P (Ĝ += G)→ 0 as n→∞.

Proof See Appendix E.

Remark 8.1 (Choice of Regularization Parameters). We use the conditional independence test in (6) that
thresholds the conditional correlation coefficient. From the proof in Appendix E, the thresholds, which we
refer to as the regularization parameter, are chosen as follows:

λ0
n = O(ρ0) and λ0

n = Ω
(√

ηT log(p)/n
)

(22)

λk
n = O(ρk) and λk

n = Ω
(√

η log(pk)/n
)
, k = 1, 2 (23)

λT
n = O(ρT) and λT

n = Ω
(√

η log(pT)/n
)
. (24)

We clearly see that different regularization parameters are used to estimate different parts of the graph.

Remark 8.2 (Weaker Condition). If we do not use the junction tree based approach outlined in Steps 1-4 and
instead directly apply PC, the sufficient condition on the number of observations will be n = Ω(ρ−2

minη log(p)),
where

ρmin := inf{|ρij|S | : (i, j) ∈ E(G∗), |S| ≤ η} . (25)

This result is proved in Appendix D using results from [1, 20]. Since ρmin ≤ min{ρ0, ρ1, ρ2, ρT }, it is clear
that (21) is a weaker condition. The main reason for this difference is that the junction tree approach defines
an ordering on the edges to test if an edge belongs to the true graph. This ordering allows for a reduction
in separator search space (see Sij in Algorithm 4) for testing edges over the set T . Standard analysis of
PC assumes that the edges are tested randomly, in which case, the separator search space is always upper
bounded by the full set of nodes.

Remark 8.3 (Reduced Sample Complexity). Suppose η, ρ0, and ρT are constants and ρ1 < ρ2. In this
case, (21) reduces to

n = Ω
(
max

{
log(p), ρ−2

1 log(p1), ρ
−2
2 log(p2)

})
. (26)

If ρ−2
1 = Ω

(
max

{
ρ−2
2 log(p2)/ log(p1), log(p)

})
, then (26) reduces to

n = Ω
(
ρ−2
1 log(p1)

)
. (27)

On the other, if we do not use junction trees, n = Ω
(
ρ−2
min log(p)

)
, where ρmin ≤ ρ1. Thus, if p1 4 p,

for example p1 = log(p), then using the junction tree based PC requires lower number of observations for
consistent UGMS. Informally, the above condition says that if the graph structure in (A6) is easy to identify,
p1 4 p2, and the minimal conditional correlation coefficient over the true edges lies in the smaller cluster
(but not over the separator), the junction tree framework can accurately learn the graph using significantly
less number of observations.

15

Remark 8.4 (Learning Weak Edges). We now analyze Theorem 8.1 to see how the partial correlations scale
for high-dimensional consistency. Under the assumption in Remark 8.3, it is easy to see that the minimal
partial correlation scales as Ω(

√
log(p1)/n) when using junction trees and as Ω(

√
log(p)/n) when not using

junction trees. Thus, it is clear that when p1 4 p, it is possible to learn edges with weaker partial correlation
when using junction trees.

Remark 8.5 (Computational complexity). It is easy to see that the worst case computational complex-
ity of the PC-Algorithm is O(pη+2) since there are O(p2) edges and testing for each edges requires a
search over at most O(pη) separators. The worst case computational complexity of Steps 1-4 is roughly

O
(
p|T |+2 + pη+2

1 + pη+2
2 + pη+2

T

)
. Under the conditions in Remark 8.3 and when p1 4 p, this complexity is

roughly O(pη+2), which is the same as the standard PC-Algorithm. In practice, especially when the graph is
sparse, the computational complexity is much less than O(pη+2) since the PC-Algorithm restricts the search
space for finding separators.

Remark 8.6 (Extensions). We have analyzed the junction tree framework assuming that the junction
tree of H only has two clusters. Extending the analysis to junction trees with more than two clusters is
trivial. Moreover, the analysis can be easily extended to graphical models that takes values in some discrete
space. In this case, the conditional independence test can be done using the empirical conditional mutual
information. Further, we presented theoretical results only for the PC-Algorithm. Similar results, under
different assumptions, can be obtained when analyzing other UGMS algorithms.

9. Numerical Simulations

In this Section, we present numerical simulations that highlight the advantages of using the junction tree
framework for UGMS. Throughout this Section, we assume a Gaussian graphical model such that PX ∼
N (0,Θ−1) is Markov on G∗. It is well known that this implies that (i, j) /∈ G∗ ⇐⇒ Θij = 0 [42]. Some
algorithmic details used in the simulations are described as follows.
Computing H: We apply Algorithm 4 with a suitable value of κ in such a way that the separator search
space Sij (see Line 4) is restricted to be small. We use the conditional partial correlation to test for conditional
independence and choose a separate threshold to test for each edge in the graph. The thresholds for the
conditional independence test are computed using 5-fold cross-validation. The computational complexity of
this step is roughly O(p2) since there are O(p2) edges to be tested. Note that this method for computing H is
equivalent to Step 1 in Section 8.2 with |T | = κ. Finally, we note that the above method does not guarantee
that all edges in G∗ will be included in H . This can result in false edges being included in the junction tree
estimated graphs. To avoid this situation, once a graph estimate Ĝ has been computed using the junction
tree based UGMS algorithm, we apply conditional independence tests again to prune the estimated edge set.

Computing the junction tree: We use standard algorithms in the literature for computing close to
optimal junction tree5. Once the junction tree is computed, we merge clusters so that the maximum size of
the separator is at most κ+ 1, where κ is the parameter used when computing the graph H .

UGMS Algorithms: We apply the junction tree framework in conjunction with graphical Lasso (gL) [5],
neighborhood selection using Lasso (nL) [33], and the PC-Algorithm (PC) [43]. See Appendix B for a review
of gL and nL and Algorithm 4 for PC. When using nL, we use the intersection rule to combine neighborhood
estimates. Further, we use the adaptive Lasso [57] for finding neighbors of a vertex since this is known to
give superior results for variable selection [46].

Choosing Regularization Parameters: An important step when applying UGMS algorithms is to choose
a suitable regularization parameter. It is now well known that classical methods, such as cross-validation
and information criterion based methods, tend to choose a much larger number of edges when compared to
an oracle estimator for high-dimensional problems [28,32]. Several alternative methods have been proposed
in the literature; see for example stability selection [28, 32] and extended Bayesian information (EBIC)
criterion [11, 14]. In all our simulations, we use EBIC since it is much faster than stability based methods

5We use the GreedyFillin heuristic. This is known to give good results with reasonable computational time [21].

16

when the distribution is Gaussian. EBIC selects a regularization parameter λ̂n as follows:

λ̂n = min
λn>0

{
n
[
log det Θ̂λn − trace(ŜXn)

]
+ |E(Ĝλn)| logn+ 4γ|E(Ĝλn)| log p

}
, (28)

where Θ̂λn is the estimate of the inverse covariance matrix and |E(Ĝλn)| is the number of edges in the

estimated graph. The estimate λ̂n depends on a parameter γ ∈ [0, 1] such that γ = 0 results in the BIC
estimate and increasing γ produces sparser graphs. The authors in Reference [14] suggest that γ = 0.5
is a reasonable choice for high-dimensional problems. When solving subproblems using Algorithm 2, the
log p term is replaced by log |R|, Θ̂λn is replaced by the inverse covariance over the vertices R, and |Ĝλn | is
replaced by the number of edges estimated from the graph H ′

R.

Small subproblems: Whenever |R| is small (less than 8 in our simulations), we independently test whether
each edge is in G∗ using hypothesis testing. This shows the application of using different algorithms to learn
different parts of the graph.

9.1 Results on Synthetic Graphs

We assume that Θii = 1 for all i = 1, . . . , p. We refer to all edges connected to the first p1 vertices as weak
edges and the rest of the edges are referred to as strong edges. The different types of synthetic graphical
models we study are described as follows:

• Chain (CH1 and CH2): Θi,i+1 = ρ1 for i = 1, . . . , p1 − 1 (weak edges) and Θi,i+1 = ρ2 for i = p1, p− 1
(strong edges). For CH1, ρ1 = 0.15 and ρ2 = 0.245. For CH2, ρ1 = 0.075 and ρ2 = 0.245. Let
Θij = Θji.

