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Multiscale Hidden Markov
Models for Bayesian Image
Analysis

Robert D. Nowak

ABSTRACT Bayesian multiscale image analysis weds the powerful mod-
eling framework of probabilistic graphs with the intuitively appealing and
computationally tractable multiresolution paradigm. In addition to pro-
viding a very natural and useful framework for modeling and processing
images, Bayesian multiscale analysis is often much less computationally de-
manding compared to classical Markov random field models. This chapter
focuses on a probabilistic graph model called the multiscale hidden Markov
model (MHMM), which captures the key inter-scale dependencies present
in natural signals and images. A common framework for the MHMM is pre-
sented that is capable of analyzing both Gaussian and Poisson processes,
and applications to Bayesian image analysis are examined.

1 Introduction

The goal of image analysis is to extract some information of interest from
image data. The information may simply be the underlying image intensi-
ties or the location and/or boundaries of objects, or it may be a high-level
description of a scene. The common feature of the vast majority of these
challenging problems is that they usually cannot be solved without includ-
ing prior information or knowledge. Hence, many of the more successful im-
age analysis tools are Bayesian. Arguably, the crucial element of Bayesian
techniques is the choice of the prior probability model. The most common
tools for Bayesian image analysis are Markov random field (MRF) mod-
els, which have been successfully applied in a host of problems including
restoration, segmentation, and tomographic reconstruction. For examples,
see Cross and Jain (1983), Geman and Geman (1984), and Chellappa and
Jain (1993). Since edges and other inhomogeneities are key visual features
(as is testified to by the huge amount of research devoted to the problem
of edge detection), good image priors should be capable of representing
them. Although this is possible within the MRF framework, the result-
ing inference criteria require, in general, computationally intensive Monte
Carlo methods, like the version of the Metropolis algorithm proposed by
Geman and Geman (1984).
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Multiscale (or multiresolution) techniques have been another popular
and successful approach to many image analysis problems. Beginning with
the seminal work of Adelson and Burt (1981), multiscale image analysis
has found application in a wide range of tasks, from low-level image pro-
cessing to high-level machine vision, and today, it is the basis for most
state-of-the-art image compression schemes. One of the advantages of the
multiscale approach is its computational efficiency; multiscale analysis in-
volves efficient schemes for passing intermediate results obtained at one
analysis scale to the next scale of analysis. Remarkably, Field (1993) ar-
gues that similar processing mechanisms take place in the human visual
system.

Recently, attempts have been made to develop multiscale image mod-
els, that combine the powerful modeling framework of MRFs with the
intuitively appealing and computationally tractable multiscale analysis
paradigm. Rather than specifying inter-pixel relationships directly in the
spatial domain, multiscale models attempt to represent structural relation-
ships more efficiently through causal relationships across scales of analysis.
Along this line of thinking, various types of multiscale stochastic image
models have recently been proposed by a number of researchers, e.g., Char-
bonnier et al. (1992), Bouman and Shapiro (1994), Crouse et al. (1998),
Luettgen et al. (1993), Malfait and Roose (1997), Simoncelli (1997), Tim-
mermann and Nowak (1997), and Vidakovic (1998). These models have
been shown to be useful and adequate for a wide range of problems, and lead
to (signal and image) processing methods which are much less computa-
tionally demanding than those obtained from the classical MRF framework.
The computational efficiency stems from the fact that the joint probabil-
ity distribution associated with causal multiscale models can be specified
in terms of conditional probability functions, instead of MRF clique po-
tential functions which are generally much more difficult to work with.
This chapter focuses on one multiscale model in particular, the multiscale
hidden Markov model (MHMM), which is a generalization of the wavelet-
domain HMM developed by Crouse et al. (1996, 1998) for Gaussian obser-
vation models. The MHMM is a probabilistic graph model constructed on
a quadtree! (or binary tree in the case of one-dimensional signals) associ-
ated with multiscale image analysis. MHMMSs capture the key inter-scale
dependencies present in natural signals and images.

The relationship between classical MRF's and multiscale models has been
extensively studied by Gidas (1989), Luettgen et al. (1993), and Pérez
and Heitz (1996). It is well known that most multiscale models display
long-range dependencies, and do not, in general, possess a local Marko-
vian property at all scales as shown by Pérez and Heitz (1996). However,

1See Mallat (1998) for general information on the tree structures associated with
wavelet and multiscale analysis.
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since many natural signals do display long-range dependencies, the non-
local behavior of multiscale models may be quite desirable. In fact, certain
multiscale models generate 1/ f random processes® which appear to be very
well matched to the spectral characteristics of natural imagery as demon-
strated in the comprehensive study of van der Schaaf and van Hateren
(1996). See the work of Wornell (1996), Nowak (1998), and Timmermann
and Nowak (1999) for more information on 1/f processes and multiscale
analysis.

This chapter is organized as follows. Section 2 reviews the basic multi-
scale analysis of Gaussian and Poisson processes, which are two of the most
commonly encountered data models in image processing. Section 3 consid-
ers simple “independent parameter” prior probability models for Bayesian
multiscale analysis. Section 4 studies a more sophisticated prior model,
the MHMM, that moves beyond the assumption of independence and that
better reflects the characteristics of natural signals and images. To keep
the presentation as simple as possible, Sections 2, 3, and 4 focus on the
one-dimensional (signal) setting. Section 5 discusses some additional issues
arising in the two-dimensional (image) setting. Section 6 examines two ap-
plications of this framework to image analysis. Conclusions are made in Sec-
tion 7. In order to deal with both Gaussian and Poisson problems within
the same general framework, multiscale analyses and models based on a
Haar multiscale analysis are emphasized throughout the chapter. In the
Gaussian case, an analogous MHMM framework was developed by Crouse
et al. (1998) for multiscale analysis based on any orthogonal wavelet basis.

