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Abstract. Many real-world phenomena can be represented by a spatio-
temporal signal: where, when, and how much. Social media is a tantaliz-
ing data source for those who wish to monitor such signals. Unlike most
prior work, we assume that the target phenomenon is known and we are
given a method to count its occurrences in social media. However, count-
ing is plagued by sample bias, incomplete data, and, paradoxically, data
scarcity – issues inadequately addressed by prior work. We formulate sig-
nal recovery as a Poisson point process estimation problem. We explicitly
incorporate human population bias, time delays and spatial distortions,
and spatio-temporal regularization into the model to address the noisy
count issues. We present an efficient optimization algorithm and discuss
its theoretical properties. We show that our model is more accurate than
commonly-used baselines. Finally, we present a case study on wildlife
roadkill monitoring, where our model produces qualitatively convincing
results.

1 Introduction

Many real-world phenomena of interest to science are spatio-temporal in nature.
They can be characterized by a real-valued intensity function f ∈ R≥0, where
the value fs,t quantifies the prevalence of the phenomenon at location s and time
t. Examples include wildlife mortality, algal blooms, hail damage, and seismic
intensity. Direct instrumental sensing of f is often difficult and expensive. So-
cial media offers a unique sensing opportunity for such spatio-temporal signals,
where users serve the role of “sensors” by posting their experiences of a target
phenomenon. For instance, social media users readily post their encounters with
dead animals: “I saw a dead crow on its back in the middle of the road.”

There are at least three challenges faced when using human social media
users as sensors:

1. Social media sources are not always reliable and consistent, due to factors
including the vagaries of language and the psychology of users. This makes
identifying topics of interest and labeling social media posts extremely chal-
lenging.
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2. Social media users are not under our control. In most cases, users cannot be
directed or focused or maneuvered as we wish. The distribution of human
users (our sensors) depends on many factors unrelated to the sensing task
at hand.

3. Location and time stamps associated with social media posts may be er-
roneous or missing. Most posts do not include GPS coordinates, and self-
reported locations can be inaccurate or false. Furthermore, there can be
random delays between an event of interest and the time of the social media
post related to the event.

Most prior work in social media event analysis has focused on the first challenge.
Sophisticated natural language processing techniques have been used to identify
social media posts relevant to a topic of interest [21, 2, 16] and advanced machine
learning tools have been proposed to discover popular or emerging topics in social
media [1, 12, 22]. We discuss the related work in detail in Section 3.

Our work in this paper focuses on the latter two challenges. We are interested
in a specific topic or target phenomenon of interest that is given and fixed be-
forehand, and we assume that we are also given a (perhaps imperfect) method,
such as a trained text classifier, to identify target posts. The first challenge is
relevant here, but is not the focus of our work. The main concerns of this paper
are to deal with the highly non-uniform distribution of human users (sensors),
which profoundly affects our capabilities for sensing natural phenomena such as
wildlife mortality, and to cope with the uncertainties in the location and time
stamps associated with related social media posts. The main contribution of the
paper is robust methodology for deriving accurate spatiotemporal maps of the
target phenomenon in light of these two challenges.

2 The Socioscope

We propose Socioscope, a probabilistic model that robustly recovers spatiotem-
poral signals from social media data. Formally, consider f defined on discrete
spatiotemporal bins. For example, a bin (s, t) could be a U.S. state s on day t,
or a county s in hour t. From the first stage we obtain xs,t, the count of tar-
get social media posts within that bin. The task is to estimate fs,t from xs,t.

A commonly-used estimate is f̂s,t = xs,t itself. This estimate can be justified
as the maximum likelihood estimate of a Poisson model x ∼ Poisson(f). This
idea underlines several emerging systems such as earthquake damage monitoring
from Twitter [8]. However, this estimate is unsatisfactory since the counts xs,t
can be noisy : as mentioned before, the estimate ignores population bias – more
target posts are generated when and where there are more social media users; the
location of a target post is frequently inaccurate or missing, making it difficult
to assign to the correct bin; and target posts can be quite sparse even though
the total volume of social media is huge. Socioscope addresses these issues.