• Cycle (CY1 and CY2): Θi,i+1 = ρ1 for i = 1, . . . , p1 − 1 (weak edges) and Θi,i+1 = ρ2 for i = p1, p− 1
(strong edges). In addition, Θi,i+3 = ρ1 for i = 1, . . . , p1−3 and Θi,i+3 = ρ2 for i = p1, p1+1, . . . , p−3.
This introduces multiple cycles in the graph. For CY1, ρ1 = 0.15 and ρ2 = 0.245. For CY2, ρ1 = 0.075
and ρ2 = 0.245.

• Hub (HB1 and HB2): For the first p1 vertices, construct as many star6 graphs of size d1 as possible.
For the remaining vertices, construct star graphs of size d2 (at most one may be of size less than d2).
The hub graph G∗ is constructed by taking a union of all star graphs. For (i, j) ∈ G∗ s.t. i, j ≤ p1, let
Θi,j = 1/d1. For the remaining edges, let Θij = 1/d2. For HB1, d1 = 8 and d2 = 5. For HB2, d1 = 12
and d2 = 5.

• Neighborhood graph (NB1 and NB2): Randomly place vertices on the unit square at coordinates
y1, . . . , yp. Let Θij = 1/ρ1 with probability (

√
2π)−1 exp(−4||yi − yj||22), otherwise Θij = 0 for all

i, j ∈ {1, . . . , p1} such that i > j. For all i, j ∈ {p1+1, . . . , p} such that i > j, Θij = ρ2. For edges over
the first p1 vertices, delete edges so that each vertex is connected to at most d1 other vertices. For the
vertices p1 + 1, . . . , p, delete edges such that the neighborhood of each vertex is at most d2. Finally,
randomly add four edges from a vertex in {1, . . . , p1} to a vertex in {p1, p1 + 1, . . . , p} such that for
each such edge, Θij = ρ1. We let ρ2 = 0.245, d1 = 6, and d2 = 4. For NB1, ρ1 = 0.15 and for NB2,
ρ2 = 0.075.

Notice that the parameters associated with the weak edges are lower than the parameters associated with
the strong edges. Some comments regarding notation and usage of various algorithms is given as follows.

• The junction tree versions of the UGMS algorithms are denoted by JgL, JPC, and JnL.

• We use EBIC with γ = 0.5 to choose regularization parameters when estimating graphs using JgL and
JPC. To objectively compare JgL (JPC) and gL (PC), we make sure that the number of edges estimated
by gL (PC) is roughly the same as the number of edges estimated by JgL (JPC).

6A star is a tree where one vertex is connected all other vertices.

17

• The nL and JnL estimates are computed differently since it is difficult to control the number of edges
estimated using both these algorithms7. We apply both nL and JnL for multiple different values of γ
(the parameter for EBIC) and choose graphs so that the number of edges estimated is closest to the
number of edges estimated by gL.

• When applying PC and JPC, we choose κ as 1, 2, 1, and 3 for Chain, Cycle, Hub, and Neighborhood
graphs, respectively. When computing H , we choose κ as 0, 1, 0, and 2 for Chain, Cycle, Hub, and
Neighborhood graphs, respectively.

Tables 2-5 summarize the results for the different types of synthetic graphical models. For an estimate Ĝ
of G∗, we evaluate Ĝ using the weak edge discovery rate (WEDR), false discovery rate (FDR), true positive
rate (TPR), and the edit distance (ED).

WEDR =
weak edges in Ĝ

of weak edges in G∗ (29)

FDR =
of edges in Ĝ\G∗

of edges in Ĝ
(30)

TPR =
of edges in Ĝ ∩G∗

of edges in G∗ (31)

ED = {# edges in Ĝ\G∗}+ {# edges in G∗\Ĝ} , (32)

Recall that the weak edges are over the first p1 vertices in the graph. Naturally, we want WEDR and TPR
to be large and FDR and ED to be small. Each entry in the table shows the mean value and standard error
(in brackets) over 50 observations. We now make some remarks regarding the results.

Remark 9.1 (Graphical Lasso). Of all the algorithms, graphical Lasso (gL) performs the worst. On the
other hand, junction tree based gL significantly improves the performance of gL. Moreover, the performance
of JgL is comparable, and sometimes even better, when compared to JPC and JnL. This suggests that when
using gL in practice, it is beneficial to apply a screening algorithm to remove some edges and then use the
junction tree framework in conjunction with gL.

Remark 9.2 (PC-Algorithm and Neighborhood Selection). Although using junction trees in conjunction
with the PC-Algorithm (PC) and neighborhood selection (nL) does improve the graph estimation perfor-
mance, the difference is not as significant as gL. The reason is because both PC and nL make use of the local
Markov property in the graph H . The junction tree framework further improves the performance of these
algorithms by making use of the global Markov property, in addition to the local Markov property.

Remark 9.3 (Chain Graph). Although the chain graph does not satisfy the conditions in (A6), the junction
tree estimates still outperforms the non-junction tree estimates. This suggests the advantages of using
junction trees beyond the graphs considered in (A6). We suspect that correlation decay properties, which
have been studied extensively in [1, 2], can be used to weaken the assumption in (A6).

Remark 9.4 (Hub Graph). For the hub graph HB1, the junction tree estimate does not result in a significant
difference in performance, especially for the PC and nL algorithms. This is mainly because this graph
is extremely sparse with multiple components. For the number of observations considered, H removes a
significant number of edges. However, for HB2, the junction tree estimate, in general, performs slightly
better. This is because the parameters associated with the weak edges in HB2 are smaller than that of HB1.

Remark 9.5 (General Conclusion). We see that, in general, the WEDR and TPR are higher, while the
FDR and ED are lower, for junction tree based algorithms. This clearly suggests that using junction trees
results in more accurate graph estimation. Moreover, the higher WEDR suggest that the main differences
between the two algorithms are over the weak edges, i.e., junction tree based algorithms are estimating more
weak edges when compared to a non junction tree based algorithm.

7Recall that both these algorithms use different regularization parameters, so there may exist multiple different estimates
with the same number of edges

18

Table 2: Results for Chain graphs: p = 100 and p1 = 20

Model n Alg WEDR FDR TPR ED |Ĝ|

CH1 300 JgL 0.305 (0.00473) 0.048 (0.000972) 0.767 (0.00158) 27 (0.176) 79.8
p = 100 gL 0.18 (0.00426) 0.0611 (0.00113) 0.757 (0.00135) 29 (0.153) 79.8

JPC 0.312 (0.00441) 0.0466 (0.000954) 0.775 (0.00135) 26 (0.162) 80.5
PC 0.264 (0.00513) 0.0473 (0.00107) 0.781 (0.00138) 25.6 (0.169) 81.2
JnL 0.306 (0.00477) 0.0723 (0.00109) 0.769 (0.00149) 28.8 (0.188) 82.1
nL 0.271 (0.00446) 0.0729 (0.00126) 0.757 (0.00147) 30 (0.197) 80.9

CH2 300 JgL 0.0516 (0.00199) 0.0672 (0.00121) 0.727 (0.00141) 32.2 (0.173) 77.3
p = 100 gL 0.00947 (0.00103) 0.0619 (0.000974) 0.733 (0.00146) 31.3 (0.162) 77.4

JPC 0.0484 (0.00189) 0.0637 (0.00114) 0.735 (0.00136) 31.2 (0.169) 77.8
PC 0.0337 (0.00183) 0.0545 (0.00124) 0.748 (0.00114) 29.3 (0.144) 78.4
JnL 0.0516 (0.00204) 0.077 (0.00113) 0.733 (0.0014) 32.5 (0.186) 78.7
nL 0.0389 (0.00201) 0.086 (0.00144) 0.723 (0.00143) 34.2 (0.216) 78.4