2 Multiscale Data Analysis

In signal and image analysis applications, two of the most common obser-
vation models are the Gaussian and Poisson models, see Castleman (1996)
for further discussion. For simplicity, let us consider these two models in
one dimension; extensions to two dimensions are discussed in Section 5.
The Gaussian observation model is:

T = WU + W, kZO,...,2J—1, (1)

where x = {z},} are observations, p = {uy} are interpreted as signal sam-
ples, and {wy} are realizations of a Gaussian noise process. For convenience
in the subsequent multiscale analysis, we adopt the usual convention that
the length of the signal is a power of 2, however it is possible to deal with
signals of arbitrary length in a multiscale framework. The {wy} are inde-
pendent, identically distributed samples of a zero-mean Gaussian random

2A 1/f process is a random process whose power spectrum behaves like 1/|f|7, for
some power 7y > 0.
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variable with known variance o2, leading to the likelihood function

271

le‘ HN-"L'klllzk, )7 (2)

k=0

where NV (z | u,0%) denotes a Gaussian density with mean p and variance
o? evaluated at the point z.
In the Poisson case, the data are (conditionally) independent

mkNp($k|Hk)7 k:OJ"'72J_17 (3)

where P(z | ;1) denotes the Poisson mass function with intensity p evaluated
at the point z. The likelihood function in this case is simply

271

p(x|p) = prk|ﬂk 4)

Now let us consider a multiscale data analysis. In general, multiscale
analysis refers to the study of behavior or structure in signals or data at
various spatial and/or temporal resolutions. For further background infor-
mation on multiscale signal analysis see Mallat (1998). Perhaps the simplest
technique is the Haar multiscale analysis defined according to:

Tk = Tk, k‘=0,...,2']—1

Tjik = Tjt1,2k + Tjt1,2k+1, k=0,.. L2 -1,0<j<J—1.
The index j refers to the resolution of the analysis, 2/; j = J being the
highest resolution (finest scale), and j = 0 being the lowest resolution

(coarsest scale). This multiscale data analysis is organized into the binary
data tree shown in Figure 1.

/ A

fine X+10 Xe11 Xe12 He13 SCAlEJHL

FIGURE 1. Binary data tree associated with multiscale (fine-to-coarse) analysis.
In this figure, analysis begins at fine scale j + 1 and produces coarser represen-
tations of data at scales j and j — 1.

scaej

The data {z;} are the (unnormalized) Haar scaling coefficients of x. The
relationship between a “parent” (e.g., ;%) and a “child” (e.g., zj41,2k)
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is of fundamental interest in multiscale data analysis. Specifically, given
an observation model, e.g., Gaussian, we are interested in the conditional
distribution of the child given the parent.

The parent-child relationship is expressed by the conditional likelihood
P(Zj+1,2k | T4k, 1), which happens to have a very simple form for both the
Gaussian and Poisson observation models. Note that it is unnecessary to
consider the conditional likelihoods of both children due to the fact that
Zj41,2k+1 is uniquely determined by ;41,24 and z;, ;. Before examining the
conditional likelihoods, let us define a multiscale analysis of the parameter
u, analogous to that defined for the data x:

MHik = Mk, k=O7"'72J_1

Wik = Hjti2k + Miri2ert, k=0,...,27 =1, 0<j<J—1.
The parameters {u;} are the (unnormalized) Haar scaling coefficients of
. With this definition in hand, and using standard conditional probability

relationships between pairs of Gaussian and Poisson random variables, we
have the following expressions for the parent-child conditional likelihoods.

o Gaussian model:

2
Tjk  Mj+1,2k — Hi+1,2k+1 T4
— Js ] 5 J ) J
p(Ejtion | Tjep) = N <$j+1,2k | =5~ + 5 = |

where of =27775%; (5)
e Poisson model:

Mit1,2k
P(Tjt1,2k | Tjk, ) = B ($j+1,2k | xj,k:]Tk): (6)
7

where B(z | n,0) = (2)6% (1 —6)™*, denotes the binomial distribution with
parameters n and . From these expressions, we identify the canonical mul-
tiscale parameters associated with the two models. In the Gaussian case,
the canonical parameter is 6, = pjy1,26 — Mj+1,2k+1, Which is simply the
(unnormalized®) Haar wavelet coefficient of the mean (signal) p at reso-
lution 27 and location k. In the Poisson case, the canonical parameter is
Ojr = ”J;Jﬂ, which can be viewed as a “splitting” factor? that governs the
multiscale refinement of the intensity p. This type of multiscale intensity
analysis was introduced independently by Timmermann and Nowak (1997)
and Kolaczyk (1998). Also see Timmermann and Nowak (1999) for further

3The normalized Haar wavelet coefficients are obtained by the mapping Ok —
z(j*J)/2aj k-

4Note that the splitting factors are also closely related to the Haar wavelet coefficients
Bi+1,2k _ 1 Bj+1,2k —Hj+1,2k+1
piss (1 |

since =
Hjk
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details. As discussed in Section 3, the canonical multiscale parameters sug-
gest the use of special prior distributions that complement the observation
model leading to tractable and highly efficient processing strategies.

