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Abstract

Multitask learning can be effective when features useful in one task are also useful
for other tasks, and the group lasso is a standard method for selecting a common
subset of features. In this paper, we are interested in a less restrictive form of mul-
titask learning, wherein (1) the available features can be organized into subsets
according to a notion of similarity and (2) features useful in one task are simi-
lar, but not necessarily identical, to the features best suited for other tasks. The
main contribution of this paper is a new procedure called Sparse Overlapping Sets
(SOS) lasso, a convex optimization that automatically selects similar features for
related learning tasks. Error bounds are derived for SOSlasso and its consistency
is established for squared error loss. In particular, SOSlasso is motivated by multi-
subject fMRI studies in which functional activity is classified using brain voxels
as features. Experiments with real and synthetic data demonstrate the advantages
of SOSlasso compared to the lasso and group lasso.

1 Introduction
Multitask learning exploits the relationships between several learning tasks in order to improve
performance, which is especially useful if a common subset of features are useful for all tasks at
hand. The group lasso (Glasso) [21, 10] is naturally suited for this situation: if a feature is selected
for one task, then it is selected for all tasks. This may be too restrictive in many applications, and
this motivates a less rigid approach to multitask feature selection. Suppose that the available features
can be organized into overlapping subsets according to a notion of similarity, and that the features
useful in one task are similar, but not necessarily identical, to those best suited for other tasks. In
other words, a feature that is useful for one task suggests that the subset it belongs to may contain
the features useful in other tasks (Figure 1).

In this paper, we introduce the sparse overlapping sets lasso (SOSlasso), a convex program to re-
cover the sparsity patterns corresponding to the situations explained above. SOSlasso generalizes
lasso [18] and Glasso, effectively spanning the range between these two well-known procedures.
SOSlasso is capable of exploiting the similarities between useful features across tasks, but unlike
Glasso it does not force different tasks to use exactly the same features. It produces sparse solutions,
but unlike lasso it encourages similar patterns of sparsity across tasks. Sparse group lasso [16] is
a special case of SOSlasso that only applies to disjoint sets, a significant limitation when features
cannot be easily partitioned, as is the case of our motivating example in fMRI. The main contribu-
tion of this paper is a theoretical analysis of SOSlasso, which also covers sparse group lasso as a
special case (further differentiating us from [16]). The performance of SOSlasso is analyzed, error
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bounds are derived for general loss functions, and its consistency is shown for squared error loss.
Experiments with real and synthetic data demonstrate the advantages of SOSlasso relative to lasso
and Glasso.

1.1 Sparse Overlapping Sets

SOSlasso encourages sparsity patterns that are similar, but not identical, across tasks. This is ac-
complished by decomposing the features of each task into groups G

1

. . . G
M

, where M is the same
for each task, and G

i

is a set of features that can be considered similar across tasks. Conceptually,
SOSlasso first selects subsets that are most useful for all tasks, and then identifies a unique sparse
solution for each task drawing only from features in the selected subsets. In the fMRI application
discussed later, the subsets are simply clusters of adjacent spatial data points (voxels) in the brains of
multiple subjects. Figure 1 shows an example of the patterns that typically arise in sparse multitask
learning applications, where rows indicate features and columns correspond to tasks.

Past work has focused on recovering variables that exhibit within and across group sparsity, when
the groups do not overlap [16], finding application in genetics, handwritten character recognition
[17] and climate and oceanography [2]. Along related lines, the exclusive lasso [23] can be used
when it is explicitly known that variables in certain sets are negatively correlated.

(a) Sparse (b) Group sparse (c) Group sparse
plus sparse

(d) Group sparse
and sparse

Figure 1: A comparison of different sparsity patterns. (a) shows a standard sparsity pattern. An
example of group sparse patterns promoted by Glasso [21] is shown in (b). In (c), we show the
patterns considered in [7]. Finally, in (d), we show the patterns we are interested in this paper.

1.2 fMRI Applications

In psychological studies involving fMRI, multiple participants are scanned while subjected to ex-
actly the same experimental manipulations. Cognitive Neuroscientists are interested in identifying
the patterns of activity associated with different cognitive states, and construct a model of the activity
that accurately predicts the cognitive state evoked on novel trials. In these datasets, it is reasonable
to expect that the same general areas of the brain will respond to the manipulation in every partici-
pant. However, the specific patterns of activity in these regions will vary, both because neural codes
can vary by participant [4] and because brains vary in size and shape, rendering neuroanatomy only
an approximate guide to the location of relevant information across individuals. In short, a voxel
useful for prediction in one participant suggests the general anatomical neighborhood where useful
voxels may be found, but not the precise voxel. While logistic Glasso [19], lasso [15], and the elas-
tic net penalty [14] have been applied to neuroimaging data, these methods do not exclusively take
into account both the common macrostructure and the differences in microstructure across brains.
SOSlasso, in contrast, lends itself well to such a scenario, as we will see from our experiments.

