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Abstract
Subspace clustering with missing data (SCMD)
is a useful tool for analyzing incomplete datasets.
Let d be the ambient dimension, and r the dimen-
sion of the subspaces. Existing theory shows that
Nk = O(rd) columns per subspace are neces-
sary for SCMD, and Nk = O(min{dlog d, dr+1})
are sufficient. We close this gap, showing that
Nk = O(rd) is also sufficient. To do this
we derive deterministic sampling conditions for
SCMD, which give precise information-theoretic
requirements and determine sampling regimes.
These results explain the performance of SCMD
algorithms from the literature. Finally, we give
a practical algorithm to certify the output of any
SCMD method deterministically.

1. Introduction
Let U? be a collection of r-dimensional subspaces of Rd,
and let X be a d ⇥ N data matrix whose columns lie in
the union of the subspaces in U?. The goal of subspace
clustering is to infer U? and cluster the columns of X ac-
cording to the subspaces (Vidal, 2011; Elhamifar & Vidal,
2009; 2013; Liu et al., 2010; 2013; Wang & Xu, 2013;
Soltanolkotabi et al., 2014; Hu et al., 2015; Qu & Xu, 2015;
Peng et al., 2015; Wang et al., 2015). There is growing in-
terest in subspace clustering with missing data (SCMD),
where one aims at the same goal, but only observes a
subset of the entries in X. This scenario arises in many
practical applications, such as computer vision (Kanatani,
2001), network inference and monitoring (Eriksson et al.,
2012; Mateos & Rajawat, 2013), and recommender sys-
tems (Rennie & Srebro, 2005; Zhang et al., 2012).

There is a tradeoff between the number of samples per col-
umn `, and the number of columns per subspace Nk, re-
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quired for SCMD. If all entries are observed, Nk = r + 1

is necessary and sufficient (assuming generic columns). If
` = r + 1 (the minimum required), it is easy to see that
Nk = O(rd) is necessary for SCMD, as O(rd) columns
are necessary for low-rank matrix completion (LRMC)
(Candès & Recht, 2009), which is the particular case of
SCMD with only one subspace. Under standard random
sampling schemes, i.e., with ` = O(max{r, log d}), it
is known that Nk = O(min{dlog d, dr+1}) is sufficient
(Eriksson et al., 2012; Pimentel-Alarcón et al., 2014). This
number of samples can be very large, and it is unusual to
encounter such huge datasets in practice. Recent work has
produced several heuristic algorithms that tend to work rea-
sonably well in practice without these strong requirements.
Yet the sample complexity of SCMD remained an impor-
tant open question until now (Soltanolkotabi, 2014).

Organization and Main Contributions

In Section 2 we formally state the problem and our main
result, showing that Nk = O(rd) is the true sample com-
plexity of SCMD. In Section 3 we present determinis-
tic sampling conditions for SCMD, similar to those in
(Pimentel-Alarcón et al., 2015a) for LRMC. These specify
precise information-theoretic requirements and determine
sampling regimes of SCMD. In Section 3 we also present
experiments showing that our theory accurately predicts the
performance of SCMD algorithms from the literature.

The main difficulty of SCMD is that the pattern of missing
data can cause that U? is not the only collection of sub-
spaces that agrees with the observed data. This implies
that in general, even with unlimited computational power,
one could try all possible clusterings, and still be unable to
determine the right one. Existing theory circumvents this
problem by requiring a large number of columns, so that
U? is be the only collection of subspaces that agrees with
the vast number of observations. In Section 4 we discuss
these issues and present an efficient criteria to determine
whether a subspace is indeed one of the subspaces in U?.

In Section 5 we present the main practical implication of
our theory: an efficient algorithm to certify the output of
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Figure 1. A1 requires that U? is a generic set of subspaces. Here,
S?
1 , S

?
2 2 U? are 2-dimensional subspaces (planes) in general po-

sition. A2 requires that the columns in Xk are in general position
on S?

k , as in the left. If we had columns as in the right, all lying
in a line (when S?

k is a plane), we would be unable to identify S?
k .