The simplicity of these relationships (well-known parametric distribu-
tions) is quite exceptional; in general, under other observation models, the
parent-child relationship can be much more complicated, and usually does
not admit a standard parametric form. For this reason, one can argue that
multiscale analysis is especially well suited to Gaussian and Poisson data.
In particular, in either case, one can factorize the likelihood function as
follows:

J—127-1

p(x|p) = p(xoo]po0) H H P(Tj41,2k | T5k,05k) (7)
J=0 k=0

where p(2j41,2k | Tk, 0;,%) is given by (5) in the Gaussian case, and (6) in
the Poisson case. This factorization is possible because the linear mapping
of observations to scaling coeflicients, x = {zx} — {z;2r}, has a unit
Jacobian.

Note that in the Gaussian case the likelihood can also be expressed equiv-
alently in terms of the wavelet coefficients of the observation x. That is,
the Gaussian likelihood of x given p can be written as a product of uni-
variate Gaussian likelihoods, each involving a single “data” wavelet coeffi-
cient xj41,25 — Tj4+1,26+1 given the corresponding signal wavelet coefficient
0k = Pjt+1,2k — Bj+1,2k+1- This is a more standard likelihood factorization
for the Gaussian case, and it is possible because of the orthogonality of
the discrete wavelet transform and the fact that the Gaussian likelihood
structure is preserved under orthogonal linear transformations. In fact, this
alternative “wavelet-based” factorization can be employed in conjunction
with any orthogonal wavelet system, the Haar being one special case.

A similar wavelet-based factorization is not possible in the Poisson case;
the difficulty lies in the fact that the Poisson distribution reproduces under
straight (unweighted) summation (the sum of Poisson random variables is
still Poisson), but not under rescaling. Therefore we use the factorization
(7) above in order to treat both Gaussian and Poisson models within a
common framework. For more information on this likelihood factorization
and a discussion of its fundamental role in multiscale statistical analysis in
general, see Kolaczyk (1999) in this volume.

The likelihood factorization also greatly facilitates multiscale analy-
sis and modeling. For example, estimates of the multiscale parameters
0 = {0; 1} can be used to reconstruct an estimate of the underlying sig-
nal or intensity. In Section 6, we will look at two Bayesian image analysis
applications based on the multiscale parameters. In general, Bayesian in-
ference based on the multiscale parameters 6 requires; (1) specification of
a suitable prior probability model for 6; (2) determination of the posterior
probability distribution of 8 resulting from the likelihood and prior. The
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next two sections examine two types of prior probability models and their
respective posterior distributions. Section 3 considers a simple approach
in which @ are modeled as independent random variables with prior prob-
ability densities designed to reflect the characteristics of natural signals
and images and that lead to simple expressions for the posterior density.
Section 4 examines a more sophisticated prior model, the MHMM, that
moves beyond the assumption of independence and captures the parent-
child dependencies also encountered in practice. To keep the notation and
derivations as simple and clear as possible, throughout the remainder of the
chapter we assume that the scaling coefficient at the coarsest scale, 9,9, is
known. The Bayesian modeling and analysis methods described next can be
easily extended to include prior models and inference schemes that include
Mo,0 &S well.

3 Independent Parameter Models

Let us now consider prior probability models for the (unknown) canonical
multiscale parameters 8. Conjugate priors are advantageous for computa-
tional reasons since the posterior distribution is obtained by simply “up-
dating” the parameters of the prior based on the observations; see (Robert,
1994, pp. 97-111) for further information. Moreover, we will see that con-
jugate priors can provide very plausible models for the multiscale param-
eters. For the Gaussian likelihood function, the natural conjugate prior is
also Gaussian. Hence, a simple approach is to model each multiscale pa-
rameter as an independent Gaussian 6 ~ N(0]0,72). In the Poisson case,
the natural conjugate prior for the binomial distribution is a beta density.
Therefore, we model each multiscale parameter as an independent beta

distributed random variable, § ~ Be(f|a, ) = %, 0<6<1,
where B(a, 8) denotes the standard beta function. In this chapter, we will
only use symmetric beta priors of mean 1/2, characterized by a = 3. Note
that the Gaussian is also a symmetric prior (about its mean, in this case,
zero). In both cases, we choose a symmetric prior for 8 since there is no a
priori support for asymmetry. Also, in general, the variance 72 or parame-
ter o may depend on the resolution 27. Here, as in most related approaches,
the parameters do not depend on the location k, since location dependent
signal characteristics are usually not known a priori. Thus, a simple model
for the unknown parameters 0 is

J-127-1
p®) = [ II »6:r), (8)
J=0 k=0
with p(6;,%) equal to N'(8;|0,77) or Be(8j x| a;, ;) for the Gaussian or
Poisson case, respectively.

Although this “independent parameter” prior may appear too simplis-
tic, in certain cases it is quite reasonable because multiscale decomposi-
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tions tend to decorrelate signals and images. For example, if the signal
is a fractional Brownian motion or 1/f process, then the correlations be-
tween Haar wavelet coefficients decay very rapidly across scale and space as
demonstrated by Flandrin (1992) and Wornell (1996). Moreover, it can be
shown that with special choices of {77} or {a;} the prior above (8) displays
1/ f-like behavior, see Nowak (1998) and Timmermann and Nowak (1999)
for more information.