CH1 500 JgL 0.596 (0.00551) 0.0206 (0.000597) 0.916 (0.00117) 10.2 (0.133) 92.6
p = 100 gL 0.44 (0.00516) 0.0502 (0.000773) 0.889 (0.00106) 15.6 (0.132) 92.7

JPC 0.612 (0.00507) 0.0215 (0.000705) 0.921 (0.000976) 9.86 (0.128) 93.2
PC 0.577 (0.0048) 0.0324 (0.000746) 0.916 (0.000956) 11.4 (0.124) 93.7
JnL 0.623 (0.00483) 0.0588 (0.00092) 0.922 (0.000925) 13.5 (0.133) 97
nL 0.596 (0.00474) 0.0689 (0.00112) 0.918 (0.000953) 14.9 (0.164) 97.6

CH2 500 JgL 0.0768 (0.00257) 0.0435 (0.000974) 0.816 (0.000581) 22 (0.107) 84.5
p = 100 gL 0.0211 (0.00143) 0.0533 (0.000974) 0.808 (0.000347) 23.5 (0.0824) 84.6

JPC 0.0726 (0.00228) 0.042 (0.000966) 0.817 (0.000532) 21.7 (0.0822) 84.5
PC 0.0516 (0.00226) 0.0489 (0.00111) 0.815 (0.000504) 22.5 (0.0918) 84.9
JnL 0.0758 (0.00243) 0.0702 (0.00109) 0.818 (0.000536) 24.2 (0.102) 87.2
nL 0.0663 (0.00232) 0.0767 (0.00123) 0.815 (0.000555) 25.1 (0.126) 87.5

Table 3: Results for Cycle graphs, p = 100 and p1 = 20

Model n Alg WEDR FDR TPR ED |Ĝ|

CY1 300 JgL 0.314 (0.00356) 0.0355 (0.000617) 0.814 (0.00102) 28.5 (0.142) 111
p = 100 gL 0.105 (0.00309) 0.0556 (0.000806) 0.798 (0.000995) 32.9 (0.16) 112

JPC 0.326 (0.00401) 0.0302 (0.000661) 0.819 (0.00129) 27.2 (0.18) 112
PC 0.307 (0.00427) 0.0266 (0.000707) 0.826 (0.00125) 26 (0.169) 112
JnL 0.342 (0.00373) 0.0429 (0.000803) 0.813 (0.00113) 29.5 (0.175) 112
nL 0.299 (0.00363) 0.0443 (0.000974) 0.793 (0.00131) 32.3 (0.192) 110

CY2 300 JgL 0.0472 (0.00164) 0.0445 (0.000906) 0.762 (0.000961) 36.2 (0.163) 105
p = 100 gL 0.0008 (0.000253) 0.0488 (0.000775) 0.759 (0.00109) 37 (0.172) 105

JPC 0.0432 (0.00176) 0.0424 (0.000877) 0.764 (0.000869) 35.6 (0.174) 105
PC 0.0272 (0.00147) 0.0355 (0.000758) 0.773 (0.000767) 33.7 (0.137) 106
JnL 0.042 (0.00209) 0.0575 (0.00108) 0.754 (0.00117) 38.6 (0.21) 106
nL 0.035 (0.00241) 0.0569 (0.00118) 0.743 (0.00129) 39.9 (0.228) 104

CY1 500 JgL 0.532 (0.0045) 0.0222 (0.000549) 0.907 (0.000933) 15.1 (0.139) 122
p = 100 gL 0.278 (0.00526) 0.0707 (0.000723) 0.862 (0.00102) 26.9 (0.178) 122

JPC 0.61 (0.0042) 0.0157 (0.000575) 0.925 (0.000825) 11.9 (0.15) 124
PC 0.609 (0.00398) 0.0203 (0.000547) 0.925 (0.000786) 12.5 (0.134) 125
JnL 0.612 (0.00449) 0.028 (0.000605) 0.924 (0.000825) 13.6 (0.151) 125
nL 0.584 (0.00449) 0.0406 (0.000726) 0.919 (0.000929) 15.9 (0.171) 126

CY2 500 JgL 0.0864 (0.00271) 0.0389 (0.000766) 0.821 (0.000571) 28.1 (0.116) 113
p = 100 gL 0.004 (0.000542) 0.0578 (0.000768) 0.805 (0.000359) 32.3 (0.0883) 113

JPC 0.0872 (0.00233) 0.0343 (0.000682) 0.825 (0.000467) 27 (0.0988) 113
PC 0.0744 (0.00234) 0.0399 (0.000689) 0.823 (0.000497) 27.9 (0.0995) 113
JnL 0.085 (0.00315) 0.0451 (0.00102) 0.824 (0.00061) 28.4 (0.147) 114
nL 0.069 (0.00309) 0.053 (0.00103) 0.821 (0.000638) 29.8 (0.158) 114

19

Table 4: Results for Hub graphs:p = 100 and p1 = 20

Model n Alg WEDR FDR TPR ED |Ĝ|

HB1 300 JgL 0.204 (0.00398) 0.0389 (0.00107) 0.755 (0.00174) 22.3 (0.151) 63.7
p = 100 gL 0.154 (0.00408) 0.0377 (0.00107) 0.758 (0.00161) 22.1 (0.13) 63.8

JPC 0.204 (0.00419) 0.038 (0.00106) 0.753 (0.00175) 22.4 (0.16) 63.4
PC 0.193 (0.00422) 0.0377 (0.000953) 0.762 (0.00177) 21.7 (0.143) 64.2
JnL 0.245 (0.00464) 0.0887 (0.00131) 0.75 (0.00178) 26.2 (0.174) 66.7
nL 0.247 (0.00448) 0.0983 (0.00155) 0.752 (0.00182) 26.8 (0.198) 67.6

HB2 300 JgL 0.0444 (0.00194) 0.0471 (0.00131) 0.71 (0.00134) 26.7 (0.116) 61.2
p = 100 gL 0.0133 (0.00118) 0.0425 (0.00127) 0.716 (0.00142) 26 (0.121) 61.4

JPC 0.0478 (0.00225) 0.0431 (0.00114) 0.709 (0.00128) 26.5 (0.108) 60.8
PC 0.0289 (0.00189) 0.0381 (0.00105) 0.718 (0.00141) 25.5 (0.121) 61.3
JnL 0.0544 (0.00248) 0.0833 (0.00142) 0.704 (0.0012) 29.6 (0.146) 63
nL 0.0467 (0.00226) 0.0958 (0.00138) 0.7 (0.00116) 30.7 (0.138) 63.5

HB1 500 JgL 0.413 (0.00732) 0.0262 (0.000978) 0.87 (0.00159) 12.4 (0.156) 72.4
p = 100 gL 0.364 (0.00704) 0.0352 (0.000983) 0.863 (0.00149) 13.7 (0.144) 72.5

JPC 0.438 (0.00677) 0.0269 (0.000842) 0.878 (0.00147) 11.9 (0.148) 73.1
PC 0.448 (0.00678) 0.0268 (0.000834) 0.882 (0.00143) 11.6 (0.141) 73.4
JnL 0.507 (0.00615) 0.0764 (0.00133) 0.89 (0.00131) 14.9 (0.152) 78.2
nL 0.52 (0.00706) 0.0907 (0.00139) 0.893 (0.00156) 15.9 (0.191) 79.6

HB2 500 JgL 0.0856 (0.00276) 0.0416 (0.00111) 0.794 (0.000676) 19.8 (0.0855) 68
p = 100 gL 0.05 (0.00252) 0.0474 (0.00123) 0.789 (0.000633) 20.6 (0.0978) 68

JPC 0.0967 (0.00288) 0.0395 (0.0012) 0.798 (0.000732) 19.3 (0.109) 68.2
PC 0.0867 (0.0028) 0.0436 (0.00129) 0.797 (0.000687) 19.7 (0.111) 68.4
JnL 0.123 (0.00366) 0.0843 (0.00155) 0.804 (0.000816) 22.2 (0.15) 72.1
nL 0.106 (0.00341) 0.105 (0.00147) 0.801 (0.000743) 24.1 (0.143) 73.4