For notational simplicity, we often denote our signal of interest by a vector
f = (f1, . . . , fn)> ∈ Rn≥0, where fj is a non-negative target phenomenon intensity
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in source bin j = 1 . . . n. We will use a wildlife example throughout the section.
In this example, a source bin is a spatiotemporal unit such as “California, day
1,” and fj is the squirrel activity level in that unit. The mapping between index
j and the aforementioned (s, t) is one-one and will be clear from context.

2.1 Correcting Human Population Bias

For now, assume each target post comes with precise location and time meta
data. This allows us to count xj , the number of target posts in bin j. Given xj ,

it is tempting to use the maximum likelihood estimate f̂j = xj which assumes a
simple Poisson model xj ∼ Poisson(fj). However, this model is too naive: Even
if fj = fk, e.g., the level of squirrel activities is the same in two bins, we would
expect xj > xk if there are more people in bin j than in bin k, simply because
more people see the same group of squirrels.

To account for this population bias, we define an “active social media user
population intensity” (loosely called “human population” below) g = (g1, . . . , gn)> ∈
Rn≥0. Let zj be the count of all social media posts in bin j, the vast majority of
which are not about the target phenomenon. We assume zj ∼ Poisson(gj). Since
typically zj � 0, the maximum likelihood estimate ĝj = zj is reasonable.

Importantly, we then posit the Poisson model

xj ∼ Poisson(η(fj , gj)). (1)

The intensity is defined by a link function η(fj , gj). In this paper, we simply
define η(fj , gj) = fj · gj but note that other more sophisticated link functions
can be learned from data. Given xj and zj , one can then easily estimate fj with

the plug-in estimator f̂j = xj/zj .

2.2 Handling Noisy and Incomplete Data

This would have been the end of the story if we could reliably assign each post
to a source bin. Unfortunately, this is often not the case for social media. In this
paper, we focus on the problem of spatial uncertainty due to noisy or incomplete
social media data. A prime example of spatial uncertainty is the lack of location
meta data in posts from Twitter (called tweets).1 In recent data we collected,
only 3% of tweets contain the latitude and longitude at which they were created.
Another 47% contain a valid user self-declared location in his or her profile (e.g.,
“New York, NY”). However, such location does not automatically change while
the user travels and thus may not be the true location at which a tweet is posted.
The remaining 50% do not contain location at all. Clearly, we cannot reliably
assign the latter two kinds of tweets to a spatiotemporal source bin. 2

1 It may be possible to recover occasional location information from the tweet text
itself instead of the meta data, but the problem still exists.

2 Another kind of spatiotemporal uncertainty exists in social media even when the local
and time meta data of every post is known: social media users may not immediately
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To address this issue, we borrow an idea from Positron Emission Tomogra-
phy [19]. In particular, we define m detector bins which are conceptually distinct
from the n source bins. The idea is that an event originating in some source bin
goes through a transition process and ends up in one of the detector bins, where
it is detected. This transition is modeled by an m× n matrix P = {Pij} where

Pij = Pr(detector i | source j). (2)

P is column stochastic:
∑m
i=1 Pij = 1,∀j. We defer the discussion of our specific

P to a case study, but we mention that it is possible to reliably estimate P
directly from social media data (more on this later). Recall the target post
intensity at source bin j is η(fj , gj). We use the transition matrix to define the
target post intensity hi (note that hi can itself be viewed as a link function
η̃(f ,g)) at detector bin i:

hi =

n∑
j=1

Pijη(fj , gj). (3)

For the spatial uncertainty that we consider, we create three kinds of detector
bins. For a source bin j such as “California, day 1,” the first kind collects target
posts on day 1 whose latitude and longitude meta data is in California. The
second kind collects target posts on day 1 without latitude and longitude meta
data, but whose user self-declared profile location is in California. The third kind
collects target posts on day 1 without any location information. Note the third
kind of detector bin is shared by all other source bins for day 1, such as “Nevada,
day 1,” too. Consequently, if we had n = 50T source bins corresponding to the
50 US states over T days, there would be m = (2× 50 + 1)T detector bins.