In both the Gaussian and Poisson cases, combining the prior (8) with
the likelihood (7) produces a posterior density

J—127—-1

p@1x) = [ TI pOsr|2ikzis1.26), 9)

j=0 k=0
where

o Gaussian model:

2 2,2
p(0k|.’L'k T 12k) _ N 0k| Tj (2.’[5]’-}-1,2];: _ZL'J"]{,) ngj .
s 7.k j+1, 7s 7_]'2 +0? 77’-2-}-0? ;

e Poisson model:
POk | Tjk; Tjt1,26) = Be(Ojk | oy + Tjt1,2k, 05 + ik — Tja,2k) -

The marginal posteriors above can be easily derived; also see (Robert, 1994,
p. 104) for general forms of the posterior distributions resulting from these
conjugate priors). The factorization of the posterior shows that inferences
can be made on each multiscale parameter individually, instead of requiring
a complicated high dimensional analysis. For example, it is straightforward
to obtain the posterior mean or maximum a posteriori (MAP) estimate
of each individual parameter, based on the one-dimensional Gaussian or
beta posterior densities above. Similarly, other meaningful quantities such
as posterior variances and confidence regions can also be easily computed
because the posterior factorizes into one-dimensional parametric densities.
Some specific examples in image analysis are considered in Section 6. Fi-
nally, notice that the analysis presented for the Gaussian case can clearly be
generalized to other orthogonal wavelet bases following the work of Crouse
et al. (1998).

3.1 Mizture Density Priors

A richer class of priors, more suitable for modeling the multiscale parame-
ters of natural signals and images, is provided by mixture densities. Specifi-
cally, one can build larger classes of priors using mixtures of the elementary
conjugate densities mentioned above; these mixture priors are still conju-
gate, with all the associated computational convenience; see (Robert, 1994,
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p. 108) for more details. For the Gaussian observation model, Gaussian
mixtures are often used as in Abramovich et al. (1998), Chipman et al.
(1997), and Crouse et al. (1998), while for the Poisson likelihood, beta
mixtures are adopted as in Timmermann and Nowak (1999). Formally:

e Gaussian model:

M-1
pOk) = D pi(mMN (6jk10,75m) ; (10)
m=0
e Poisson model:
M-1
p] Be Jk:|04] msy g, m)a (11)
m=0

where {p;(m)}=; denote the a priori probabilities of each component at
scale j. To keep the notation simple, we will use M component mixtures
at all scales.

The motivation for using mixtures is based on the following reasoning.
If we believe that the underlying signal p is generally smooth, except for
(possibly) a few large singularities, then, for example, a mixture consist-
ing of a highly probable low-variance component (to model the smooth
areas of the signal) and a relatively low probability high-variance com-
ponent (to model the possible singularities) is intuitively reasonable. A
state (also called latent or indicator) variable s;j is usually associated
with each parameter 6; ;. The state takes values that indicate which com-
ponent of the mixture is in effect; for example, in the Gaussian model,
P05k |k =m) =N (8;,]0,77,,). The prior probabilities for each state
are the a priori mixture weights, i.e., p(s;r = m) = p;(m). These prob-
abilities, along with the density shape parameters associated with them
(i-e., the values of 77, and aj), can be chosen based on prior beliefs
about the regularity of the class of signals/images in question following the
work of Abramovich et al. (1998), or can be inferred from the observed
data through a hierarchical Bayes setting (possibly via an empirical Bayes
approach) as in the work of Chipman et al. (1997), Crouse et al. (1998),
Timmermann and Nowak (1997, 1999), and Kolaczyk (1998).

The posterior distribution has the same factorized form as (9) with mix-
ture densities in place of the corresponding single component densities. Let
s = {s;r} denote the set of state variables and m = {m; ;} denote a set
of state values. We can then write

p8,s=m|x) = p(6]s=m,x)p(s =m|x) (12)

and
p(0|x) Zp0|s:m,x)p(s:m|x), (13)
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where the sum is over all possible sets of state values. The “state-
conditional” density p(8 |s = m, x) factorizes just as in (9)

J—129-1

pO[s=m,x) = [[ I pOsr|zsr zjr1.26, 856 = mjs), (14)
=0 k=0

The posterior state probabilities can be very efficiently computed due to
the likelihood factorization (7). Note that

p(s=m|x) = /p(s:m,0|x)d0

x /p(x|s:m,O)p(0|s:m)p(s=m)d0

J—129-1

H H /P($j+1,2k|$j,k,9j,k)

=0 k=0

K

x p(Bjk | 8,6 = M) p(sjk = ™y k) dOj .
This shows that

pj(m) Lj x(m)
Sy pi(m) Ljx(m)

p(sjr =m|x) = ; (15)

where
Lijr(m) = /p($j+1,2k |Zjk,05,k) POk | S0 =m)dOj.  (16)

L; 1 (m) is a marginal likelihood, i.e., L; x(m) = p(jt1,2k|%j,k, Sje = M),
and it has a simple closed-form expression in both the Gaussian and Poisson
cases:

e Gaussian model:

1 (241,28 — Tj)°
Ljr(m) o« —————=exp (— T ;
(02 +72,)"" 2(0F +7m)

e Poisson model:

B (241,26 + 0> Tjk — Tjp1,2k + Ojim)
B (aj,m, jm)

L]-,k(m) X
Therefore, the posterior density p(f|x) is given by

p(@|x) = 11 p(sj = m|x) p(0j.k | Tjk, Tjr1,2k, Sjk = M),

(17)
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where p(0 k. | Tjk,%j41,2k, 55,k = m) denotes a Gaussian or Beta density
of the forms given in (9), with shape parameter Tﬁm Or 0y, respectively.
Again, the factorization of the posterior and the simple parametric form of
each factor shows that inferences can be easily made on each multiscale pa-
rameter individually. For example, mixture prior densities typically lead to
posterior mean or MAP estimators, as in Abramovich et al. (1998), Chip-
man et al. (1997), Crouse et al. (1998), Timmermann and Nowak (1997,
1999), that resemble the non-linear shrinkage/thresholding estimators en-
countered in standard non-Bayesian approaches to wavelet-based noise re-
moval like the now classical denoising methods developed by Donoho and
Johnstone (1994).