Fortunately, these pathological cases have Lebesgue measure 0.

any SCMD method. Our approach is based on a simple
idea: one way to verify the output of an algorithm is by
splitting the given data into a training set, and a hold-out
set. We can use the training set to obtain an estimate ˆU of
U?. If ˆU does not agree with the hold-out set, we know
ˆU is incorrect. What makes SCMD challenging is that de-
pending on the pattern of missing data, ˆU may agree with
the hold-out set even if ˆU 6= U?. Our validation algorithm
uses our results in Section 4 to show that if ˆU agrees with
the hold-out set, and the hold-out set satisfies suitable sam-
pling conditions, then ˆU must indeed be equal to U?. We
prove all our statements in Section 6.

2. Model and Main Result
Let Gr(r,Rd

) denote the Grassmann manifold of r-
dimensional subspaces in Rd. Let U?

:= {S?
k}Kk=1

be a
set of K subspaces in Gr(r,Rd

). Let X be a d ⇥ N data
matrix whose columns lie in the union of the subspaces in
U?. Let Xk denote the matrix with all the columns of X
corresponding to S?

k . Assume:

A1 The subspaces in U? are drawn in indepen-
dently with respect to the uniform measure over
Gr(r,Rd

).
A2 The columns of Xk are drawn independently ac-

cording to an absolutely continuous distribution
with respect to the Lebesgue measure on S?

k .
A3 X

k has at least (r + 1)(d� r + 1) columns.

Assumption A1 essentially requires that U? is a generic
collection of K subspaces in general position (see Figure
1 to build some intuition). Similarly, A2 requires that the
columns in X

k are in general position on S?
k . A1-A2 sim-

ply discard pathological cases with Lebesgue measure zero,
like subspaces perfectly aligned with the canonical axes, or
identical columns. Our statements hold with probability
(w.p.) 1 with respect to (w.r.t.) the measures in A1-A2. In
contrast, typical results assume bounded coherence, which
essentially discards the set of subspaces (with positive mea-

sure) that are somewhat aligned to the canonical axes. Fi-
nally, A3 requires that Nk = O(rd).
Let ⌦ be a d ⇥ N matrix with binary entries, and X⌦ be
the incomplete version of X, observed only in the nonzero
locations of ⌦. Our main result is presented in the follow-
ing theorem. It states that if X has at least O(rd) columns
per subspace, and is observed on at least O(max{r, log d})
entries per column, then U? can be identified with large
probability. This shows Nk = O(rd) to be the true sample
complexity of SCMD. The proof is given in Section 6.

Theorem 1. Assume A1-A3 hold 8k, with r  d
6

. Let
✏ > 0 be given. Suppose that each column of X is
observed on at least ` locations, distributed uniformly
at random, and independently across columns, with

` � max

�
12

�
log(

d
✏ ) + 1

�
, 2r

 
. (1)

Then U? can be uniquely identified from X⌦ with
probability at least 1�K(r + 1)✏.

Theorem 1 follows by showing that our deterministic sam-
pling conditions (presented in Theorem 2, below) are satis-
fied with high probability (w.h.p.).

3. Deterministic Conditions for SCMD
In this section we present our deterministic sampling con-
ditions for SCMD. To build some intuition, consider the
complete data case. Under A2, subspace clustering (with
complete data) is possible as long as we have r+1 complete
columns per subspace. To see this, notice that if columns
are in general position on U?, then any r columns will
be linearly independent w.p. 1, and will thus define an r-
dimensional candidate subspace S. This subspace may or
may not be one of the subspaces in U?. For example, if the
r selected columns come from different subspaces, then S
will be none of the subspaces in U? w.p. 1. Fortunately, an
(r+1)

th column will lie in S if and only if the r+1 selected
columns come from the same subspace in U?, whence S is
such subspace. Therefore, we can identify U? by trying all
combinations of r+1 columns, using the first r to define a
candidate subspace S and the last one to verify whether S
is one of the subspaces in U?.
When handling incomplete data, we may not have complete
columns. Theorem 2 states that we can use a set of d�r+1

incomplete columns observed in the right places in lieu of
one complete column, such that, with the same approach as
before, we can use r sets of incomplete columns to define
a candidate subspace S, and an additional set of incom-
plete columns to verify whether S 2 U?. To state precisely
what we mean by observed in the right places, we intro-
duce the constraint matrix ˘