Critically, our observed target counts x are now with respect to the m de-
tector bins instead of the n source bins: x = (x1, . . . , xm)>. We will also denote
the count sub-vector for the first kind of detector bins by x(1), the second kind
x(2), and the third kind x(3). The same is true for the overall counts z. A trivial
approach is to only utilize x(1) and z(1) to arrive at the plug-in estimator

f̂j = x
(1)
j /z

(1)
j . (4)

As we will show, we can obtain a better estimator by incorporating noisy data
x(2) and incomplete data x(3). z(1) is sufficiently large and we will simply ignore
z(2) and z(3).

post right at the spot where a target phenomenon happens. Instead, there usually
is an unknown time delay and spatial shift between the phenomenon and the post
generation. For example, one may not post a squirrel encounter on the road until she
arrives at home later; the local and time meta data only reflects tweet-generation
at home. This type of spatiotemporal uncertainty can be addressed by the same
source-detector transition model.
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2.3 Socioscope: Penalized Poisson Likelihood Model

We observe target post counts x = (x1, . . . , xm) in the detector bins. These are
modeled as independently Poisson distributed random variables:

xi ∼ Poisson(hi), for i = 1 . . .m. (5)

The log likelihood factors as

`(f) = log

m∏
i=1

hxii e
−hi

xi!
=

m∑
i=1

(xi log hi − hi) + c, (6)

where c is a constant. In (6) we treat g as given.

Target posts may be scarce in some detector bins. Indeed, we often have zero
target posts for the wildlife case study to be discussed later. This problem can
be mitigated by the fact that many real-world phenomena are spatiotemporally
smooth, i.e., “neighboring” source bins in space or time tend to have similar
intensity. We therefore adopt a penalized likelihood approach by constructing a
graph-based regularizer. The undirected graph is constructed so that the nodes
are the source bins. Let W be the n×n symmetric non-negative weight matrix.
The edge weights are such that Wjk is large if j and k correspond to neighboring
bins in space and time. Since W is domain specific, we defer its construction to
the case study.

Before discussing the regularizer, we need to perform a change of variables.
Poisson intensity f is non-negative, necessitating a constrained optimization
problem. It is more convenient to work with an unconstrained problem. To this
end, we work with the exponential family natural parameters of Poisson. Specif-
ically, let

θj = log fj , ψj = log gj . (7)

Our specific link function becomes η(θj , ψj) = eθj+ψj . The detector bin intensi-
ties become hi =

∑n
j=1 Pijη(θj , ψj).

Our graph-based regularizer applies to θ directly:

Ω(θ) =
1

2
θ>Lθ, (8)

where L is the combinatorial graph Laplacian [5]: L = D −W, and D is the
diagonal degree matrix with Djj =

∑n
k=1Wjk.

Finally, Socioscope is the following penalized likelihood optimization prob-
lem:

min
θ∈Rn

−
m∑
i=1

(xi log hi − hi) + λΩ(θ), (9)

where λ is a positive regularization weight.
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2.4 Optimization

We solve the Socioscope optimization problem (9) with BFGS, a quasi-Newton
method [14]. The gradient can be easily computed as

∇ = λLθ −HP>(r− 1), (10)

where r = (r1 . . . rm) is a ratio vector with ri = xi/hi, and H is a diagonal
matrix with Hjj = η(θj , ψj).

We initialize θ with the following heuristic. Given counts x and the transition
matrix P , we compute the least-squared projection η0 to ‖x−Pη0‖2. This pro-
jection is easy to compute. However, η0 may contain negative components not
suitable for Poisson intensity. We force positivity by setting η0 ← max(10−4, η0)
element-wise, where the floor 10−4 ensures that log η0 > −∞. From the defini-
tion η(θ, ψ) = exp(θ + ψ), we then obtain the initial parameter

θ0 = log η0 − ψ. (11)

Our optimization is efficient: problems with more than one thousand variables
(n) are solved in about 15 seconds with fminunc() in Matlab.