4 Multiscale Hidden Markov Models

The multiscale hidden Markov model (MHMM) is a graphical model based
on the binary tree (or quadtree in the case of image data) associated with
multiscale signal analysis. One instance of the MHMM is the wavelet do-
main HMM developed in Crouse et al. (1996, 1998) for Gaussian observa-
tion models. Here, we focus on the Haar multiscale analysis discussed above,
and develop a more general framework encompassing both the Gaussian
and Poisson models. The priors described in Section 3 modeled the multi-
scale parameters 8 as independent mixture random variables. The MHMM
moves beyond this simple prior, by specifying probabilistic dependencies
between the states underlying the mixtures of parent and child multiscale
parameters.

The MHMM is a directed acyclic graph (or Bayesian network), as de-
picted in Figure 2; see Pearl (1988) for more information on graphical
models in general. The MHMM has a causal coarse-to-fine® scale structure
indicated by the direction of the arrows. Specifically, the MHMM is based
on the assumption that the value of each state s; ; is caused by the value
of its parent state s;_1 /2|, where [k/2] is the largest integer less than or
equal to k/2. This means that, given the value of its parent’s state, s, is
independent of all other states at scales i < j (at same level and above) in
the tree. This enables the following factorization of the joint state proba-
bility function

J—129-1
p(s) = TI II P (sik=minlsior ey =mi—ains)
j=0 k=0

with the convention p(so,0 | $-1,0) = P(0,0). This is a more structured alter-
native to the independent parameter model previously considered. Another
important property of the MHMM is that, given their respective state val-

5 Alternatively, we could construct a causal fine-to-coarse model.
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ues, all parameters 0 are conditionally independent. That is,

p(@[s=m) = JHwi—[lP(aj,k | 55,6 = mjk). (18)
7=0 k=0
coarse scaej-1
scaej
fine i scaej+1

FIGURE 2. Multiscale HMM graph. Each multiscale parameter of the signal
(or intensity) p is modeled as a mixture random variable (black node) with an
associated hidden state variable (white node). To match the inter-scale depen-
dencies, we link the hidden states across scale. The MHMM is a directed graph
that synthesizes a signal in a coarse-to-fine fashion indicated by the direction of
the arrows. These connections capture the key inter-scale dependencies present
in many natural signals and images.

This MHMM structure provides a mechanism for sharing (and exploit-
ing) relevant inter-scale information and appears to be well justified by the
empirical studies of Shapiro (1993) and Crouse et al. (1998); in fact, it
is similar to the principles underlying some of the most successful wavelet
based image compression algorithms known today such as the “zerotree” al-
gorithm of Shapiro (1993). The MHMM captures the key inter-scale depen-
dencies present in natural signals and images. These dependencies, termed
clustering and persistence-across-scale by Crouse et al. (1998), refer to the
fact that “high energy” multiscale parameters (e.g., Haar wavelet coeffi-
cients) tend to cluster near edges in images, and that similar clusters are
seen at multiple analysis scales indicating persistence-across-scale, as illus-
trated in Figure 3.

As a concrete example, consider the Gaussian case and suppose that there
are two states associated with each multiscale parameter (Haar wavelet co-
efficient); state ‘0’ corresponds to a low-variance Gaussian modeling the
absence of a singularity, while state ‘1’ is a high-variance Gaussian ex-
pressing the possible presence of a singularity (or edge). Because singular-
ities, like edges in images, tend to persist across scales, if the parent state
8j_1,k/2) = 1, then it is probable that the child state s;; = 1, as well.
Likewise, if s;_1 /2] = 0, indicating that signal is fairly smooth in the re-
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FIGURE 3. Persistence and clustering in an image. (a) Test image. (b) Magnitude
of 2-d Haar DW'T of test image. Each sub-image in (b) depicts the set of wavelet
coefficients (white denotes largest magnitudes) at a specific scale and orientation
(horizontal, vertical, or diagonal). For example, the three largest sub-images de-
pict the wavelet coefficients at scale J — 1 and at horizontal (lower-left), vertical
(upper-right), and diagonal (lower-right) orientations. The smaller sub-images de-
pict the corresponding sets of wavelet coefficients at progressively coarser scales.

gion corresponding to 6;_1 |/2], then with high probability the sub-region
corresponding to 6; ; is also smooth and s;, = 0.

Now let us determine the posterior density associated with the MHMM.
The posterior p(@|x) takes a form similar to (17), except that in this
case the posterior state probabilities cannot be determined independently.
However, p(6|x) can be efficiently computed as follows. As in (13), given
p(s = m|x), we compute

p(8|x) = Zp0|s—mx) (s =m]|x), (19)

where, because of (18), p(@|s = m,x) is the state-conditional posterior
density given by (14). So all that remains is to compute p(s = m | x):

p(s=m|x) = /p(s:m,0|x)d0

(0% /p(x|s:m,B)p(0|s:m)p(s:m)d9

J—12i
X H H / P(Tjt1,2k | Tjik, O ks Sjk = k)
j=0 k=0
X p(Ojk|sje =m)p(sje = mjkls;_y k) =mj_y 5))dOjk
J—127—

= 11 H p(sjk =mgkls;_y &) =m;_q x)) Ljk(my),
7=0 k=0
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where L; (mj,;) is defined in (16).