⌦ that encodes the information
of the sampling matrix ⌦ in a way that allows us to easily
express our results.
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Definition 1 (Constraint Matrix). Let m
1,i,m2,i . . . ,m`i,i

denote the indices of the `i observed entries in the ith col-
umn of X. Define ⌦i as the d⇥ (`i � r) matrix, whose jth

column has the value 1 in rows mj,i,mj+1,i, . . . ,mj+r,i,
and zeros elsewhere. Define the constraint matrix as ˘

⌦ :=

[⌦

1

· · · ⌦N ].
Example 1. Suppose m

1,i = 1,m
2,i = 2, . . . ,m`i,i = `i,

then

where 1 and 0 denote blocks of all 1’s and all 0’s.
Notice that each column of ˘

⌦ has exactly r + 1 nonzero
entries. The key insight behind this construction is that
observing more than r entries in a column of X places
constraints on what U? may be. For example, if we ob-
serve r + 1 entries of a particular column, then not all r-
dimensional subspaces will be consistent with the entries.
If we observe more entries, then even fewer subspaces will
be consistent with them. In effect, each observed entry, in
addition to the first r observations, places one constraint
that an r-dimensional subspace must satisfy in order to be
consistent with the observations. Each column of ˘

⌦ en-
codes one of these constraints.
Our next main contribution is Theorem 2. It gives a deter-
ministic condition on ⌦ to guarantee that U? can be identi-
fied from the constraints produced by the observed entries.
Define ⌦

k as the matrix formed with the columns of ˘

⌦

corresponding to the kth subspace. Given a matrix, let n(·)
denote its number of columns, and m(·) the number of its
nonzero rows.

Theorem 2. For every k, assume A1-A2 hold, and that
⌦

k contains disjoint matrices {⌦⌧}r+1

⌧=1

, each of size
d⇥ (d� r + 1), such that for every ⌧ ,

(i) Every matrix ⌦

0
⌧ formed with a proper subset of

the columns in ⌦⌧ satisfies

m(⌦

0
⌧ ) � n(⌦0

⌧ ) + r. (2)

Then U? can be uniquely identified from X⌦ w.p. 1.

The proof of Theorem 2 is given in Section 6. Analogous to
the complete data case, Theorem 2 essentially requires that
there are at least r+1 sets of incomplete columns observed
in the right places per subspace. Each set of observations
in the right places corresponds to a matrix ⌦⌧ satisfying
the conditions of Theorem 2. The first r sets can be used to
define a candidate subspace S, and the additional one can
be used to verify whether S 2 U?.

In words, (i) requires that every proper subset of n columns
of ⌦⌧ has at least n + r nonzero rows. This condi-
tion is tightly related to subspace identifiability (Pimentel-
Alarcón et al., 2015b). The main difference is the proper
subset clause, and the condition that ⌦⌧ has d � r + 1

columns, as opposed to d� r. More about this is discussed
below. In particular, see condition (ii) and Question (Qa).

Example 2. The next sampling satisfies (i).

To see that the sufficient condition in Theorem 2 is tight,
notice that if columns are only observed on r+1 entries (the
minimum required), then r(d�r) columns per subspace are
necessary for SCMD, as a column with r + 1 observations
eliminates at most one of the r(d � r) degrees of freedom
in a subspace (Pimentel-Alarcón et al., 2015a). The suf-
ficient condition in Theorem 2 only requires the slightly
larger (r + 1)(d� r + 1) columns per subspace.