1.3 Organization

The rest of the paper is organized as follows: in Section 2, we outline the notations that we will
use and formally set up the problem. We also introduce the SOSlasso regularizer. We derive certain
key properties of the regularizer in Section 3. In Section 4, we specialize the problem to the mul-
titask linear regression setting (2), and derive consistency rates for the same, leveraging ideas from
[11]. We outline experiments performed on simulated data in Section 5. In this section, we also
perform logistic regression on fMRI data, and argue that the use of the SOSlasso yields interpretable
multivariate solutions compared to Glasso and lasso.
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2 Sparse Overlapping Sets Lasso
We formalize the notations used in the sequel. Lowercase and uppercase bold letters indicate
vectors and matrices respectively. We assume a multitask learning framework, with a data ma-
trix �

t

2 Rn⇥p for each task t 2 {1, 2, . . . , T }. We assume there exists a vector x

?

t

2 Rp

such that measurements obtained are of the form y

t

= �
t

x

?

t

+ ⌘
t

⌘
t

⇠ N (0,�2

I). Let
X

?

:= [x

?

1

x

?

2

. . .x?

T ] 2 Rp⇥T . Suppose we are given M (possibly overlapping) groups
˜G = { ˜G

1

, ˜G
2

, . . . , ˜G
M

}, so that ˜G
i

⇢ {1, 2, . . . , p} 8i, of maximum size B. These groups contain
sets of “similar” features, the notion of similarity being application dependent. We assume that all
but k ⌧ M groups are identically zero. Among the active groups, we further assume that at most
only a fraction ↵ 2 (0, 1) of the coefficients per group are non zero. We consider the following
optimization program in this paper

ˆ

X = argmin

x

( TX

t=1

L�t(xt

) + �
n

h(x)

)
(1)

where x = [x

T

1

x

T

2

. . .xT

T ]
T , h(x) is a regularizer and L

t

:= L�t(xt

) denotes the loss function,
whose value depends on the data matrix �

t

. We consider least squares and logistic loss functions. In
the least squares setting, we have L

t

=

1

2n

ky
t

��
t

x

t

k2. We reformulate the optimization problem
(1) with the least squares loss as

b
x = argmin

x

⇢
1

2n
ky ��xk2

2

+ �
n

h(x)

�
(2)

where y = [y

T

1

y

T

2

. . .yT

T ]
T and the block diagonal matrix � is formed by block concatenating the

�0
t

s. We use this reformulation for ease of exposition (see also [10] and references therein). Note
that x 2 RT p, y 2 RT n, and � 2 RT n⇥T p. We also define G = {G

1

, G
2

, . . . , G
M

} to be the
set of groups defined on RT p formed by aggregating the rows of X that were originally in ˜G, so that
x is composed of groups G 2 G.

We next define a regularizer h that promotes sparsity both within and across overlapping sets of
similar features:

h(x) = inf

W

X

G2G
(↵

G

kw
G

k
2

+ kw
G

k
1

) s.t.
X

G2G
w

G

= x (3)

where the ↵
G

> 0 are constants that balance the tradeoff between the group norms and the `
1

norm.
Each w

G

has the same size as x, with support restricted to the variables indexed by group G. W is
a set of vectors, where each vector has a support restricted to one of the groups G 2 G:

W = {w
G

2 RT p| [w

G

]

i

= 0 if i /2 G}

where [w

G

]

i

is the ith coefficient of w
G

. The SOSlasso is the optimization in (1) with h(x) as
defined in (3).

We say the set of vectors w
G

is an optimal decomposition of x if they achieve the inf in (3). The
objective function in (3) is convex and coercive. Hence, 8x, an optimal decomposition always exists.

As the ↵
G

! 1 the `
1

term becomes redundant, reducing h(x) to the overlapping group lasso
penalty introduced in [6], and studied in [12, 13]. When the ↵

G

! 0, the overlapping group lasso
term vanishes and h(x) reduces to the lasso penalty. We consider ↵

G

= 1 8G. All the results in the
paper can be easily modified to incorporate different settings for the ↵

G

.