2.5 Parameter Tuning

The choice of the regularization parameter λ has a profound effect on the smooth-
ness of the estimates. It may be possible to select these parameters based on prior
knowledge in certain problems, but for our experiments we select these param-
eters using a cross-validation (CV) procedure, which gives us a fully data-based
and objective approach to regularization.

CV is quite simple to implement in the Poisson setting. A hold-out set of data
can be constructed by simply sub-sampling events from the total observation
uniformly at random. This produces a partial data set of a subset of the counts
that follows precisely the same distribution as the whole set, modulo a decrease
in the total intensity per the level of subsampling. The complement of the hold-
out set is what remains of the full dataset, and we will call this the training set.
The hold-out set is taken to be a specific fraction of the total. For theoretical
reasons beyond the scope of this paper, we do not recommend leave-one-out
CV [18, 6].

CV is implemented by generating a number of random splits of this type (we
can generate as many as we wish), and for each split we run the optimization
algorithm above on the training set for a range of values of λ. Then compute the
(unregularized) value of the log-likelihood on the hold-out set. This provides us
with an estimate of the log-likelihood for each setting of λ. We simply select the
setting that maximizes the estimated log-likelihood.

2.6 Theoretical Considerations

The natural measure of signal-to-noise in this problem is the number of counts in
each bin. The higher the counts, the more stable and “less noisy” our estimators
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will be. Indeed, if we directly observe xi ∼ Poisson(hi), then the normalized error
E[(xi−hihi

)2] = h−1i ≈ x
−1
i . So larger counts, due to larger underlying intensities,

lead to small errors on a relative scale. However, the accuracy of our recovery
also depends on the regularity of the underlying function f . If it is very smooth,
for example a constant function, then the error would be inversely proportional
to the total number of counts, not the number in each individual bin. This is
because in the extreme smooth case, f is determined by a single constant.

To give some insight into dependence of the estimate on the total number of
counts, suppose that f is the underlying continuous intensity function of interest.
Furthermore, let f be a Hölder α-smooth function. The parameter α is related
to the number of continuous derivatives f has. Larger values of α correspond
to smoother functions. Such a model is reasonable for the application at hand,
as discussed in our motivation for regularization above. We recall the following
minimax lower bound, which follows from the results in [7, 20].

Theorem 1. Let f be a Hölder α-smooth d-dimensional intensity function and
suppose we observe N events from the distribution Poisson(f). Then there exists
a constant Cα > 0 such that

inf
f̂

sup
f

E[‖f̂ − f‖21]

‖f‖21
≥ CαN

−2α
2α+d ,

where the infimum is over all possible estimators. The error is measured with the
1-norm, rather than two norm, which is a more appropriate and natural norm
in density and intensity estimation. The theorem tells us that no estimator can
achieve a faster rate of error decay than the bound above. There exist many
types of estimators that nearly achieve this bound (e.g., to within a log factor),
and with more work it is possible to show that our regularized estimators, with
adaptively chosen bin sizes and appropriate regularization parameter settings,
could also nearly achieve this rate. For the purposes of this discussion, the lower
bound, which certainly applies to our situation, will suffice.

For example, consider just two spatial dimensions (d = 2) and α = 1 which
corresponds to Lipschitz smooth functions, a very mild regularity assumption.
Then the bound says that the error is proportional to N−1/2. This gives useful
insight into the minimal data requirements of our methods. It tells us, for exam-
ple, that if we want to reduce the error of the estimator by a factor of say 2, then
the total number of counts must be increased by a factor of 4. If the smoothness
α is very large, then doubling the counts can halve the error. The message is
simple. More events and higher counts will provide more accurate estimates.