Remark 1. The constraint matrix ˘

⌦ explains the interest-
ing tradeoff between ` and Nk. The larger `, the more con-
straints per column we obtain, and the fewer columns are
required. This tradeoff, depicted in Figure 2, determines
whether SCMD is possible, and can be appreciated in the
experiments of Figure 3. This explains why practical al-
gorithms (such as k-GROUSE (Balzano et al., 2012), EM
(Pimentel-Alarcón et al., 2014), SSC-EWZF and MC+SSC
(Yang et al., 2015), among others), tend to work with only
Nk = O(rd), as opposed to the strong conditions that ex-
isting theory required.

Figure 2. Theoretical sampling regimes of SCMD. In the white re-
gion, where the dashed line is given by ` = r(d�r)

Nk
+r, it is easy to

see that SCMD is impossible by a simple count of the degrees of
freedom in a subspace (see Section 3 in (Pimentel-Alarcón et al.,
2015b)). In the light-gray region, SCMD is possible provided the
entries are observed in the right places, e.g., satisfying the condi-
tions of Theorem 2. By Theorem 1, random samplings will satisfy
these conditions w.h.p. as long as Nk � (r + 1)(d� r + 1) and
` � max{12(log( d✏ ) + 1), 2r}, hence w.h.p. SCMD is possible
in the dark-grey region. Previous analyses showed that SCMD
is possible in the black region (Eriksson et al., 2012; Pimentel-
Alarcón et al., 2014), but the rest remained unclear, until now.
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Figure 3. Proportion of correctly classified columns (average over
10 trials) using EM (Pimentel-Alarcón et al., 2014) and SSC-
EWZF (Yang et al., 2015) as a function of the number of columns
per subspace Nk and the number of observations per column `,
with K = 5 subspaces of dimension r = 25, in ambient dimen-
sion d = 100. Notice the tradeoff between ` and Nk: the smaller
Nk, the larger ` is required, and vice versa. This tradeoff deter-
mines whether SCMD is possible (see Figure 2).

4. What Makes SCMD Hard?
The main difficulty in showing the results above is that
depending on the pattern of missing data, there could ex-
ist false subspaces, that is, subspaces not in U? that agree
with arbitrarily many incomplete columns (even if they are
observed on identifiable patterns for LRMC). This section
gives some insight on this phenomenon, and presents our
key result: a deterministic criteria to determine whether a
subspace is indeed one of the subspaces in U?.

We begin with some terminology. Let x and ! denote ar-
bitrary columns of X and ⌦. For any subspace, matrix or
vector that is compatible with a binary vector !, we will
use the subscript ! to denote its restriction to the nonzero
coordinates/rows in !. Let X0

⌦0 be a matrix formed with a
subset of the columns in X⌦. We say that a subspace S fits
X

0
⌦0 if x! 2 S! for every column x! in X

0
⌦0 .

The following example shows how false subspaces may fit
arbitrarily many incomplete columns.
Example 3. Let U?

= {S?
1

, S?
2

}, and

S?
1 = span

2

64

1

1

1

1

3

75 , S?
2 = span

2

64

1

2

3

4

3

75 , X0
⌦0 =

2

64

1 · 3 1

1 2 · ·
· 2 3 ·
· · · 4

3

75 ,

such that the first three columns of X0
⌦0 lie in S?

1

, and the
last one lies in S?

2

. It is easy to see that X0
⌦0 fits in a single

1-dimensional subspace, namely S = span[1 1 1 4]

T,
even though S /2 U?.

Moreover, S is the only 1-dimensional subspace that fits
X

0
⌦0 . Equivalently, there is only one rank-1 matrix that

agrees with X

0
⌦0 . In other words, the sampling ⌦

0 is iden-
tifiable for LRMC (the particular case of SCMD with just
one subspace). This shows that even with unlimited com-
putational power, if we exhaustively find all the identifiable
patterns for LRMC, and collect their resulting subspaces,

we can end up with false subspaces. Hence the importance
of characterizing the identifiable patterns for SCMD.

Example 3 shows how false subspaces may arise. The core
of our main results lies in Theorem 3, which gives a de-
terministic condition to identify false subspaces, or equiva-
lently, to determine whether a subspace indeed lies in U?.