With this expression we can calculate the (marginal) posterior state prob-
abilities using an upward-downward probability propagation algorithm (also
called a forward-backward algorithm). Then, with posterior state proba-
bilities in hand, we can compute the posterior density of the multiscale
parameters according to (17). In the upward-downward algorithm, the Up
Step recursively marginalizes (sub-tree by sub-tree) the joint posterior
state probability beginning at the finest scale j = J — 1 (bottom of tree)
up to the coarsest scale j = 0 (top “root” of tree). This provides us with
the posterior state probabilities {p(so,0 = m|x)}Am4:_01. The Down Step
computes the marginal posterior state probabilities for each s;j in a re-
cursive fashion, making use of partial (sub-tree) marginalizations previ-
ously calculated in the Up Step. See Frey (1998) for a general overview
of upward-downward (forward-backward) algorithms, their extensions, and
connections to other inference methods in graphical models. For notational
convenience, define p; r(m|n) = p(sjr =m|s;_1,|x/2] = n)-

Upward-Downward Propagation Algorithm

Up Step
Beginning at j = J — 1 compute

M-—1
Gk(n) = D pik(mln)L;x(m). (20)
m=0

Then for j =J—2,...,1

M-1
Gk() = D qi41,2(m) g1 2541 (m) pj r(mln) Lik(m)  (21)
m=0

and for 7 =0
g0,0(n) = q1,0(n) q1,1(n) po,o(n)Lo,o(n), (22)

where po,0(n) = p(s0,0 = n).

Note that g;(n) is the partial marginalization at node j,k over
all states in the subtree beneath it. Hence, the final quanti-
ties {go,0(m)} are the (unnormalized) posterior state probabilities
{p(s0,0 = m|x)}M=; at the top (root) of the graph.

Down Step
Beginning the posterior states probabilities at scale 7 = 0, set
po,o(m) = goo(m). Then for j=1,...,J —2

o )_Mi:l Pj—1, k() pik(mIn) gj1,26 (M) Gjt1 2641 (m) Lj k (m)
Pokim) = aj,1(n)
n=0 Js

(23)
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and for j=J -1

M-1
P 1,15 (1) pjr(mln) Ljx(m)
pjk(m) = 2 _
’ 7;) gj,k(n)

The final quantities {p;(m)}X 5

m=0
state probabilities {p(s;x = m|x)

are the (unnormalized) posterior
M—1
m=0 -

Although the MHMM posterior density is more complicated than that
of the independent multiscale parameter models considered in Section 3,
the upward-downward algorithm provides us with a very efficient way of
calculating the marginal posterior probabilities of the states. With these
probabilities in hand, the factorization of the state-conditional posterior
density (14) for the multiscale parameters shows that inference can be
carried out on each multiscale parameter individually, just as in the inde-
pendent multiscale parameter cases. The total computational complexity
is O(27), where 27 is the number of data.

Finally, note that other graph structures (such as those including intra-
scale dependencies) may be considered. However, computationally efficient
algorithms may not be available; it is known that exact inference on general
graphs is an NP-hard problem as discussed by Cooper (1990).

5 Extensions to Two Dimensions

The multiscale analyses and MHMMs can be easily extended to two di-
mensions. In two dimensions (2-d) the unnormalized Haar multiscale data
analysis is as follows. We begin with data {zy;}, k,I =0,...,2/ — 1, and
define

= J
Trel = Zpi, k,1=0,...,27 -1

Tjkl = Tj+1,2k2 T Tj41,2k+1,20 T Tj+1,2k,2041 T Lj+1,2k+1,20+15
k1=0,...,22-1,0<j<J—-1

Again, the index j refers to the resolution of the analysis, 2/; 7 = J and
j = 0 are the highest (finest) and lowest (coarsest) resolutions (scales),
respectively. This multiscale data analysis is organized into a so-called
“quadtree” (the obvious generalization of the binary data tree in Figure
1); see Crouse et al. (1998) for information on quadtree representations.
We can also construct an analogous 2-d multiscale analysis of an image .
However, there are some additional issues faced in 2-d that distinguish the
Gaussian and Poisson case. The standard (unnormalized) 2-d Haar wavelet
coefficients are computed as follows. Let {fj,2k+m.2i+n }1y neo denote four
neighboring scaling coefficients at scale j in a 2-d Haar analysis of an image
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p. The (unnormalized) Haar scaling coefficient and wavelet coefficients at
scale j — 1 are

Bi-1k0 = M§2k,20 + K5 2k,2041 + Bj2k+1,20 T H5,2k+1,2141,
9]1-,1’;9,1 = Mj2k,20 T H1j2k,2041 — Hj2k+1,20 — Hj,2k+1,21+1,
932'_1,;9,1 = Mj2k,20 — M) 2k,204+1 t 5 2k+1,20 — Mg, 2k+1,214+1,
03 k0 = Mi2k2t — M 2k20e1 — Bi2k1,20 T M2kt (24)

where the superscripts 1,2, and 3 refer to the horizontal, vertical, and di-
agonal differences, respectively. The Haar wavelet coefficients {0;'._17 ki1
are the additive refinements required to split the coarse scaling coefficient
i1,k into the four finer scaling coefficients {4 2% +m,214n } 1 n=o- Due to
the orthogonality of the mapping

{152k 1m 2040 bommm0 P Hi—1kts {05 1 k1Yt

in the Gaussian case, taking these (standard) Haar wavelet coefficients as
multiscale parameters leads to a factorized likelihood.