3 Related Work

To our knowledge, there is no comparable prior work that focuses on robust
single recovery from social media (i.e., the “second stage” as we mentioned in
the introduction). However, there has been considerable related work on the first
stage, which we summarize below.
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Topic detection and tracking (TDT) aims at identifying emerging topics from
text stream and grouping documents based on their topics. The early work in
this direction began with news text streamed from newswire and transcribed
from other media [1]. Recent research focused on user-generated content on
the web and on the spatio-temporal variation of topics. Latent Dirichlet Al-
location (LDA) [3] is a popular unsupervised method to detect topics. Mei
et al. [12] extended LDA by taking spatio-temporal context into account to iden-
tify subtopics from weblogs. They analyzed the spatio-temporal pattern of topic
θ by Pr(time|θ, location) and Pr(location|θ, time), and showed that documents
created from the same spatio-temporal context tend to share topics. In the same
spirit, Yin et al. [22] studied GPS-associated documents, whose coordinates are
generated by Gaussian Mixture Model in their generative framework. Cataldi
et al. [4] proposed a feature-pivot method. They first identified keywords whose
occurrences dramatically increase in a specified time interval and then connected
the keywords to detect emerging topics. Besides text, social network structure
also provides important information for detecting community-based topics and
user interests.

Event detection is highly related to TDT. Yang et al. [21] uses clustering
algorithm to identify events from news streams. Others tried to distinguish posts
related to real world events from posts about non-events, such as describing
daily life or emotions [2]. Real world events were also detected in Flickr photos
with meta information and Twitter. Other researchers were interested in events
with special characteristics, such as controversial events and local events. Sakaki
et al. [16] monitored Twitter to detect real-time events such as earthquakes and
hurricanes.

Another line of related work uses social media as a data source to answer
scientific questions [11]. Most previous work studied questions in linguistic, so-
ciology and human interactions. For example, Eisenstein et al. [9] studied the
geographic linguistic variation with geotagged social media. Gupte et al. [10]
studied social hierarchy and stratification in online social network.

As stated earlier, Socioscope differs from past work in its focus on robust
signal recovery on predefined target phenomena. The target posts may be gen-
erated at a very low, though sustained, rate, and are corrupted by noise. The
above approaches are unlikely to estimate the underlying intensity accurately.

4 A Synthetic Experiment

We start with a synthetic experiment whose known ground-truth intensity f al-
lows us to quantitatively evaluate the effectiveness of Socioscope. The synthetic
experiment matches the case study in the next section. There are 48 US con-
tinental states plus Washington DC, and T = 24 hours. This leads to a total
of n = 1176 source bins, and m = (2 × 49 + 1)T = 2376 detector bins. The
transition matrix P is the same as in the case study, to be discussed later. The
overall counts z are obtained from actual Twitter data and ĝ = z(1).
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We design the ground-truth target signal f to be temporally constant but
spatially varying. Figure 1(a) shows the ground-truth f spatially. It is a mixture
of two Gaussian distributions discretized at the state level. The modes are in
Washington and New York, respectively. From P, f and g, we generate the
observed target post counts for each detector bin by a Poisson random number
generator: xi ∼ Poisson(

∑n
j=1 Pi,jfjgj), i = 1 . . .m. The sum of counts in x(1)

is 56, in x(2) 1106, and in x(3) 1030.

(i) scaled x(1) 14.11

(ii) scaled x(1)/z(1) 46.73

(iii) Socioscope with x(1) 0.17

(iv) Socioscope with x(1) + x(2) 1.83

(v) Socioscope with x(1), x(2) 0.16

(vi) Socioscope with x(1), x(2), x(3) 0.12
Table 1. Relative error of different estimators

Given x,P,g, We compare the relative error ‖f − f̂‖2/‖f‖2 of several estima-
tors in Table 1:

(i) f̂ = x(1)/(ε1
∑

z(1)), where ε1 is the fraction of tweets with precise lo-
cation stamp (discussed later in case study). Scaling matches it to the other
estimators. Figure 1(b) shows this simple estimator, aggregated spatially. It is
a poor estimator: besides being non-smooth, it contains 32 “holes” (states with

zero intensity, colored in blue) due to data scarcity. (ii) f̂ = x
(1)
j /(ε1z

(1)
j ) which

naively corrects the population bias as discussed in (4). It is even worse than
the simple estimator, because naive bin-wise correction magnifies the variance
in sparse x(1).