To build some intuition, imagine we suspect that S is one
of the subspaces in U?. For example, S may be a candidate
subspace identified using a subset of the data. We want
to know whether S is indeed one of the subspaces in U?.
Suppose first that we have an additional complete column
x in general position on S?

k . Then w.p. 1, x 2 S if and only
if S = S?

k . We can thus verify whether x 2 S, and this
will determine whether S = S?

k . It follows that if we had
an additional complete column per subspace, we would be
able to determine whether S 2 U?.
When handling incomplete data one cannot count on hav-
ing complete columns. Instead, suppose we have a collec-
tion X

0
⌦0 of incomplete columns in general position on U?.

For example, X0
⌦0 may be a subset of the data, not used to

identify S. As we mentioned before, a complete column in
general position on S?

k will lie in S if and only if S = S?
k .

We emphasize this because here lies the crucial difference
with the missing data case: w.p. 1, an incomplete column
x! in general position on S?

k will fit in S if and only if the
projections of S and S?

k onto the canonical coordinates in-
dicated by ! are the same, i.e, if and only if S! = S?

k! .
More generally, a set X0

⌦0 of incomplete columns in gen-
eral position on S?

k will fit in S if and only if S! = S?
k!

for every column ! in ⌦

0. Depending on ⌦

0, this may or
may not imply that S = S?

k . It is possible that two different
subspaces agree on almost all combinations of coordinates.
This means S may fit arbitrarily many incomplete columns
of S?

k , even if it is not S?
k .

Moreover, we do not know a priori whether the columns in
X

0
⌦0 come from the same subspace. So if S fits X

0
⌦0 , all

we know is that S agrees with some subspaces of U? (the
subspaces corresponding to the columns in X

0
⌦0 ) on some

combinations of coordinates (indicated by the columns in
⌦

0). For example, if the columns in X

0
⌦0 come from two

different subspaces of U?, and S fits X0
⌦0 , then all we know

is that S agrees with one subspace of U? in some coordi-
nates, and with an other subspace of U? in other coordi-
nates. This is what happened in Example 3: S agrees with
S?
1

on the first three coordinates (rows), and with S?
2

on the
first and fourth coordinates. Here lies the importance of our
next main contribution: Theorem 3.

Theorem 3 states that if S fits X

0
⌦0 , and X

0
⌦0 is observed

in the right places (indicated by the matrix ⌦⌧ satisfying
(i), defined in the lemma), then we can be sure that all the
columns in X

0
⌦0 come from the same subspace in U?, and

that S is such subspace. The proof is given in Section 6.
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Algorithm 1 Subspace Clustering Certification.
Input: Matrix X⌦.
· Split X⌦ into X⌦1 and X⌦2 .
· Subspace cluster X⌦1 to obtain ˆU = { ˆSk}Kk=1

.
for k = 1 to K do
· ⌦k

2

= columns of ˘

⌦ corresponding to the
columns of X⌦2 that fit in ˆSk.

if ⌦k
2

contains a d⇥(d�r+1) submatrix ⌦⌧ satisfying
condition (i) (see Algorithm 2) then
· Output: ˆSk is one of the subspaces in U?.

end if
end for

Theorem 3. Let A1-A2 hold. Let X

0
⌦0 be a ma-

trix formed with a subset of the columns in X⌦. Let
˘

⌦

0 be the matrix containing the columns of ˘

⌦ corre-
sponding to ⌦

0. Suppose there is a matrix ⌦⌧ formed
with d � r + 1 columns of ˘

⌦

0 that satisfies (i). Let
S 2 Gr(r,Rd

) be a subspace identified without using
X

0
⌦0 . If S fits X0

⌦0 , then S 2 U? w.p. 1.

5. Practical Implications
In this section we present the main practical implication of
our theoretical results: an efficient algorithm to certify the
output of any SCMD method deterministically, in lieu of
sampling and coherence assumptions.