The Poisson case is more complicated because orthogonality does not
imply independence. However, an alternative set of multiscale parameters
can be used in the Poisson case, that does lead to a factorized likelihood.
Specifically, we take the 2-d multiscale parameters to be the factors cor-
responding to the multiplicative refinement of a coarse scaling coefficient
(intensity) into four finer scaling coefficients by first splitting it horizon-
tally (vertically) into two halves, then next vertically (horizontally) split-
ting each half into two quarters as described by Timmermann and Nowak
(1999). That is, take

Bi-1,k0 = H,2k,20 T B52k,2041 T Bj,2k+1,20 T H5,2k+1,2141,
0, = Bj2k,21 + Kj2k,2141
— - b)

Im5E Wj2k,20 + Mg 28,2041 T [ 2k+1,21 + H5,2k+1,20+1
P _ i 2k,21

i—1,k0 = )

Bj2k,20 + j2k,20+1

3 . Mj,2k+1,21

01 kg = (25)

Mj2k+1,20 + H5,2k+1,2141

Alternatively, it is possible to consider a fully 2-d refinement process in
which we simultaneously split a coarse scaling coefficient into four finer
coefficients. In this case the conditional parent-child likelihoods would be
multinomially instead of binomial, and the natural conjugate prior would
be the Dirichlet rather than the beta density, but otherwise the multiscale
framework would be essentially the same.

The 2-d multiscale parameters defined in (24) and (25) can be modeled
with the same conjugate prior probability density functions proposed for
the 1-d case, (10) and (11), respectively. Furthermore, if the states are
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modeled independently, then the posterior density of the 2-d parameters
also factorizes in a fashion similar to the 1-d case.

The 2-d MHMM is also similar to the 1-d development in Section 4, with
a quadtree replacing the binary tree structure. To be precise, in the Gaus-
sian case, the standard 2-d Haar wavelet analysis consists of three sets of
wavelet coefficients, superscript 1, 2, or 3 in (24), at each scale, associated
with horizontal, vertical, and diagonal differences. In the Poisson case, we
have three sets of multiplicative splits, superscript 1, 2, or 3 in (25). A sin-
gle quadtree MHMM (analogous to the binary tree depicted in Figure 2)
is associated with each set of multiscale parameters. For example, in the
Gaussian case, one quadtree structure is used to specify the parent-child
relationships between vertical Haar wavelet coefficients. In the numerical
example considered next in Section 6, the three quadtrees are modeled as
mutually independent, although it may be possible (and desirable) to intro-
duce dependencies among them. The quadtree upward-downward algorithm
is essentially the same as the binary tree upward-downward algorithm, ex-
cept that each parent has four children instead of two.

6 Applications to Image Analysis

6.1 Image Denoising
Suppose that we observe an image p with additive Gaussian white noise:
X =p+ w, (26)

where p is an array of image intensities and w is an array of independent
realizations of a zero-mean Gaussian random variable. The goal of the de-
noising problem is to estimate p given the data x. If we specify a prior for
multiscale parameters (Haar wavelet coefficients) of u and formulate the
image estimation problem under squared error or 0/1 loss, it can be shown
that an optimal image estimate pi is obtained from the posterior mean
or MAP estimates of the multiscale parameters, respectively, as shown by
Figueiredo and Nowak (1998). Later in this section we will consider a nu-
merical example of this problem and compare the posterior mean estimates
obtained from an independent parameter prior to that obtained with an
MHMM. Examples of 2-d Poisson intensity estimation can be found in the
work of Timmermann and Nowak (1999).

6.2 Image FEdge Detection

Multiscale methods of edge detection are usually based on finding the local
wavelet coefficient maxima, as developed by Mallat (1998). The multiscale
models considered in this chapter offer an alternative Bayesian approach
to edge detection. Again, let us consider the Gaussian observation model
above (26), and recall the simple two-state mixture model. State ‘0’ is as-
sociated with a low-variance Gaussian component, indicative of a region of
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smooth behavior, while state ‘1’, corresponding to a high-variance Gaus-
sian, is a cue for the existence of an edge. This interpretation of the state
variables suggests testing for the presence of an edge using the Bayes fac-
tors of the states. That is, decide an edge is present at scale j, orientation
i = 1,2, or 3 (corresponding to horizontal, vertical, and diagonal, respec-
tively), and position k, 1 if
K] — X3 p—
BF(x) = Pana Z 1P =00y (27)
P(S;,k,z =0]x) p(s;-,k,l =1)

where p(s , ; = 1) and p(s , ; = 0) are the prior probabilities of the state.
As we will see in the numerical example considered next, the ability of the
MHMM to propagate state information from coarse-to-fine scales results in
significantly better edge detection performance compared to that resulting
from the independent state model.

6.3 Numerical Example

Here we consider a simple numerical illustration of the ideas presented in
this paper. Figure 4 (a) depicts a close-up of the test image shown in Figure
3. Figure 4 (b) shows the same image with additive Gaussian white noise
of standard deviation o = 25. A two-state MHMM was specified for this
problem with the following parameter settings:

™7 = 0,

= 250,
po,o(0) = 0.9,
pik(00) = 09, k=0,...,27 -1, j=1,...,J -1,
pik(01) = 025 k=0,...,20 -1, j=1,...,J—1.