Table 5: Results for Neighborhood graph, p = 300 and p1 = 30

Model n Alg WEDR FDR TPR ED |Ĝ|

NB1 300 JgL 0.251 (0.00153) 0.0303 (0.000284) 0.813 (0.00049) 126 (0.329) 498
p = 100 gL 0.102 (0.0015) 0.0389 (0.00029) 0.806 (0.000506) 135 (0.345) 498

JPC 0.259 (0.00159) 0.0313 (0.000231) 0.814 (0.000402) 126 (0.26) 499
PC 0.255 (0.00157) 0.036 (0.000276) 0.813 (0.000466) 129 (0.33) 501
JnL 0.254 (0.00244) 0.0354 (0.000378) 0.812 (0.000635) 129 (0.461) 500
nL 0.226 (0.00249) 0.0389 (0.000451) 0.804 (0.000648) 136 (0.458) 497

NB1 300 JgL 0.00457 (0.000335) 0.0429 (0.000364) 0.784 (0.000508) 149 (0.385) 486
p = 100 gL 0.000286 (7.64e − 05) 0.0361 (0.000283) 0.79 (0.000422) 142 (0.259) 487

JPC 0.00371 (0.000263) 0.0416 (0.00031) 0.784 (0.000493) 148 (0.376) 486
PC 0.00286 (0.000244) 0.0479 (0.000281) 0.782 (0.000377) 153 (0.239) 488
JnL 0.00457 (0.000335) 0.0463 (0.000329) 0.783 (0.000448) 151 (0.356) 488
nL 0.00314 (0.000274) 0.0504 (0.000403) 0.775 (0.000456) 158 (0.374) 485

NB1 500 JgL 0.449 (0.00183) 0.0179 (0.000212) 0.921 (0.000279) 57.1 (0.199) 557
p = 100 gL 0.319 (0.00217) 0.0349 (0.00025) 0.905 (0.000295) 75.8 (0.242) 557

JPC 0.489 (0.00181) 0.0148 (0.000171) 0.925 (0.000276) 52.8 (0.189) 558
PC 0.496 (0.00169) 0.0226 (0.000235) 0.92 (0.000271) 60.2 (0.214) 559
JnL 0.508 (0.00307) 0.0274 (0.000328) 0.929 (0.000438) 57.9 (0.348) 567
nL 0.494 (0.00326) 0.0332 (0.000435) 0.927 (0.000435) 62.3 (0.4) 570

NB2 500 JgL 0.008 (0.00041) 0.0329 (0.000252) 0.87 (0.000216) 95 (0.206) 534
p = 100 gL 0.000286 (7.64e − 05) 0.0341 (0.000275) 0.869 (0.000204) 96 (0.214) 534

JPC 0.00886 (0.000448) 0.032 (0.000273) 0.87 (0.000205) 94.2 (0.215) 534
PC 0.00543 (0.00036) 0.0404 (0.00027) 0.865 (0.000202) 102 (0.207) 536
JnL 0.00829 (0.000464) 0.038 (0.000283) 0.871 (0.000198) 97.3 (0.22) 538
nL 0.00486 (0.00032) 0.043 (0.000334) 0.87 (0.000177) 101 (0.234) 540

20

OXY

HAL

SLB

SLE

CPB

HNZ
KO

PEP

MO

WY
IP

DOW

AMGN

ABT

BMY

JNJ

MRKPFE

WYE

PG

AVP

CL

WMB DD

COP

CVX
XOM

AA

CAT

BHI

DELL

AAPL

HPQ

IBM

EMC

S

XRX

TXN
INTC

TYC

GE

F

BA

HON

UTX

GD

RTN

BAX

MMM

MDT

BNI

NSC

FDX

T
VZ

CBS

CMCSA

AEP

ETR

EXC

SO

HD

TGT

WMT

MCD

SNS

CVS

BACC
JPM

RF

WB

WFC

BK

USB

AXP

MER
MS

CI

AIG

DIS

MSFT

ORCL

UNH

SP100

(a) Junction tree based graphical Lasso

OXY

HAL

SLB

SLE

CPB

HNZ
KO

PEP

MO

WY
IP

DOW

AMGN

ABT

BMY

JNJ

MRKPFE

WYE

PG

AVP

CL

WMB DD

COP

CVX
XOM

AA

CAT

BHI

DELL

AAPL

HPQ

IBM

EMC

S

XRX

TXN
INTC

TYC

GE

F

BA

HON

UTX

GD

RTN

BAX

MMM

MDT

BNI

NSC

FDX

T
VZ

CBS

CMCSA

AEP

ETR

EXC

SO

HD

TGT

WMT

MCD

SNS

CVS

BACC
JPM

RF

WB

WFC

BK

USB

AXP

MER
MS

CI

AIG

DIS

MSFT

ORCL

UNH

SP100

(b) Graphical Lasso

Figure 9: Graph over a subset of companies in the S&P 100. The positioning of the vertices is chosen so
that the junction tree based graph is aesthetically pleasing. The edges common in (a) and (b) are marked by
bold lines and the remaining edges are marked by dashed lines

21

OXY
HAL

SLB

SLE

CPB

HNZ

KO
PEP

MO

WY

IPDOW

AMGN

ABT
BMY

JNJ
MRK

PFE WYE

PG

AVP CL

WMB

DD

COP CVX

XOM

AA

CAT

BHI
DELL

AAPL

HPQ

IBM

EMC

S

XRX

TXN

INTC

TYC

GE

F

BA

HON

UTX

GD

RTN

BAX

MMM

MDT

BNI

NSC

FDX

T

VZ

CBS

CMCSA

AEP

ETR

EXC

SO

HD
TGT

WMT

MCD

SNS

CVS

BAC

C
JPM

RF

WB
WFC

BK

USB

AXP MER
MS

CI

AIG

DIS

MSFT

ORCL

UNH

SP100

(a) Junction tree based graphical Lasso

OXY
HAL

SLB

SLE

CPB

HNZ

KO
PEP

MO

WY

IPDOW

AMGN

ABT
BMY

JNJ
MRK

PFE WYE

PG

AVP CL

WMB

DD

COP CVX

XOM

AA

CAT

BHI
DELL

AAPL

HPQ

IBM

EMC

S

XRX

TXN

INTC

TYC

GE

F

BA

HON

UTX

GD

RTN

BAX

MMM

MDT

BNI

NSC

FDX

T

VZ

CBS

CMCSA

AEP

ETR

EXC

SO

HD
TGT

WMT

MCD

SNS

CVS

BAC

C
JPM

RF

WB
WFC

BK

USB

AXP MER
MS

CI

AIG

DIS

MSFT

ORCL

UNH

SP100

(b) Graphical Lasso

Figure 10: Graph over a subset of companies in the S&P 100. The positioning of the vertices is chosen so
that the graphical Lasso based graph is aesthetically pleasing. The edges common in (a) and (b) are marked
by bold lines and the remaining edges are marked by dashed lines.

22

9.2 Analysis of Stock Returns Data

We applied our methods to the data set in [12] of n = 216 monthly stock returns of p = 85 companies in the
S&P 100. We computed H using κ = 1. We applied JgL using EBIC with γ = 0.5 and applied gL so that
both graphs have the same number of edges. This allows us to objectively compare the gL and JgL graphs.
Figure 9 shows the two estimated graphs in such a way that the vertices are positioned so that the JgL graph
looks aesthetically pleasing. In Figure 10, the vertices are positioned so that gL looks aesthetically pleasing.
In each graph, we mark the common edges by bold lines and the remaining edges by dashed lines. Some
conclusions that we draw from the estimated graphs are summarized as follows:

• The gL graph in Figure 10(b) seems well structured with multiple different clusters of nodes with
companies that seem to be related to each other. A similar clustering is seen for the JgL graph in
Figure 9(a) with the exception that there are now connections between the clusters. As observed
in [10,12], it has been hypothesized that the “actual” graph over the companies is dense since there are
several unobserved companies that induce conditional dependencies between the observed companies.
These induced conditional dependencies can be considered to be the weak edges of the “actual” graph.
Thus, our results suggest that the junction tree based algorithm is able to detect such weak edges.