Example 3 shows that finding a set of subspaces that agrees
with the observed data does not guarantee that it is the cor-
rect set. It is possible that there exist false subspaces, that
is, subspaces not in U? that agree with the observed data.
Under certain assumptions on the subset of observed en-
tries (e.g., random sampling) and U? (e.g., incoherence and
distance between the subspaces), existing analyses have
produced conditions to guarantee that this will not be the
case (Eriksson et al., 2012; Pimentel-Alarcón et al., 2014).
These assumptions and conditions are sometimes unverifi-
able, unjustifiable, or hardly met. For instance, (Eriksson
et al., 2012) require O(dlog d

) columns per subspace, and
(Pimentel-Alarcón et al., 2014) require O(dr+1

), and it is
unusual to encounter such huge datasets. So in practice, the
result of a SCMD algorithm can be suspect.

Hence using previous theory, even when we obtained a so-
lution that appeared to be correct, we were be unable to
tell whether it truly was. With our results, we now can.
Theorem 3 implies that if one runs a SCMD algorithm on
a subset of the data, then the uniqueness and correctness of
the resulting clustering can be verified by testing whether it
agrees with an other portion of the data that is observed in
the right places. This is summarized in Algorithm 1.

Algorithm 2 Determine whether ⌦⌧ satisfies (i).
Input: Matrix ⌦⌧ with d� r + 1 columns of ˘

⌦

· Draw U 2 Rd⇥r with i.i.d. Gaussian entries.
for i = 1 to d� r + 1 do
· a!i = nonzero vector in kerU

T
!i

.
· ai = vector in Rd with entries of a!i in the

nonzero locations of !i and zeros elsewhere.
end for
· A⌧�i = matrix formed with all but the ith

column in {ai}d�r+1

i=1

.
if dimkerA

T
⌧�i = r 8 i then

· Output: ⌦⌧ satisfies (i).
else
· Output: ⌦⌧ does not satisfy (i).

end if

Example 4. To give a practical example, consider d =

100 and r = 10. In this case, the previous best guar-
antees that we are aware of require at least Nk =

O(min{dlog d, dr+1}) = O(109), and that all entries are
observed (Eriksson et al., 2012). Experiments show that
practical algorithms can cluster perfectly even when fewer
than half of the entries are observed, and with as little as
Nk = O(rd). While previous theory for SCMD gives no
guarantees in scenarios like this, our new results do.

To see this, split X⌦ into two submatrices X⌦1 and X⌦2 .
Use any SCMD method to obtain an estimate ˆU of U?, us-
ing only X⌦1 . Next cluster X⌦2 according to ˆU. Let ⌦k

2

denote the columns of ˘

⌦ corresponding to the columns of
X⌦2 that fit in the kth subspace of ˆU. If ⌦k

2

is observed in
the right places, i.e., if ⌦k

2

contains a matrix ⌦⌧ satisfying
(i), then by Theorem 3 the kth subspace of ˆU must be equal
to one of the subspaces in U?. It follows that if the sub-
spaces in ˆU fit the columns in X⌦2 , and each ˆ

⌦

k
2

satisfies
(i), then the clustering is unique and correct, i.e., ˆU = U?.

Algorithm 1 states that a clustering will be unique and cor-
rect if it is consistent with a hold-out subset of the data that
satisfies (i). In Section 6 we show that sampling patterns
with as little as O(max{r, log d}) uniform random samples
per column will satisfy (i) w.h.p. If this is the case, a clus-
tering will be correct w.h.p. if it is consistent with enough
hold-out columns (d� r + 1 per subspace).

In many situations, though, sampling is not uniform. For
instance, in vision, occlusion of objects can produce miss-
ing data in very non-uniform random patterns. In cases
like this, we can use Algorithm 2, which applies the results
in (Pimentel-Alarcón et al., 2015b) to efficiently determine
whether a matrix ⌦⌧ satisfies (i). This way, Algorithm 1
together with Algorithm 2 allow one to drop the sampling
and incoherence assumptions, and validate the result of any
SCMD algorithm deterministically and efficiently.
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Algorithm 2 checks the dimension of the null-space of d�
r+1 sparse matrices. To present the algorithm, let ⌦⌧ be a
matrix formed with d� r + 1 columns of ˘

⌦, and let ⌦⌧�i

denote the matrix formed with all but the ith column of ⌦⌧ .
Consider the following condition:

(ii) Every matrix ⌦

0
⌧ formed with a subset of the

columns in ⌦⌧�i (including ⌦⌧�i) satisfies (2).