(iii) Socioscope with x(1) only. This simulates the practice of discarding noisy
or incomplete data, but regularizing for smoothness. The relative error was re-
duced dramatically.

(iv) Same as (iii) but replace the values of x(1) with x(1)+x(2). This simulates
the practice of ignoring the noise in x(2) and pretending it is precise. The result
is worse than (iii), indicating that simply including noisy data may hurt the
estimation.

(v) Socioscope with x(1) and x(2) separately, where x(2) is treated as noisy by
P. It reduces the relative error further, and demonstrates the benefits of treating
noisy data specially.

(vi) Socioscope with the full x. It achieves the lowest relative error among
all methods, and is the closest to the ground truth (Figure 1(c)). Compared to
(v), this demonstrates that even counts x(3) without location can also help us
to recover f better.



10 Xu, J., Bhargava, A., Nowak, R., and Zhu, X.

(a) ground-truth f (b) scaled x(1) (c) Socioscope

Fig. 1. The synthetic experiment

5 Case Study: Roadkill

We were unaware of public benchmark data sets to test robust signal recovery
from social media (the “second stage”). Several social media datasets were re-
leased recently, such as the ICWSM data challenges and the TREC microblog
track. These datasets were intended to study trending “hot topics” such as the
Arabic Spring, Olympic Games, or presidential elections. They are not suitable
for low intensity sustained target phenomena which is the focus of our approach.
In particular, these datasets do not contain ground-truth spatio-temporal in-
tensities and are thus not appropriate testbeds for the problems we are trying
to address. Instead, we report a real-world case study on the spatio-temporal
intensity of roadkill for several common wildlife species from Twitter posts.

The study of roadkill has values in ecology, conservation, and transportation
safety. The target phenomenon consists of roadkill events for a specific species
within the continental United States during September 22–November 30, 2011.
Our spatio-temporal source bins are state×hour-of-day. Let s index the 48 con-
tinental US states plus District of Columbia. We aggregate the 10-week study
period into 24 hours of a day. The target counts x are still sparse even with
aggregation: for example, most state-hour combination have zero counts for ar-
madillo and the largest count in x(1) and x(2) is 3. Therefore, recovering the
underlying signal f remains a challenge. Let t index the hours from 1 to 24. This
results in |s| = 49, |t| = 24, n = |s||t| = 1176,m = (2|s| + 1)|t| = 2376. We will
often index source or detector bins by the subscript (s, t), in addition to i or j,
below. The translation should be obvious.

5.1 Data Preparation

We chose Twitter as our data source because public tweets can be easily collected
through its APIs. All tweets include time meta data. However, most tweets do
not contain location meta data, as discussed earlier.

Overall Counts z(1) and Human Population Intensity g. To obtain the
overall counts z, we collected tweets through the Twitter stream API using
bounding boxes covering continental US. The API supplied a subsample of all
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(a) ĝ (b) spatial (c) temporal

Fig. 2. Human population intensity ĝ.

tweets (not just target posts) with geo-tag. Therefore, all these tweets include
precise latitude and longitude on where they were created. Through a reverse
geocoding database (http://www.datasciencetoolkit.org), we mapped the
coordinates to a US state. There are a large number of such tweets. Counting the
number of tweets in each state-hour bin gave us z(1), from which g is estimated.

Figure 2 shows the estimated ĝ. The x-axis is hour of day and y-axis is
the states, ordered by longitude from east (top) to west (bottom). Although
ĝ in this matrix form contains full information, it can be hard to interpret.
Therefore, we visualize aggregated results as well: First, we aggregate out time
in ĝ: for each state s, we compute

∑24
t=1 ĝs,t and show the resulting intensity

maps in Figure 2(b). Second, we aggregate out state in ĝ: for each hour of day

t, we compute
∑49
s=1 ĝs,t and show the daily curve in Figure 2(c). From these

two plots, we clearly see that human population intensity varies greatly both
spatially and temporally.