Support Values
P

G

kx
G

k
2

kxk
1

P
G

(kx
G

k
2

+ kx
G

k
1

)

{1, 4, 9} {3, 4, 7} 12 14 26

{1, 2, 3, 4, 5} {2, 5, 2, 4, 5} 8.602 18 26.602
{1, 3, 4} {3, 4, 7} 8.602 14 22.602

Table 1: Different instances of a 10-d vector and their corresponding norms.

The example in Table 1 gives an insight into the kind of sparsity patterns preferred by the function
h(x). The optimization problems (1) and (2) will prefer solutions that have a small value of h(·).
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Consider 3 instances of x 2 R10, and the corresponding group lasso, `
1

, and h(x) function values.
The vector is assumed to be made up of two groups, G

1

= {1, 2, 3, 4, 5} and G
2

= {6, 7, 8, 9, 10}.
h(x) is smallest when the support set is sparse within groups, and also when only one of the two
groups is selected. The `

1

norm does not take into account sparsity across groups, while the group
lasso norm does not take into account sparsity within groups.

To solve (1) and (2) with the regularizer proposed in (3), we use the covariate duplication method of
[6], to reduce the problem to a non overlapping sparse group lasso problem. We then use proximal
point methods [8] in conjunction with the MALSAR [22] package to solve the optimization problem.

3 Error Bounds for SOSlasso with General Loss Functions
We derive certain key properties of the regularizer h(·) in (3), independent of the loss function used.

Lemma 3.1 The function h(x) in (3) is a norm
The proof follows from basic properties of norms and because if w

G

,v
G

are optimal decompositions
of x,y, then it does not imply that w

G

+ v

G

is an optimal decomposition of x+ y. For a detailed
proof, please refer to the supplementary material.

The dual norm of h(x) can be bounded as

h⇤
(u) = max

x

{xT

u} s.t. h(x)  1

= max

W
{
X

G2G
w

T

G

u

G

} s.t.
X

G2G
(kw

G

k
2

+ kw
G

k
1

)  1

(i)

 max

W
{
X

G2G
w

T

G

u

G

} s.t.
X

G2G
2kw

G

k
2

 1

= max

W
{
X

G2G
w

T

G

u

G

} s.t.
X

G2G
kw

G

k
2

 1

2

) h⇤
(u)  max

G2G

1

2

ku
G

k
2

(4)

(i) follows from the fact that the constraint set in (i) is a superset of the constraint set in the previous
statement, since kak

2

 kak
1

. (4) follows from noting that the maximum is obtained by setting
w

G

⇤
=

uG⇤
2kuG⇤k2

, where G⇤
= argmax

G2G ku
G

k
2

. The inequality (4) is far more tractable than
the actual dual norm, and will be useful in our derivations below. Since h(·) is a norm, we can apply
methods developed in [11] to derive consistency rates for the optimization problems (1) and (2). We
will use the same notations as in [11] wherever possible.

Definition 3.2 A norm h(·) is decomposable with respect to the subspace pair sA ⇢ sB if h(a +

b) = h(a) + h(b) 8a 2 sA, b 2 sB?.

Lemma 3.3 Let x? 2 Rp be a vector that can be decomposed into (overlapping) groups with within-
group sparsity. Let G? ⇢ G be the set of active groups of x?. Let S = supp(x?

) indicate the support
set of x. Let sA be the subspace spanned by the coordinates indexed by S, and let sB = sA. We
then have that the norm in (3) is decomposable with respect to sA, sB

The result follows in a straightforward way from noting that supports of decompositions for vectors
in sA and sB? do not overlap. We defer the proof to the supplementary material.

Definition 3.4 Given a subspace sB, the subspace compatibility constant with respect to a norm
k k is given by

 (B) = sup

⇢
h(x)

kxk 8x 2 sB\{0}
�

Lemma 3.5 Consider a vector x that can be decomposed into G? ⇢ G active groups. Suppose the
maximum group size is B, and also assume that a fraction ↵ 2 (0, 1) of the coordinates in each
active group is non zero. Then,

h(x)  (1 +

p
B↵)

p
|G?|kxk

2

4



Proof For any vector x with supp(x) ⇢ G?, there exists a representation x =

P
G2G? w

G

, such
that the supports of the different w

G

do not overlap. Then,

h(x) 
X

G2G?

(kw
G

k
2

+ kw
G

k
1

)  (1 +

p
B↵)

X

G2G?

kw
G

k
2

 (1 +

p
B↵)

p
|G?|kxk

2

We see that (1 +

p
B↵)

p
|G?| (Lemma 3.5) gives an upper bound on the subspace compatibility

constant with respect to the `
2

norm for the subspace indexed by the support of the vector, which is
contained in the span of the union of groups in G?.