It is easy to see that ⌦⌧ will satisfy (i) if and only if ⌦⌧�i

satisfies (ii) for every i = 1, . . . , d � r + 1. Fortunately,
the results in (Pimentel-Alarcón et al., 2015b) provide an
efficient algorithm to verify whether (ii) is satisfied.
Next let !i denote the ith column of ⌦⌧ , and let U be
a d ⇥ r matrix drawn according to an absolutely continu-
ous distribution w.r.t. the Lebesgue measure on Rd⇥r (e.g.,
with i.i.d. Gaussian entries). Recall that U!i denotes the
restriction of U to the nonzero rows in !i. Let a!i 2 Rr+1

be a nonzero vector in kerU

T
!i

, and ai be the vector in Rd

with the entries of a!i in the nonzero locations of !i and
zeros elsewhere. Finally, let A⌧�i denote the d ⇥ (d � r)
matrix with all but the ith column in {ai}d�r+1

i=1

.
Section 3 in (Pimentel-Alarcón et al., 2015b) shows that
⌦⌧�i satisfies (ii) if and only if dimkerA

T
⌧�i = r. Algo-

rithm 2 will verify whether dimkerA

T
⌧�i = r for every i,

and this will determine whether ⌦⌧ satisfies (i). We thus
have the next lemma, which states that w.p. 1, Algorithm 2
will determine whether ⌦⌧ satisfies (i).
Lemma 1. Let ⌦⌧ be a matrix formed with d � r + 1

columns of ˘

⌦. Let {A⌧�i}d�r+1

i=1

be constructed as in
Algorithm 2. Then w.p. 1, ⌦⌧ satisfies (i) if and only if
dimkerA

T
⌧�i = r for every i = 1, . . . , d� r + 1.

6. Proofs
Similar to ˘

⌦, let us introduce the expanded matrix ˘

X⌦̆ of
X⌦. Recall that `i denotes the number of observed entries
of the ith column of X⌦.
Definition 2 (Expanded Matrix). Define ˘

Xi as the matrix
with `i � r columns, all identical to the ith column of X.
Let ˘X := [

˘

X

1

· · · ˘

XN ]. Define the expanded matrix ˘

X⌦̆

as the matrix with the values of ˘X in the nonzero locations
of ˘⌦, and missing values in the zero locations of ˘⌦.
Each column in ˘

X⌦̆ specifies one constraint on what U?

may be, and the pattern ˘

⌦ determines whether these con-
straints are redundant. We will show that if the conditions
of Theorem 2 are satisfied, then U? can be uniquely identi-
fied from these constraints.
To identify U?, we will exhaustively search for subspaces
that fit combinations of (r+1)(d� r+1) columns of ˘

X⌦̆
that are observed in the right places, that is, satisfying the
conditions of Theorem 2. More precisely, let ⌦⌘ denote the
matrix formed with the ⌘th combination of (r+1)(d�r+1)

columns of ˘

⌦. For each ⌘ we will verify whether ⌦⌘ can

be partitioned into r + 1 submatrices {⌦⌘
⌧}r+1

⌧=1

satisfying
(i). In this case, we will use the first r sets of d � r +

1 incomplete columns of ˘

X⌦̆ corresponding to {⌦⌘
⌧}r⌧=1

to identify a candidate subspace S⌘ . Next we will verify
whether the last set of d � r + 1 incomplete columns of
˘

X⌦̆ corresponding to ⌦

⌘
r+1

fit in S⌘ . In this case, we will
keep S in the collection of subspaces ˆU. We will show
that if the assumptions of Theorem 2 are satisfied, then the
output of this procedure, ˆU, will be equal to U?.
Theorem 2 is based on Theorem 3 above, and Lemma 8
in (Pimentel-Alarcón et al., 2015a), which states that if
{⌦⌘