Identifying Target Posts to Obtain Counts x. To produce the target counts
x, we need to first identify target posts describing roadkill events. Although not
part of Socioscope, we detail this preprocessing step here for reproducibility.

In step 1, we collected tweets using a keyword API. Each tweet must contain
the wildlife name (e.g., “squirrel(s)”) and the phrase “ran over”. We obtained
5857 squirrel tweets, 325 chipmunk tweets, 180 opossum tweets and 159 armadillo
tweets during the study period. However, many such tweets did not actually
describe roadkill events. For example, “I almost ran over an armadillo on my
longboard, luckily my cat-like reflexes saved me.” Clearly, the author did not kill
the armadillo.

In step 2, we built a binary text classifier to identify target posts among them.
Following [17], the tweets were case-folded without any stemming or stopword
removal. Any user mentions preceded by a “@” were replaced by the anonymized
user name “@USERNAME”. Any URLs staring with “http” were replaced by
the token “HTTPLINK”. Hashtags (compound words following “#”) were not
split and were treated as a single token. Emoticons, such as “:)” or “:D”, were
also included as tokens. Each tweet is then represented by a feature vector con-
sisting of unigram and bigram counts. If any unigram or bigram included animal
names, we added an additional feature by replacing the animal name with the
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generic token “ANIMAL”. For example, we would created an extra feature “over
ANIMAL” for the bigram “over raccoon”. The training data consists of 1,450
manually labeled tweets in August 2011 (i.e., outside our study period). These
training tweets contain hundreds of animal species, not just the target species.
The binary label is whether the tweet is a true first-hand roadkill experience.
We trained a linear Support Vector Machine (SVM). The CV accuracy is nearly
90%. We then applied this SVM to classify tweets surviving step 1. Those tweets
receiving a positive label were treated as target posts.

In step 3, we produce x(1),x(2),x(3) counts. Because these target tweets were
collected by the keyword API, the nature of the Twitter API means that most
do not contain precise location information. As mentioned earlier, only 3% of
them contain coordinates. We processed this 3% by the same reverse geocoding

database to map them to a US state s, and place them in the x
(1)
s,t detection

bins. 47% of the target posts do not contain coordinates but can be mapped to

a US state from user self-declared profile location. These are placed in the x
(2)
s,t

detection bins. The remaining 50% contained no location meta data, and were

placed in the x
(3)
t detection bins. 3

Constructing the Transition Matrix P. In this study, P characterizes the
fraction of tweets which were actually generated in source bin (s, t) end up in
the three detector bins: precise location st(1), potentially noisy location st(2),
and missing location t(3). We define P as follows:

P(s,t)(1),(s,t) = 0.03, and P(r,t)(1),(s,t) = 0 for ∀r 6= s to reflect the fact that

we know precisely 3% of the target posts’ location.

P(r,t)(2),(s,t) = 0.47Mr,s for all r, s. M is a 49× 49 “mis-self-declare” matrix.
Mr,s is the probability that a user self-declares in her profile that she is in state r,
but her post is in fact generated in state s. We estimated M from a separate large
set of tweets with both coordinates and self-declared profile locations. The M
matrix is asymmetric and interesting in its own right: many posts self-declared
in California or New York were actually produced all over the country; many
self-declared in Washington DC were actually produced in Maryland or Virgina;
more posts self-declare Wisconsin but were actually in Illinois than the other
way around.

Pt(3),(s,t) = 0.50. This aggregates tweets with missing information into the
third kind of detector bins.

Specifying the Graph Regularizer. Our graph has two kinds of edges. Tem-
poral edges connect source bins with the same state and adjacent hours by weight
wt. Spatial edges connect source bins with the same hour and adjacent states by
weight ws. The regularization weight λ was absorbed into wt and ws. We tuned
the weights wt and ws with CV on the 2D grid {10−3, 10−2.5, . . . , 103}2.