Definition 3.6 For a given set S, and given vector x

?, the loss function L�(x) satisfies the Re-
stricted Strong Convexity(RSC) condition with parameter  and tolerance ⌧ if

L�(x
?

+�)� L�(x
?

)� hrL�(x
?

),�i � k�k2
2

� ⌧2(x?

) 8� 2 S

In this paper, we consider vectors x

? that lie exactly in k ⌧ M groups, and display within-group
sparsity. This implies that the tolerance ⌧(x?

) = 0, and we will ignore this term henceforth.

We also define the following set, which will be used in the sequel:
C(sA, sB,x?

) := {� 2 Rp|h(⇧
sB

?�)  3h(⇧
sB

�) + 4h(⇧
sA

?x
?

)} (5)
where ⇧

sA

(·) denotes the projection onto the subspace sA. Based on the results above, we can now
apply a result from [11] to the SOSlasso:

Theorem 3.7 (Corollary 1 in [11]) Consider a convex and differentiable loss function such that
RSC holds with constants  and ⌧ = 0 over (5), and a norm h(·) decomposable over sets sA and
sB. For the optimization program in (1), using the parameter �

n

� 2h⇤
(rL�(x

?

)), any optimal
solution ˆ

x

�n to (1) satisfies

kbx
�n � x

?k2
2

 9�2

n


 

2

(sB)

The result above shows a general bound on the error using the lasso with sparse overlapping sets.
Note that the regularization parameter �

n

as well as the RSC constant  depend on the loss function
L�(x). Convergence for logistic regression settings may be derived using methods in [1]. In the
next section, we consider the least squares loss (2), and show that the estimate using the SOSlasso
is consistent.

4 Consistency of SOSlasso with Squared Error Loss

We first need to bound the dual norm of the gradient of the loss function, so as to bound �
n

. Consider
L := L�(x) =

1

2n

ky � �xk2. The gradient of the loss function with respect to x is given by
rL =

1

n

�T

(�x � y) =

1

n

�T ⌘ where ⌘ = [⌘T
1

⌘T
2

. . . ⌘TT ]
T (see Section 2). Our goal now is to

find an upper bound on the quantity h⇤
(rL), which from (4) is

1

2

max

G2G
krL

G

k
2

=

1

2n
max

G2G
k�T

G

⌘k
2

where �
G

is the matrix � restricted to the columns indexed by the group G. We will prove an upper
bound for the above quantity in the course of the results that follow.

Since ⌘ ⇠ N (0,�2

I), we have �T

G

⌘ ⇠ �N (0,�T

G

�
G

). Defining �
mG

:= �
max

{�T

G

�
G

} to be
the maximum singular value, we have k�T

G

⌘k2
2

 �2�2

mG

k�k2
2

, where � ⇠ N (0, I|G|) ) k�k2
2

⇠
�2

|G|, where �2

d

is a chi-squared random variable with d degrees of freedom. This allows us to work
with the more tractable chi squared random variable when we look to bound the dual norm of rL.
The next lemma helps us obtain a bound on the maximum of �2 random variables.

Lemma 4.1 Let z
1

, z
2

, . . . , z
M

be chi-squared random variables with d degrees of freedom. Then
for some constant c,

P
✓

max

i=1,2,...,M

z
i

 c2d

◆
� 1� exp

✓
log(M)� (c� 1)

2d

2

◆

5



Proof From the chi-squared tail bound in [3], P(z
i

� c2d)  exp

⇣
� (c�1)

2
d

2

⌘
. The result follows

from a union bound and inverting the expression.

Lemma 4.2 Consider the loss function L :=

1

2n

PT
t=1

ky
t

� �
t

x

t

k2 =

1

2n

ky � �xk2, with the
�0

t

s deterministic and the measurements corrupted with AWGN of variance �2. For the regularizer
in (3), the dual norm of the gradient of the loss function is bounded as

h⇤
(rL)2  �2�2

m

4

(log(M) + T B)

n

with probability at least 1� c
1

exp(�c
2

n), for c
1

, c
2

> 0, and where �
m

= max

G2G �
mG

Proof Let � ⇠ �2

T |G|. We begin with the upper bound obtained for the dual norm of the regularizer
in (4):

h⇤
(rL)2

(i)

 1

4

max

G2G

����
1

n
�T

G

⌘

����
2

2

 �2

4

max

G2G

�2

mG

�

n2

(ii)

 �2�2

m

4

max

G2G

�

n2

(iii)

 �2�2

m

4

c2T B w. p. 1� exp

✓
log(M)� (cn� 1)

2T B

2

◆

where (i) follows from the formulation of the gradient of the loss function and the fact that the
square of maximum of non negative numbers is the maximum of the squares of the same numbers.
In (ii), we have defined �

m

= max

G

�
mG

. Finally, we have made use of Lemma 4.1 in (iii). We
then set

c2 =

log(M) + T B

T Bn
to obtain the result.