These parameters were selected with the noise variance and basic parent-
child dependencies in mind. One can, however, plug-in maximum likeli-
hood or moment-based estimates of these (hyper) parameters, for a fully
automatic procedure. For example, an expectation-maximization algorithm
based on the upward-downward algorithm is derived by Crouse et al. (1998)
to obtain maximum likelihood estimates of the mixture variances and the
transition probabilities. Here, for comparative purposes, we also consider an
analogous independent multiscale parameter model (all states, and hence
parameters, mutually independent), whose prior state probabilities are the
same as the marginal state probabilities of the MHMM specified above.
Posterior mean estimates of the image are obtained by computing inverse
Haar wavelet transform of the the posterior means of the Haar wavelet
coefficients obtained from the two models.® Figure 4 (c) shows the estimate

6 As is usual in wavelet denoising, the “raw” scaling coefficients obtained directly from
the noisy image were used in the inverse transform.
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based on the independent coefficient model (average squared pixel error =
171.68) and Figure 4 (d) shows the estimate based on the MHMM (average
squared pixel error = 163.79). In comparison, the average square pixel
error is 625 in the noisy image shown in Figure 4 (b). The MHMM based
estimate also appears to be subjectively better than that obtained from
the independent parameter prior; there are less residual noise spikes in
the smooth background region of the image, and the edges appear slightly
sharper.

Image edges were detected from the noisy data by computing the Bayes
factors of the states at finest scale. The “edge maps” obtained from the
independent coefficient model are shown in Figure 4 (e) and those from the
MHMM are shown in Figure 4 (f). To visualize the complete set of edges,
each pixel in these two edge maps was set to “black” if one or more of the
three (corresponding to the three possible orientations) Bayes factors at
the finest scale (j = J —1) and at the corresponding spatial position tested
positive according to (27), and was set to “white” otherwise. The edge map
resulting from the MHMM is vastly superior than that resulting from the
independent parameter model. There are far fewer false edge detections in
the background of the MHMM edge map and the continuity of the true
edges is captured to a higher degree.

7 Conclusions

The MHMM framework described in this chapter appears to be a promis-
ing new approach to Bayesian image analysis. The MHMM captures the
key inter-scale dependencies present in natural imagery, and, unlike clas-
sical MRF based methods that typically require computationally intensive
stochastic optimization, the MHMM allows for simple inference algorithms
based on probability propagation. Hence, the computational complexity of
the MHMM framework is O(NN), where N is the number of data. A common
framework for MHMMs, capable of analyzing Gaussian and Poisson pro-
cesses, was presented; applications to Bayesian image denoising and edge
detection were examined.

There are three important features being exploited in the Gaussian and
Poisson observations models:

1. parametric parent-child conditional probabilities, (5) and (6);
2. likelihood factorization, (7);
3. conjugate priors for multiscale parameters, (10) and (11).

Without these features, multiscale analysis and modeling would be signifi-
cantly more complicated. In particular, the likelihood factorization allows
us to postulate an alternative multiscale observation (or data generation)
model; a single (coarse-scale) Poisson count refined by independent bino-
mial splits in the Poisson case, and in the Gaussian case we have indepen-
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dent Gaussian distributed Haar wavelet coefficients. Again, in the Gaus-
sian case, a similar factorization (multiscale observation model) exists for
orthogonal wavelet transforms in general, due to the orthogonality of the
transformation; see Crouse et al. (1998) for details. In essence, it is the
multiscale observation model that enables the graphical interpretation of
the problem, and it is doubtful that a simple inference algorithm exists
without such a factorization. Hence, it is natural to seek out other obser-
vation models that have a similar factorization property. Some other cases
are investigated by Kolaczyk (1999), but it appears that the Gaussian and
Poisson cases are quite exceptional and that other common models may
not be amenable to the MHMM framework.

The connection between MHMMs and 1/ f processes also deserves men-
tion. It has been shown in the work of Nowak (1998) and Timmermann
and Nowak (1999) that, in certain cases, the independent parameter pri-
ors discussed in Section 3 for Gaussian and Poisson models both have 1/ f
spectral characteristics. This is very relevant to image analysis since there
is convincing empirical evidence that natural images have similar spectral
characteristics; see the comprehensive study by van der Schaaf and van
Hateren (1996). MHMM priors can also display this behavior. For exam-
ple, in the Gaussian case, because the Markov structure of the MHMM
is imposed on the variances underlying the zero-mean Gaussian mixtures
instead of directly on the Haar wavelet coefficients, the coefficients are un-
correlated (but not independent), and hence the MHMM has the same
second order correlation structure as the independent coefficient model.
Of course, the higher order correlation behavior is (desirably) different for
MHMDMs. One can argue that the higher order structure is especially rel-
evant in image analysis. For instance, perhaps more important than the
number of edges in an image (roughly speaking, measured by the decay
of the second order spectrum) is the arrangement and structure of edges
(reflected in higher order correlations). These observations suggest avenues
for future investigations of the properties and applications of the MHMM
framework.
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FIGURE 4. Bayesian image denoising and edge detection. (a) Close-up of orig-
inal test image (full image shown in Figure 3). (b) Close-up of noisy image. (c)
Close-up of posterior mean estimate based on independent multiscale parameter
prior model. (d) Close-up of posterior mean estimate based on MHMM. (e) Edges
detected from Bayes factors resulting from independent wavelet coefficient prior.
(f) Edges detected from Bayes factors resulting from MHMM.
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