3 There were actually only a fraction of all tweets without location which came from
all over the world. We estimated this US/World fraction using z.
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5.2 Results

We present results on four animals: armadillos, chipmunks, squirrels, opossums.
Perhaps surprisingly, precise roadkill intensities for these animals are apparently
unknown to science (This serves as a good example of the value Socioscope may
provide to wildlife scientists). Instead, domain experts were only able to provide
a range map of each animal, see the left column in Figure 3. These maps indicate
presence/absence only, and were extracted from NatureServe [15]. In addition,
the experts defined armadillo and opossum as nocturnal, chipmunk as diurnal,
and squirrels as both crepuscular (active primarily during twilight) and diurnal.
Due to the lack of quantitative ground-truth, our comparison will necessarily be
qualitative in nature.

Socioscope provides sensible estimates on these animals. For example, Fig-
ure 4(a) shows counts x(1) +x(2) for chipmunks which is very sparse (the largest

count in any bin is 3), and Figure 4(b) the Socioscope estimate f̂ . The axes are
the same as in Figure 2(a). In addition, we present the state-by-state intensity

maps in the middle column of Figure 3 by aggregating f̂ spatially. The Socio-
scope results match the range maps well for all animals. The right column in
Figure 3 shows the daily animal activities by aggregating f̂ temporally. These
curves match the animals’ diurnal patterns well, too.

The Socioscope estimates are superior to the baseline methods in Table 1.
Due to space limit we only present two examples on chipmunks, but note that
similar observations exist for all animals. The baseline estimator of simply scal-
ing x(1) + x(2) produced the temporal and spatial aggregates in Figure 5(a,b).
Compared to Figure 3(b, right), the temporal curve has a spurious peak around
4-5pm. The spatial map contains spurious intensity in California and Texas,
states outside the chipmunk range as shown in Figure 3(b, left). Both are pro-
duced by population bias when and where there were strong background social
media activities (see Figure 2(b,c)). In addition, the spatial map contains 27
“holes” (states with zero intensity, colored in blue) due to data scarcity. In con-
trast, Socioscope’s estimates in Figure 3 avoid this problem by regularization.
Another baseline estimator (x(1) + x(2))/z(1) is shown in Figure 5(c). Although
corrected for population bias, this estimator lacks the transition model and reg-
ularization. It does not address data scarcity either.

6 Future Work

Using social media as a data source for spatio-temporal signal recovery is an
emerging area. Socioscope represents a first step toward this goal. There are
many open questions:

1. We treated target posts as certain. In reality, a natural language processing
system can often supply a confidence. For example, a tweet might be deemed to
be a target post only with probability 0.8. It will be interesting to study ways
to incorporate such confidence into our framework.

2. The temporal delay and spatial displacement between the target event and
the generation of a post is commonplace, as discussed in footnote 2. Estimating
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(a) armadillo (Dasypus novemcinctus)

(b) chipmunk (Tamias striatus)

(c) squirrel (Sciurus carolinensis and several others)

(d) opossum (Didelphis virginiana)

Fig. 3. Socioscope estimates match animal habits well. (Left) range map from Nature-

Serve, (Middle) Socioscope f̂ aggregated spatially, (Right) f̂ aggregated temporally.

(a) x(1) + x(2) (b) Socioscope f̂

Fig. 4. Raw counts and Socioscope f̂ for chipmunks
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(a) x(1) + x(2) (b) x(1) + x(2) (c) (x(1) + x(2))/z(1)

Fig. 5. Examples of inferior baseline estimators. In all plots, states with zero counts
are colored in blue.

an appropriate transition matrix P from social media data so that Socioscope
can handle such “point spread functions” remains future work.

3. It might be necessary to include psychology factors to better model the
human “sensors.” For instance, a person may not bother to tweet about a chip-
munk roadkill, but may be eager to do so upon seeing a moose roadkill.

4. Instead of discretizing space and time into bins, one may adopt a spatial
point process model to learn a continuous intensity function instead [13].

Addressing these considerations will further improve Socioscope.
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