We combine the results developed so far to derive the following consistency result for the SOS lasso,
with the least squares loss function.

Theorem 4.3 Suppose we obtain linear measurements of a sparse overlapping grouped matrix
X

? 2 Rp⇥T , corrupted by AWGN of variance �2. Suppose the matrix X

? can be decomposed
into M possible overlapping groups of maximum size B, out of which k are active. Furthermore,
assume that a fraction ↵ 2 (0, 1] of the coefficients are non zero in each active group. Consider the
following vectorized SOSlasso multitask regression problem (2):

b
x = argmin

x

⇢
1

2n
ky ��xk2

2

+ �
n

h(x)

�
,

h(x) = inf

W

X

G2G
(kw

G

k
2

+ kw
G

k
1

) s.t.
X

G2G
w

G

= x

Suppose the data matrices �
t

are non random, and the loss function satisfies restricted strong
convexity assumptions with parameter . Then, for �2

n

� �

2
�

2
m(log(M)+T B)

4n

, the following holds
with probability at least 1� c

1

exp(�c
2

n), with c
1

, c
2

> 0:

kbx� x

?k2
2

 9

4

�2�2

m

⇣
1 +

p
T B↵

⌘
2

k(log(M) + T B)

n

where we define �
m

:= max

G2G �
max

{�T

G

�
G

}

Proof Follows from substituting in Theorem 3.7 the results from Lemma 3.5 and Lemma 4.2.

From [11], we see that the convergence rate matches that of the group lasso, with an additional
multiplicative factor ↵. This stems from the fact that the signal has a sparse structure “embedded”
within a group sparse structure. Visualizing the optimization problem as that of solving a lasso
within a group lasso framework lends some intuition into this result. Note that since ↵ < 1, this
bound is much smaller than that of the standard group lasso.
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5 Experiments and Results
5.1 Synthetic data, Gaussian Linear Regression

For T = 20 tasks, we define a N = 2002 element vector divided into M = 500 groups of size
B = 6. Each group overlaps with its neighboring groups (G

1

= {1, 2, . . . , 6}, G
2

= {5, 6, . . . , 10},
G

3

= {9, 10, . . . , 14}, . . . ). 20 of these groups were activated uniformly at random, and populated
from a uniform [�1, 1] distribution. A proportion ↵ of these coefficients with largest magnitude
were retained as true signal. For each task, we obtain 250 linear measurements using a N (0, 1

250

I)

matrix. We then corrupt each measurement with Additive White Gaussian Noise (AWGN), and
assess signal recovery in terms of Mean Squared Error (MSE). The regularization parameter was
clairvoyantly picked to minimize the MSE over a range of parameter values. The results of applying
lasso, standard latent group lasso [6, 12], and our SOSlasso to these data are plotted in Figures 2(a),
varying �, ↵ = 0.2, and 2(b), varying ↵, � = 0.1. Each point in Figures 2(a) and 2(b), is the
average of 100 trials, where each trial is based on a new random instance of X? and the Gaussian
data matrices.

0 0.05 0.1 0.15 0.2
0

0.005

0.01

0.015

0.02

σ

M
S

E

 

 

Glasso

SOSlasso

(a) Varying �

0 0.2 0.4 0.6 0.8 1
0

0.005

0.01

0.015

1 − α

M
S

E

 

 

Glasso

SOSlasso

lasso

(b) Varying ↵ (c) Sample pattern

Figure 2: As the noise is increased (a), our proposed penalty function (SOSlasso) allows us to
recover the true coefficients more accurately than the group lasso (Glasso). Also, when alpha is
large, the active groups are not sparse, and the standard overlapping group lasso outperforms the
other methods. However, as ↵ reduces, the method we propose outperforms the group lasso (b). (c)
shows a toy sparsity pattern, with different colors denoting different overlapping groups

5.2 The SOSlasso for fMRI

In this experiment, we compared SOSlasso, lasso, and Glasso in analysis of the star-plus dataset [20].
6 subjects made judgements that involved processing 40 sentences and 40 pictures while their brains
were scanned in half second intervals using fMRI1. We retained the 16 time points following each
stimulus, yielding 1280 measurements at each voxel. The task is to distinguish, at each point in time,
which stimulus a subject was processing. [20] showed that there exists cross-subject consistency in
the cortical regions useful for prediction in this task. Specifically, experts partitioned each dataset
into 24 non overlapping regions of interest (ROIs), then reduced the data by discarding all but 7 ROIs
and, for each subject, averaging the BOLD response across voxels within each ROI and showed that
a classifier trained on data from 5 subjects generalized when applied to data from a 6th.