• We now focus on some specific edges and nodes in the graphs. The 11 vertices represented by smaller
squares and shaded in green are not connected to any other vertex in gL. On the other hand, all these
11 vertices are connected to at least one other vertex in JgL (see Figure 9). Moreover, several of these
edges are meaningful. For example, CBS and CMCSA are in the television industry, TGT and CVS
are stores, AEP and WMB are energy companies, GD and RTN are defense companies, and MDT
and UNH are in the healthcare industry. Finally, the three vertices represented by larger squares and
shaded in pink, are not connected to any vertex in JgL and are connected to at least one other vertex
in gL. Only the edges associated with EXC seem to be meaningful.

9.3 Analysis of Gene Expression Data

Graphical models have been used extensively for studying gene interactions using gene expression data [35,51].
The gene expression data we study is the Lymph node status data which contains n = 148 expression values
from p = 587 genes [26]. Since there is no ground truth available, the main aim in this Section is to highlight
the differences between the estimates JgL (junction tree estimate) and gL (non junction tree estimate). Just
like in the stock returns data, we compute the graph H using κ = 1. Both the JgL and gL graphs contain
831 edges. Figure 11 shows the graphs JgL and gL under different placements of the vertices. We clearly see
significant differences between the estimated graphs. This suggests that using the junction tree framework
may lead to new scientific interpretations when studying biological data.

10. Summary and Future Work

We have outlined a general framework that can be used as a wrapper around any arbitrary undirected
graphical model selection (UGMS) algorithm for improved graph estimation. Our framework takes as input
a graph H that contains all (or most of) the edges in G∗, decomposes the UGMS problem into multiple
subproblems using a junction tree representation of H , and then solves subprolems iteratively to estimate
a graph. Our theoretical results show that certain weak edges, which cannot be estimated using standard
algorithms, can be estimated when using the junction tree framework. We supported the theory with
numerical simulations on both synthetic and real world data. All the data and code used in our numerical
simulations can be found at http://www.ima.umn.edu/~dvats/JunctionTreeUGMS.html.

Our work motivates several interesting future research directions. In our framework, we used a graph H
to decompose the UGMS problem into multiple subproblems. Alternatively, we can also focus on directly
finding such decompositions. Another interesting research direction is to use the decompositions to develop
parallel algorithms for UGMS for estimating extremely large graphs. Finally, motivated by the differences in
the graphs obtained using gene expression data, another research problem of interest is to study the scientific
consequences of using the junction tree framework on various computational biology data sets.

23

http://www.ima.umn.edu/~dvats/JunctionTreeUGMS.html

(a) Junction tree based graphical Lasso (b) Graphical Lasso

(c) Junction tree based graphical Lasso (d) Graphical Lasso

Figure 11: Graph over genes computed using gene expression data. For (a) and (b), the vertices are chosen
so that the junction tree estimate is aesthetically pleasing. For (c) and (d), the vertices are chosen so that
the graphical Lasso estimate is aesthetically pleasing. Further, in (a) and (c), we only show edges that are
estimated in the junction tree estimate, but not estimated using graphical Lasso. Similarly, for (b) and (c),
we only show edges that are estimated by graphical Lasso, but not by the junction tree estimate.

24

1 2

5

6

8

4 73

(a)

1 2

5

43

(b)

5

6

8

4 7

(c)

Figure 12: (a) A graph over eight nodes. (b) The marginal graph over {1, 2, 3, 4, 5}. (c) The marginal graph
over {4, 5, 6, 7, 8}.

Acknowledgement

We thank Vincent Tan for discussions and comments on an earlier version of the paper. Divyanshu thanks
the Institute for Mathematics and its Applications (IMA) for financial support in the form of a postdoctoral
fellowship.

Appendix A. Marginal Graph

Definition A.1. The marginal graph G∗,m[A] of a graph G∗ over the nodes A is defined as a graph with the
following properties

1. E(G∗[A]) ⊆ E(G∗,m[A]).

2. For an edge (i, j) ∈ E(KA)\E(G∗[A]), if all paths from i to j in G∗ pass through a subset of the nodes
in A, then (i, j) /∈ G∗,m[A].

3. For an edge (i, j) ∈ E(KA)\E(G∗[A]), if there exists a path from i to j in G∗ such that all nodes in
the path, except i and j, are in V \A, then (i, j) ∈ G∗,m[A].

The graph KA is the complete graph over the vertices A. The first condition in Definition A.1 says that
the marginal graph contains all edges in the induced subgraph over A. The second and third conditions say
which edges not in G∗[A] are in the marginal graph. As an example, consider the graph in Figure 12(a)
and let A = {1, 2, 3, 4, 5}. From the second condition, the edge (3, 4) is not in the marginal graph since
all paths from 3 to 4 pass through a subset of the nodes in A. From the third condition, the edge (4, 5) is
in the marginal graph since there exists a path {4, 8, 5} that does not go through any nodes in A\{4, 5}.
Similarly, the marginal graph over A = {4, 5, 6, 7, 8} can be constructed as in Figure 12(c). The importance
of marginal graphs is highlighted in the following proposition.

Proposition A.1. If PX > 0 is Markov on G∗ = (V,E(G∗)) and not Markov on any subgraph of G∗, then
for any subset of vertices A ⊆ V , PXA is Markov on the marginal graph G∗,m[A] and not Markov on any
subgraph of G∗,m[A].

Proof Suppose PXA is Markov on the graph ǦA and not Markov on any subgraph of ǦA. We will show
that ǦA = Gm[A].

• If (i, j) ∈ G, then Xi +⊥⊥ Xj|XS for every S ⊆ V \{i, j}. Thus, G[A] ⊂ ǦA.

• For any edge (i, j) ∈ KA\G[A], suppose that for every path from i to j contains at least one node from
A\{i, j}. Then, there exists a set of nodes S ⊆ A\{i, j} such that Xi ⊥⊥ Xj |XS and (i, j) /∈ ǦA.

• For any edge (i, j) ∈ KA\G[A], suppose that there exists a path from i to j such that all nodes in the
path, except i and j, are in V \A. This means we cannot find a separator for i and j in the set A, so
(i, j) ∈ ǦA.

From the construction of ǦA and Definition A.1, it is clear that ǦA = Gm[A].

25

Using Proposition A.1, it is clear that if the UGMS algorithm Ψ in Assumption 1 is applied to a subset
of vertices A, the output will be a consistent estimator of the marginal graph G∗,m[A]. Note that from
Definition A.1, although the marginal graph contains all edges in G∗[A], it may contain additional edges as
well. Given only the marginal graph G∗,m[A], it is not clear how to identify edges that are in G∗[A]. For
example, suppose G∗ is a graph over four nodes and let the graph be a single cycle. The marginal graph
over any subset of three nodes is always the complete graph. Given the complete graph over three nodes,
computing the induced subgraph over the three nodes is nontrivial.

Appendix B. Examples of UGMS Algorithms

We give examples of standard UGMS algorithms and show how they can be used to implement step 3 in
Algorithm 2 when estimating edges in a region of a region graph. For simplicity, we review algorithms for
UGMS when PX is a Gaussian distribution with mean zero and covariance Σ∗. Such distributions are referred
to as Gaussian graphical models. It is well known [41] that that the inverse covariance matrix Θ∗ = (Σ∗)−1,
also known as precision matrix, is such that for all i += j, Θ∗

ij += 0 if and only if (i, j) ∈ E(G∗). In other
words, the graph G∗ can be estimated given an estimate of the covariance or inverse covariance matrix of
X . We review two standard algorithms for estimating G∗: graphical Lasso and neighborhood selection using
Lasso (nLasso).