We assessed whether SOSlasso could leverage this cross-individual consistency to aid in the dis-
covery of predictive voxels without requiring expert pre-selection of ROIs, or data reduction, or
any alignment of voxels beyond that existing in the raw data. Note that, unlike [20], we do not
aim to learn a solution that generalizes to a withheld subject. Rather, we aim to discover a group
sparsity pattern that suggests a similar set of voxels in all subjects, before optimizing a separate
solution for each individual. If SOSlasso can exploit cross-individual anatomical similarity from
this raw, coarsely-aligned data, it should show reduced cross-validation error relative to the lasso
applied separately to each individual. If the solution is sparse within groups and highly variable
across individuals, SOSlasso should show reduced cross-validation error relative to Glasso. Finally,
if SOSlasso is finding useful cross-individual structure, the features it selects should align at least
somewhat with the expert-identified ROIs shown by [20] to carry consistent information.

1Data and documentation available at http://www.cs.cmu.edu/afs/cs.cmu.edu/project/theo-81/www/
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Figure 3: Results from fMRI exper-
iments. (a) Aggregated sparsity pat-
terns for a single brain slice. (b) Cross-
validation error obtained with each
method. Lines connect data for a sin-
gle subject. (c) The full sparsity pattern
obtained with SOSlasso.

Method % ROI t(5) , p
lasso 46.11 6.08 ,0.001

Glasso 50.89 5.65 ,0.002
SOSlasso 70.31

Table 2: Proportion of selected voxels
in the 7 relevant ROIS aggregated over
subjects, and corresponding two-tailed
significance levels for the contrast of
lasso and Glasso to SOSlasso.

We trained 3 classifiers using 4-fold cross validation to select the regularization parameter, consid-
ering all available voxels without preselection. We group regions of 5⇥5⇥1 voxels and considered
overlapping groups “shifted” by 2 voxels in the first 2 dimensions.2 Figure 3(b) shows the individual
error rates across the 6 subjects for the three methods. Across subjects, SOSlasso had a significantly
lower cross-validation error rate (27.47 %) than individual lasso (33.3 %; within-subjects t(5) = 4.8;
p = 0.004 two-tailed), showing that the method can exploit anatomical similarity across subjects to
learn a better classifier for each. SOSlasso also showed significantly lower error rates than glasso
(31.1 %; t(5) = 2.92; p = 0.03 two-tailed), suggesting that the signal is sparse within selected regions
and variable across subjects.

Figure 3(a) presents a sample of the the sparsity patterns obtained from the different methods, aggre-
gated over all subjects. Red points indicate voxels that contributed positively to picture classification
in at least one subject, but never to sentences; Blue points have the opposite interpretation. Purple
points indicate voxels that contributed positively to picture and sentence classification in different
subjects. The remaining slices for the SOSlasso are shown in Figure 3(c). There are three things to
note from Figure 3(a). First, the Glasso solution is fairly dense, with many voxels signaling both
picture and sentence across subjects. We believe this “purple haze” demonstrates why Glasso is ill-
suited for fMRI analysis: a voxel selected for one subject must also be selected for all others. This
approach will not succeed if, as is likely, there exists no direct voxel-to-voxel correspondence or if
the neural code is variable across subjects. Second, the lasso solution is less sparse than the SOSlasso
because it allows any task-correlated voxel to be selected. It leads to a higher cross-validation error,
indicating that the ungrouped voxels are inferior predictors (Figure 3(b)). Third, the SOSlasso not
only yields a sparse solution, but also clustered. To assess how well these clusters align with the
anatomical regions thought a-priori to be involved in sentence and picture representation, we calcu-
lated the proportion of selected voxels falling within the 7 ROIs identified by [20] as relevant to the
classification task (Table 2). For SOSlasso an average of 70% of identified voxels fell within these
ROIs, significantly more than for lasso or Glasso.

6 Conclusions and Extensions
We have introduced SOSlasso, a function that recovers sparsity patterns that are a hybrid of overlap-
ping group sparse and sparse patterns when used as a regularizer in convex programs, and proved
its theoretical convergence rates when minimizing least squares. The SOSlasso succeeds in a multi-
task fMRI analysis, where it both makes better inferences and discovers more theoretically plausible
brain regions that lasso and Glasso. Future work involves experimenting with different parameters
for the group and l1 penalties, and using other similarity groupings, such as functional connectivity
in fMRI.

2The irregular group size compensates for voxels being larger and scanner coverage being smaller in the
z-dimension (only 8 slices relative to 64 in the x- and y-dimensions).
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7 Appendix

7.1 Proofs of Lemmas and other Results

Here, we outline proofs of Lemmas and results that we deferred in the main paper. Before we prove the results,
recall that we define

h(x) = inf
W

X

G2G

(↵GkwGk+ kwGk1) s.t.
X

G2G

wG = x

As in the paper, we assume ↵G = 1 8G 2 G.

7.1.1 Proof of Lemma 3.1

Proof It is trivial to show that h(x) � 0 with equality iff x = 0. We now show positive homogeneity.
Suppose wG, G 2 G is an optimal decomposition of x, and let � 2 R\{0}. Then,

P
G2G wG = x )P

G2G �wG = �x. This leads to the following set of inequalities:

h(x) =
X

G2G

(kwGk+ kwGk1) =
1
|�|

X

G2G

(k�wGk+ k�wGk1) �
1
|�|h(�x) (6)

Now, assuming vG, G 2 G is an optimal decomposition of �x, we have that
P

G2G
vG
� = x, and we get

h(�x) =
X

G2G

(kvGk+ kvGk1) = |�|
X

G2G

✓����
vG

�

����+

����
vG

�

����
1

◆
� |�|h(x) (7)

Positive homogeneity follows from (6) and (7). The inequalities are a result of the possibility of the vectors not
corresponding to the respective optimal decompositions.

For the triangle inequality, again let wG,vG correspond to the optimal decomposition for x,y respectively.
Then by definition,

h(x+ y) 
X

G2G

(kwG + vGk+ kwG + vGk1)


X

G2G

(kwGk+ kvGk+ kwGk1 + kvGk1)

= h(x) + h(y)

The first and second inequalities follow by definition and the triangle inequality respectively.

7.1.2 Proof of Lemma 3.3

Proof Let a 2 sA and b 2 sB? be two vectors. Let wA and w

B correspond to the vectors in the optimal
decompositions of a and b respectively. Note that S ⇢

S
G2G? G. Since the vectors w

A and w

B are the
optimal decompositions, we have that none of the supports of the vectors w

A overlap with those in w

B .
Hence,

h(a) + h(b) =
X

G2G?

⇣
kwA

Gk+ kwA
Gk1

⌘
+

X

G2G

⇣
kwB

Gk+ kwB
Gk1

⌘

=
X

G2G

⇣
kwA

Gk+ kwB
Gk+ kwA

Gk1 + kwB
Gk1

⌘
= h(a+ b)

This proves decomposability of h(·) over the subsets sA and sB.

7.2 More Motivation and Results for the Neuroscience Application

Analysis of fMRI data poses a number of computational and conceptual challenges. Healthy brains have much
in common: anatomically, they have many of the same structures; functionally, there is rough correspon-
dence among which structures underly which processes. Despite these high level commonalities, no two brains
are identical, neither in their physical form nor their functional activity. Thus, to benefit from handling a
multi-subject fMRI dataset as a multitask learning problem, a balance must be struck between similarity in
macrostructure and dissimilarity in microstructure.
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Figure 4: Per-slice result of the aggregated sparsity patterns across 6 subjects.

Standard multi-subject analysis involve voxel-wise “massively univariate” statistical methods that test explic-
itly, independently at each datapoint in space, if that point is responding in the same way to the presence of a
stimulus. To align voxels somewhat across subjects, each subject’s data is co-registered to a common atlas, but
because only crude alignment is possible, datasets are also typically spatially blurred so that large scale region
level effects are emphasized at the expense of idiosyncratic patterns of activity at a finer scale. This approach
has many weaknesses, such as it’s blindness to the multivariate relationships among voxels, its reliance on
unattainable alignment, and subsequent spatial blurring that restricts analysis to very coarse descriptions of the
signal—problematic because it is now well established that a great deal of information is carried within these
local distributed patterns [5].