B.1 Graphical Lasso (gLasso)

Define the empirical covariance matrix ŜA over a set of vertices A ⊂ V as follows:

ŜA =
1

n

n∑

k=1

X(k)
A

(
X(k)

A

)T
. (33)

Recall from Algorithm 2, we apply a UGMS algorithm R to estimate edges in H ′
R defined in (3). The

graphical Lasso (gLasso) estimates ÊR by solving the following convex optimization problem:

Θ̂ = arg min
Θ'0,Θij=0 ∀ (i,j)/∈Hm[R]

log det(Θ)− trace
(
ŜRX

n
R

)
− λ

∑

(i,j)∈H′

R

Θij

 (34)

ÊR = {(i, j) ∈ H ′
A : Θ̂ij += 0} . (35)

The graph Hm[R] is the marginal graph over R (see Appendix A). When R = V , H = KV , and H ′
A = KV ,

the above equations recover the standard gLasso estimator, which was first proposed in [5]. Equation (34)
can be solved using algorithms in [5, 17, 40, 55]. Theoretical properties of the estimates Θ̂ and ÊR have
been studied in [38]. Note that the regularization parameter in (34) controls the sparsity of ÊR. A larger λ
corresponds to a sparser solution. Further, we only regularize the terms in Θij corresponding to the edges
that need to be estimated, i.e., the edges in H ′

R. Finally, Equation (34) also accounts for the edges H by
computing the marginal graph over R. In general, Hm

[
R
]
can be replaced by any graph that is superset of

Hm
[
R
]
.

B.2 Neighborhood Selection (nLasso)

Using the local Markov property of undirected graphical models (see Definition 2.1), we know that if PX

is Markov on G∗, then P
(
Xi |XV \i

)
= P

(
Xi |XneG∗ (i)

)
. This motivates an algorithm for estimating the

neighborhood of each node and then combining all these estimates to estimate G∗. For Gaussian graphical
models, this can be achieved by solving a Lasso problem [45] at each node [33]. Recall that we are interested
in estimating all edges in H ′

R by applying a UGMS algorithm to R. The neighborhood selection using Lasso
(nLasso) algorithm is given as follows:

H ′′ = KR\H
m
[
R
]

(36)

26

β̂k = arg min
βi=0,i∈neH′′ (k)∪k∪V \A

‖Xn

k − X
nβ‖22 + λ

∑

i∈neH′

R
(k)

|βi|

(37)

n̂ek =
{
i : β̂k

i += 0
}

(38)

ÊR =
⋃

k∈R

{
(k, i) : i ∈ n̂ek

}
. (39)

Notice that in the above algorithm if i is estimated to be a neighbor of j, then we include the edge (i, j)
even if j is not estimated to be a neighbor of i. This is called the union rule for combining neighborhood
estimates. In our numerical simulations, we use the intersection rule to combine neighborhood estimates,
i.e., (i, j) is estimated only if i is estimated to be a neighbor of j and j is estimated to be a neighbor of i.
Theoretical analysis of nLasso has been carried out in [33, 50]. Note that, when estimating the neighbors of
a node k, we only penalize the neighbors in H ′

R. Further, we use prior knowledge about some of the edges by
using the graph H in (37). References [7,34,37] extend the neighborhood selection based method to discrete
valued graphical models.

Appendix C. Proof of Proposition 5.1

We first prove the following result.

Lemma C.1. For any (i, j) ∈ H ′
R, there either exists no non-direct path from i to j in H or all non-direct

paths in H pass through a subset of R.

Proof We first show the result for R ∈ R1. This means that R is one of the clusters in the junction
tree used to construct the region graph and ch(R) is the set of all separators of cardinality greater than one
connected to the cluster R in the junction tree. Subsequently, R = R. If ch(R) = ∅, the claim trivially holds.
Let ch(R) += ∅ and suppose there exists a non-direct path from i to j that passes through a vertex k /∈ R.
Then, there will exist a separator S in the junction tree such that S separates {i, j} and k. Thus, all paths
in H from i and j to k pass through S. This implies that either there is no non-direct path from i to j in
H or else we have reached a contradiction.

Now, suppose R ∈ Rl for l > 1. The set an(R) contains all the clusters in the junction tree than contain
R. From the running intersection property of junction trees, all these clusters must form a subtree in the
original junction tree. Merge R into one cluster and find a new junction tree J ′ by keeping the rest of the
clusters the same. It is clear R will be in the first row of the updated region graph. The arguments used
above can be repeated to prove the claim.

We now prove Proposition 5.1.

Case 1: Let (i, j) ∈ H ′
R and (i, j) /∈ G∗. If there exists no non-direct path from i to j in H , then the edge

(i, j) can be estimated by solving a UGMS problem over i and j. By the definition of R, i, j ∈ R. Suppose
there does exist non-direct paths from i to j in H . From Proposition C.1, all such paths pass through R.
Thus, the conditional independence of Xi and Xj can be determined from XR\{i,j}.

Case 2: Let (i, j) ∈ H ′
R and (i, j) ∈ G∗. From Proposition C.1 and using the fact that E(G∗) ⊆ E(H), we

know that all paths from i to j pass through R. This means that ifXi +⊥⊥ Xj|XR\{i,j}, thenXi +⊥⊥ Xj|XV \{i,j}.

Appendix D. Analysis of the PC-Algorithm in Algorithm 4

In this Section, we present analysis of Algorithm 4 using results from [1] and [20]. The analysis presented
here is for the non-junction tree based algorithm. Throughout this Section, assume

Ĝ = PC(η,Xn,KV ,KV) ,

where KV is the complete graph over the vertices V . Further, let the threshold for the conditional indepen-
dence test in (6) be λn. We are interested in finding conditions under which Ĝ = G∗ with high probability.

27

Theorem D.1. Under Assumptions (A1)-(A5), there exists a conditional independence test such that if

n = Ω(ρ−2
minη log(p)), or (40)

ρmin = Ω(
√
η log(p)/n), (41)

then P (Ĝ += G)→ 0 as n→∞.

Define the set Bη as follows

Bη = {(i, j, S) : i, j ∈ V, i += j, S ⊆ V \{i, j}, |S| ≤ η} . (42)

The following concentration inequality follows from [1].

Lemma D.1. Under Assumption (A4), there exists constants c1 and c2 such that for ε < M ,

sup
(i,j,S)∈Bη

P
(
||ρij|S |− |ρ̂ij|S || > ξ

)
≤ c1 exp

(
−c2(n− η)ξ2

)
, (43)

where n is the number of vector valued measurements made of Xi, Xj, and XS.

Proof See [1].

Let Pe = P (Ĝ += G), where the probability measure P is with respect to PX . Recall that we threshold
the empirical conditional partial correlation ρ̂ij|S to test for conditional independence, i.e., ρ̂ij|S ≤ λn =⇒
Xi ⊥⊥ Xj |XS . An error may occur if there exists two distinct vertices i and j such that either ρij|S = 0 and
|ρ̂ij|S | > λn or |ρij|S | > 0 and |ρ̂ij|S | ≤ λn. Thus, we have

Pe ≤ P (E1) + P (E2) , (44)

P (E1) = P

⋃

(i,j)/∈G

{∃ S s.t. |ρ̂ij|S | > λn}

 (45)

P (E2) = P

⋃

(i,j)∈G

{∃ S s.t. |ρ̂ij|S | ≤ λn}

 . (46)

We will find conditions under which P (E1) → 0 and P (E2) → 0 which will imply that Pe → 0. The term
P (E1), probability of including an edge in Ĝ that does not belong to the true graph, can be upper bounded
as follows:

P (E1) ≤ P

⋃

(i,j)/∈G

{∃ S s.t. |ρ̂ij|S | > λn}

 ≤ P

⋃

(i,j)/∈G,S⊂V \{i,j}

{|ρ̂ij|S | > λn}

 (47)

≤ pη+2 sup
(i,j,S)∈Bη

P
(
|ρ̂ij|S | > λn

)
(48)

≤ c1p
η+2 exp

(
−c2(n− η)λ2

n

)
= c1 exp

(
(η + 2) log(p)− c2(n− η)λ2

n

)
(49)

The terms pη+2 comes from the fact that there are at most p2 number of edges and the algorithm searches
over at most pη number of separators for each edge. Choosing λn such that

lim
n,p→∞

(n− η)λ2
n

(η + 2) log(p)
=∞ (50)

ensures that P (E1)→ 0 as n, p→∞. Further, choose λn such that for c3 < 1

λn < c3ρmin . (51)

28

The term P (E2), probability of not including an edge in Ĝ that does belong to the true graph, can be upper
bounded as follows:

P (E2) ≤ P

⋃

(i,j)∈G

{∃ S s.t. |ρ̂ij|S | ≤ λn}

 ≤ P

⋃

(i,j)∈G,S⊂V \{i,j}

|ρij|S |− |ρ̂ij|S | > |ρij|S |− λn

 (52)

≤ pη+2 sup
(i,j,S)∈Bη

P
(
|ρij|S |− |ρ̂ij|S | > |ρij|S |− λn

)
(53)

≤ pη+2 sup
(i,j,S)∈Bη

P
(
||ρij|S |− |ρ̂ij|S || > ρmin − λn

)
(54)

≤ c1p
η+2 exp

(
−c2(n− η)(ρmin − λn)

2
)
= c1 exp

(
(η + 2) log(p)− c4(n− η)ρ2min

)
. (55)

To get (55), we use (51) so that (ρmin − λn) > (1− c3)ρmin. For some constant c5 > 0, suppose that for all
n > n′ and p > p′,

c4(n− η)ρ2min > (η + 2 + c5) log(p) . (56)

Given (56), P (E2)→ 0 as n, p→∞. In asymptotic notation, we can write (56) as

n = Ω(ρ−2
minη log(p)) (57)

which proves the Theorem. The conditional independence test is such that λn is chosen to satisfy (50) and
(51). In asymptotic notation, we can show that λn = O(ρmin) and λ2

n = Ω (η log(p)/n) satisfies (50) and
(51).

Appendix E. Proof of Theorem 8.1

To prove the theorem, it is sufficient to establish that

ρ0 = Ω
(√

ηT log(p)/n
)

(58)

ρ1 = Ω
(√

η log(p1)/n
)

(59)

ρ2 = Ω
(√

η log(p2)/n
)

(60)

ρT = Ω
(√

η log(pT)/n
)
. (61)

Let H be the graph estimated in Step 1. An error occurs if for an edge (i, j) ∈ G∗ there exists a subset
of vertices S such that |S| ≤ ηT and ρ̂ij|S > λ0

n. Using the proof of Theorem D.1 (see analysis of P (E2)),
it is easy to see that n = Ω(ρ−2

0 ηT log(p)) is sufficient for P (E(G∗) +⊂ E(H)) → 0 as n → 0. Further, the
threshold is chosen such that λ0

n = O(ρ0) and (λ0
n)

2 = Ω (ηT log(p)/n). This proves (58).
In Step 2, we estimate the graphs Ĝ1 and Ĝ2 by applying the PC-Algorithm to the vertices V1 ∪ T and

V2 ∪T , respectively. For Ĝ1, given that all edges that have a separator of size ηT have been removed, we can
again use the analysis in the proof of Theorem D.1 to show that for λ1

n = O(ρ1) and (λ1
n)

2 = Ω (η log(p1)/n),
n = Ω(ρ−2

1 η log(p1)) is sufficient for P (Ĝ1 += G∗[V1 ∪ T]\KT)|G∗ ⊂ H) → 0 as n → ∞. This proves (59).
Using similar analysis, we can prove (60) and (61).

The probability of error can be written as

Pe ≤ P (G∗ +⊂ H) +
2∑

k=1

P (Ĝk += G∗[Vk ∪ T]\KT |G∗ ⊂ H)

+ P (ĜT += G∗[T]|G∗ ⊂ H, Ĝ = G[V1 ∪ T]∗\KT , G
∗[V2 ∪ T] = G[V2 ∪ T]\KT) . (62)

Given (58)-(61), each term on the right goes to 0 as n→∞, so Pe → 0 as n→∞.

29

References

[1] A. Anandkumar, V. Y. F. Tan, F. Huang, and A. S. Willsky. High-dimensional Gaussian graphical model
selection: Walk summability and local separation criterion. Journal of Machine Learning Research,
13:2293–2337, 2012.

[2] A. Anandkumar, V. Y. F. Tan, F. Huang, and A. S. Willsky. High-dimensional structure learning of
ising models: Local separation criterion. Annals of Statistics, 40(3):1346–1375, 2012.

[3] S. Arnborg, D. Corneil, and A. Proskurowski. Complexity of finding embeddings in ak-tree. SIAM
Journal on Algebraic Discrete Methods, 8(2):277–284, 1987.

[4] S. Arnborg and A. Proskurowski. Linear time algorithms for NP-hard problems restricted to partial
k-trees. Discrete Applied Mathematics, 23(1):11–24, April 1989.

[5] O. Banerjee, L. El Ghaoui, and A. d’Aspremont. Model selection through sparse maximum likelihood
estimation for multivariate Gaussian or binary data. J. Mach. Learn. Res., 9:485–516, 2008.

[6] A. Berry, P. Heggernes, and G. Simonet. The minimum degree heuristic and the minimal triangulation
process. In Graph-Theoretic Concepts in Computer Science, pages 58–70. Springer, 2003.

[7] G. Bresler, E. Mossel, and A. Sly. Reconstruction of Markov random fields from samples: Some obser-
vations and algorithms. In A. Goel, K. Jansen, J. Rolim, and R. Rubinfeld, editors, Approximation,
Randomization and Combinatorial Optimization. Algorithms and Techniques, volume 5171 of Lecture
Notes in Computer Science, pages 343–356. Springer Berlin, 2008.

[8] F. Bromberg, D. Margaritis, and V. Honavar. Efficient markov network structure discovery using
independence tests. J. Artif. Intell. Res. (JAIR), 35:449–484, 2009.

[9] T. Cai, W. Liu, and X. Luo. A constrained ? 1 minimization approach to sparse precision matrix
estimation. Journal of the American Statistical Association, 106(494):594–607, 2011.

[10] V. Chandrasekaran, P. Parrilo, and A. Willsky. Latent variable graphical model selection via convex
optimization. Ann. Statist., 40(4):1935–1967, 2012.

[11] J. Chen and Z. Chen. Extended bayesian information criteria for model selection with large model
spaces. Biometrika, 95(3):759–771, 2008.

[12] M. J. Choi, V. Y. F. Tan, A. Anandkumar, and A. S. Willsky. Learning latent tree graphical models.
Journal of Machine Learning Research, 2011.

[13] J. Fan and J. Lv. Sure independence screening for ultrahigh dimensional feature space. Journal of the
Royal Statistical Society: Series B (Statistical Methodology), 70(5):849–911, 2008.

[14] R. Foygel and M. Drton. Extended bayesian information criteria for Gaussian graphical models. NIPS,
2010.

[15] J. Friedman, T. Hastie, and R. Tibshirani. Sparse inverse covariance estimation with the graphical
lasso. Biostatistics, 9(3):432–441, July 2008.

[16] W. Hoeffding. A non-parametric test of independence. The Annals of Mathematical Statistics, 19(4):546–
557, 1948.

[17] C.-J. Hsieh, M. A. Sustik, I. S. Dhillon, and P. Ravikumar. Sparse inverse covariance matrix estimation
using quadratic approximation. In J. Shawe-Taylor, R. Zemel, P. Bartlett, F. Pereira, and K.Weinberger,
editors, Advances in Neural Information Processing Systems 24, pages 2330–2338. 2011.

[18] A. Jalali, C. Johnson, and P. Ravikumar. On learning discrete graphical models using greedy methods.
In NIPS, 2011.

30

[19] A. Jalali, C. Johnson, and P. Ravikumar. High-dimensional sparse inverse covariance estimation using
greedy methods. In International Conference on Artificial Intelligence and Statistics (AISTATS), 2012.

[20] M. Kalisch and P. Bühlmann. Estimating high-dimensional directed acyclic graphs with the PC algo-
rithm. Journal of Machine Learning Research, 8:613–636, 2007.

[21] U. B. Kjaerulff. Triangulation of graphs - algorithms giving small total state space. Technical Report
Research Report R-90-09, Department of Mathematics and Computer Science, Aalborg University,
Denmark, 1990.

[22] D. Koller and N. Friedman. Probabilistic Graphical Models: Principles and Techniques. The MIT Press,
2009.