Mutltitask learning has the potential to address these problems, by leveraging information across subjects in
some way while discovering multivariate solutions for each subject. However, if the method requires that an
identical set of features be used in all solutions, as with standard group lasso (Glasso; [21]), then the same
problems with alignment and non-correspondence of voxels across subjects are confronted. In the main paper,
we demonstrate this issue.

Sparse group lasso [16] and our extension, sparse overlapping sets lasso, were motivated by these multitask
challenges in which similar but not identical sets of features are likely important across tasks. SOSlasso ad-
dresses the problem by solving for a sparsity pattern over a set of arbitrarily defined and potentially overlapping
groups, and then allowing unique solutions for each task that draw from this sparse common set of groups. A
related solution to the same problem is proposed in [9].

7.2.1 Additional Experimental Results

We trained a classifier using 4-fold cross validation on the star plus dataset [20]. Figure 4 shows the discovered
sparsity patterns in their entirety for the three methods considered, projected into a brain space that is the
union over all size subjects; anatomical data was not available. In each slice, we aggregate the data for all
the 6 subjects. Red points indicate voxels that contributed positively to picture classification in at least one
subject, but never to sentences; Blue points have the opposite interpretation. Purple points indicate voxels that
contributed positively to picture and sentence classification in different subjects.
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Figure 5: The proportion of discovered voxels that belong to the 7 pre-specified regions of each
subject’s brain that neuroscientists expect to be especially involved with the current study. These 7
regions encompass 40% of the voxels of each subject, on average, and can be interpreted as chance.

The following observations are to be noted from Figure 4. The lasso solution (Figure 4(a)) results in a highly
distributed sparsity pattern across individuals. This stems from the fact that the method does not explicitly take
into account the similarities across brains of individuals, and hence does not look to “tie” the patterns together.
Since the alignment is not perfect across brains, the 6 resulting patterns when aggregated result in a distributed
pattern, and the largest error among the methods tested.

The Glasso (Figure 4(b)) for multitask learning ties a single voxel across 6 subjects into a single group. If
a particular group is active, then all the coefficients in the group are active. Hence, if a particular voxel in
a particular subject is selected, then the same (i, j, k) location in another subject will also be selected. This
forced selection of voxels results in many coefficients that are almost but not exactly 0, and random signs as
can be seen from the histogram of the selected voxels in Figure 4(c).

The lasso with Sparse Overlapping Sets (Figure 4(d)) overcomes the drawback of the Glasso by not forcing all
the voxels at a particular location to be active. Also, since we consider 5⇥ 5⇥ 1 groups here, we also tend to
group voxels that are spatially clustered. This results is selecting voxels in a subject that are “close-by” (in a
spatial sense) to voxels in other subjects. The result is a more clustered sparsity pattern compared to the lasso,
and very few ambiguous voxels compared to the Glasso.

The mere fact that we specify groups of colocated voxels does not account for the fact that we discovered clear
sparse-group structure. Indeed, we trained the latent group lasso [6] with the same group size (5 ⇥ 5 ⇥ 1
voxels) and absolutely no structure was recovered, and classification performance was near chance (45% error,
relative to chance 50%). It fails because of it’s inflexibility with respect to the voxels within groups. If a
group is selected, all the voxels contained must be utilized by all subjects. This forces many detrimental voxels
into individual solutions, and leads to no group out performing any others. As a result, almost all groups are
activated, and the feature selection effort fails. SOSlasso succeeds because it allows task-specific within group
sparsity, and because, by allowing overlap, the set of groups is larger. This second factor reduces the chance
that the informative regions of the brain are not well captured in any group.

An advantage of using this dataset is that each subject’s brain was been partitioned into 24 regions of interests,
and expert neuroscientists identified 7 of these regions in particular that ought to be especially involved in
processing the pictures and sentences in this study [20]. No one expects that every neural unit in these regions
behave the same way, and that identical sets of these neural units will be involved in different subject’s brains
as they complete the study. But it is reasonable to expect that there will be similar sparse sets voxels in these
regions across subjects that are useful to classifying the kind of stimulus being viewed. Because the signal is
sparse within subjects, and because spatially similar voxels may be more correlated than spatially dissimilar
voxels, standard lasso without multitask learning will miss this structure; because not all voxels within these
regions are relevant in all subjects, standard Glasso—even Glasso set up to explicitly handle the 24 regions of
interests as groups—will do poorly at recovering the expected pattern of group sparsity. SOSlasso is expected
to excel at recovering this pattern, and as we show in Figure 5 our method finds solutions with a high proportion
of voxels in these 7 expected ROIs, far higher than the other methods considered.
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