[23] J. Lafferty, H. Liu, and L. Wasserman. Sparse nonparametric graphical models. Statistical Science,
27(4):519–537, 2012.

[24] S. L. Lauritzen and D. J. Spiegelhalter. Local computations with probabilities on graphical structures
and their application to expert systems. Journal of the Royal Statistical Society. Series B (Methodolog-
ical), 50(2):157–224, 1988.

[25] S. L. Lauritzen. Graphical Models. Oxford University Press, USA, 1996.

[26] L. Li and K. Toh. An inexact interior point method for l 1-regularized sparse covariance selection.
Mathematical Programming Computation, 2(3):291–315, 2010.

[27] H. Liu, F. Han, M. Yuan, J. Lafferty, and L. Wasserman. High dimensional semiparametric Gaussian
copula graphical models. Annals of Statistics, 40(4):2293–2326, 2012.

[28] H. Liu, K. Roeder, and L. Wasserman. Stability approach to regularization selection (stars) for high
dimensional graphical models. NIPS, 2010.

[29] H. Liu, F. Han, and C.-H. Zhang. Transelliptical graphical models. In P. Bartlett, F. Pereira, C. Burges,
L. Bottou, and K. Weinberger, editors, Advances in Neural Information Processing Systems 25, pages
809–817. 2012.

[30] H. Liu, J. Lafferty, and L. Wasserman. The nonparanormal: Semiparametric estimation of high dimen-
sional undirected graphs. The Journal of Machine Learning Research, 10:2295–2328, 2009.

[31] R. Mazumder and T. Hastie. Exact covariance thresholding into connected components for large-scale
graphical lasso. J. Mach. Learn. Res., 13:781–794, March 2012.

[32] N. Meinshausen and P. Bühlmann. Stability selection. Journal of the Royal Statistical Society: Series
B (Statistical Methodology), 72(4):417–473, 2010.

[33] N. Meinshausen and P. Bühlmann. High-dimensional graphs and variable selection with the lasso. Ann.
Statist., 34(3):1436–1462, 2006.

[34] P. Netrapalli, S. Banerjee, S. Sanghavi, and S. Shakkottai. Greedy learning of markov network structure.
In Allerton Conf. on Communication, Control and Computing, Sept. 2010.

[35] J. R. Nevins, M. West, A. Dobra, A. Dobra, C. Hans, C. Hans, B. Jones, B. Jones, J. R. Nevins, and
M. W. Abstract. Sparse graphical models for exploring gene expression data. Journal of Multivariate
Analysis, 90:196–212, 2004.

[36] M. Rasch, A. Gretton, Y. Murayama, W. Maass, N. Logothetis, L. Wiskott, G. Kempermann,
L. Wiskott, G. Kempermann, B. Schölkopf, et al. A kernel two-sample test. Journal of Machine
Learning Research, 2:299, 2012.

[37] P. Ravikumar, M. J. Wainwright, and J. Lafferty. High-dimensional Ising model selection using #1-
regularized logistic regression. Annals of Statistics, 38(3):1287–1319, 2010.

31

[38] P. Ravikumar, M. Wainwright, G. Raskutti, and B. Yu. High-dimensional covariance estimation by
minimizing #1-penalized log-determinant divergence. Electronic Journal of Statistics, 5:935–980, 2011.

[39] N. Robertson and P. D. Seymour. Graph minors. II. Algorithmic aspects of tree-width. Journal of
Algorithms, 7(3):309 – 322, 1986.

[40] K. Scheinberg, S. Ma, and D. Goldfarb. Sparse inverse covariance selection via alternating linearization
methods. In J. Lafferty, C. K. I. Williams, J. Shawe-Taylor, R. Zemel, and A. Culotta, editors, Advances
in Neural Information Processing Systems 23, pages 2101–2109. 2010.

[41] T. P. Speed and H. T. Kiiveri. Gaussian Markov distributions over finite graphs. The Annals of
Statistics, 14(1):138–150, 1986.

[42] T. Speed and H. Kiiveri. Gaussian Markov distributions over finite graphs. The Annals of Statistics,
14(1):138–150, 1986.

[43] P. Spirtes and C. Glymour. An algorithm for fast recovery of sparse causal graphs. Social Science
Computer Review, 9:62–72, 1991.

[44] P. Spirtes, C. Glymour, and R. Scheines. Causality from probability. In Advanced Computing for the
Social Sciences, 1990.

[45] R. Tibshirani. Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society,
Series B, 58(1):267–288, 1996.

[46] S. van de Geer, P. Bühlmann, and S. Zhou. The adaptive and the thresholded lasso for potentially
misspecified models (and a lower bound for the lasso). Electronic Journal of Statistics, 5:688–749, 2011.

[47] D. Vats. High-dimensional screening using multiple grouping of variables. arXiv preprint
arXiv:1208.2043, 2013.

[48] D. Vats and J. M. F. Moura. Finding non-overlapping clusters for generalized inference over graphical
models. IEEE Transactions on Signal Processing, 60(12):6368 –6381, Dec. 2012.

[49] M. J. Wainwright. Stochastic Processes on Graphs: Geometric and Variational Approaches. PhD thesis,
Department of EECS, Massachusetts Institute of Technology, 2002.

[50] M. J. Wainwright. Sharp thresholds for high-dimensional and noisy sparsity recovery using #1-
constrained quadratic programming (Lasso). IEEE Trans. Inf. Theory, 55(5):2183–2202, 2009.

[51] A. Wille, P. Zimmermann, E. Vranová, A. Fürholz, O. Laule, S. Bleuler, L. Hennig, A. Prelic,
P. Von Rohr, L. Thiele, et al. Sparse graphical Gaussian modeling of the isoprenoid gene network
in arabidopsis thaliana. Genome Biol, 5(11):R92, 2004.

[52] D. Witten, J. Friedman, and N. Simon. New insights and faster computations for the graphical lasso.
Journal of Computational and Graphical Statistics, 20(4):892–900, 2011.

[53] X. Xie and Z. Geng. A recursive method for structural learning of directed acyclic graphs. Journal of
Machine Learning Research, 9:459–483, 2008.

[54] J. Yedidia, W. Freeman, and Y. Weiss. Constructing free-energy approximations and generalized belief
propagation algorithms. IEEE Transactions on Information Theory, 51(7):2282–2312, 2005.

[55] M. Yuan and Y. Lin. Model selection and estimation in the Gaussian graphical model. Biometrika,
94(1):19–35, 2007.

[56] K. Zhang, J. Peters, D. Janzing, and B. Schölkopf. Kernel-based conditional independence test and
application in causal discovery. Arxiv preprint arXiv:1202.3775, 2012.

[57] H. Zou. The adaptive lasso and its oracle properties. Journal of the American Statistical Association,
101(476):1418–1429, 2006.

32

	1 Introduction
	1.1 Overview of the Junction Tree Framework
	1.2 Advantages of Using Junction Trees
	1.3 Related Work

	2 Preliminaries
	2.1 Graph Theoretic Concepts
	2.2 Undirected Graphical Models
	2.3 Undirected Graphical Model Section (UGMS)
	2.4 Junction Trees
	3 Paper Organization
	4 Overview of Region Graphs

	5 Applying UGMS to Region Graphs
	6 UGMS Using Junction Trees: A General Framework
	6.1 Description of Framework
	6.2 Computational Complexity
	6.3 Advantages of using Junction Trees and Region Graphs

	7 PC-Algorithm for UGMS
	8 Theoretical Analysis of Junction Tree based PC
	8.1 Assumptions
	8.2 Theoretical Result and Analysis

	9 Numerical Simulations
	9.1 Results on Synthetic Graphs
	9.2 Analysis of Stock Returns Data
	9.3 Analysis of Gene Expression Data

	10 Summary and Future Work
	A Marginal Graph
	B Examples of UGMS Algorithms
	B.1 Graphical Lasso (gLasso)
	B.2 Neighborhood Selection (nLasso)
	C Proof of Proposition ??
	D Analysis of the PC-Algorithm in Algorithm ??
	E Proof of Theorem ??