⌧}r⌧=1

satisfy (i), there are at most finitely many r-
dimensional subspaces that fit {X⌘

⌦⌧
}r⌧=1

(the correspond-
ing submatrices of ˘

X⌦̆ observed on {⌦⌘
⌧}r⌧=1

). We restate
this result as the following lemma, with some adaptations.
Lemma 2. Let A1-A2 hold 8k. Suppose {⌦⌘

⌧}r⌧=1

sat-
isfy (i). Then w.p. 1, there exist at most finitely many r-
dimensional subspaces that fit {X⌘

⌦⌧
}r⌧=1

.
Remark 2. Lemma 8 in (Pimentel-Alarcón et al., 2015a)
holds for a different construction of ⌦i. However, both con-
structions define the same variety, and hence they can be
used interchangeably. We prefer this construction because
it spreads the nonzero entries in ⌦i more uniformly.

Proof of Theorem 2
We will show that ˆU = U?.
(⇢) Suppose ⌦

⌘ can be partitioned into r + 1 submatri-
ces {⌦⌘

⌧}r+1

⌧=1

satisfying (i). By Lemma 2, there are
at most finitely many r-dimensional subspaces that fit
{X⌘

⌦⌧
}r⌧=1

. Let S⌘ be one of these subspaces. Since
⌦

⌘
r+1

also satisfies (i), it follows by Theorem 3 that
S⌘ will only fit X⌘

⌦r+1
if S⌘ 2 U?. Since this argu-

ment holds for all of the finitely many r-dimensional
subspaces that fit {X⌘

⌦⌧
}r⌧=1

, it follows that only sub-
spaces in U? may fit {X⌘

⌦⌧
}r+1

⌧=1

. Since ⌘ was arbi-
trary, it follows that ˆU ⇢ U?.

(�) By A3, X⌦ has at least (r + 1)(d � r + 1) columns
from each of the K subspaces in U?. By assumption,
there is some ⌘ such that all the columns in the ⌘th

combination belong to S?
k and ⌦

⌘ can be partitioned
into r + 1 submatrices {⌦⌘

⌧}r+1

⌧=1

satisfying (i). Take
such ⌘. Then S?

k 2 ˆU, as S?
k trivially fits this com-

bination of columns. Since this is true for every k, it
follows that U? ⇢ ˆU. ⇤

Proof of Theorem 1
Theorem 1 follows as a consequence of Theorem 2 and
Lemma 9 in (Pimentel-Alarcón et al., 2015a), which we
restate here with some adaptations as Lemma 3.
Lemma 3. Let the sampling assumptions of Theorem 1
hold. Let ⌦⌧�i be a matrix formed with d � r columns
of ⌦. Then ⌦⌧�i satisfies (ii) w.p. at least 1� ✏

d .
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By A3, Xk has at least (r + 1)(d � r + 1) columns. Ran-
domly partition the matrix indicating the observed entries
of Xk into matrices {⌦⌧}r+1

⌧=1

, each of size d⇥ (d� r+1).
Let ⌦⌧�i denote the d⇥ (d� r) matrix formed with all but
the ith column in ⌦⌧ . It is easy to see that ⌦⌧ will satisfy
(i) if every ⌦⌧�i satisfies (ii).

By Lemma 3 and a union bound, ⌦⌧ will satisfy (i) w.p. at
least 1 � ✏. Using two more union bounds we conclude
that the conditions of Theorem 2 are satisfied w.p. at least
1�K(r+1)✏, whence, by Theorem 2, U? can be uniquely
identified from X⌦.

Proof of Theorem 3

As mentioned in Section 4, the main difficulty in showing
our main results is that there could exist false subspaces,
that is, subspaces not in U? that could fit arbitrarily many
incomplete columns. Theorem 3 provides a deterministic
condition to determine whether a subspace lies in U?. We
use this section to give the proof of this statement and ex-
pose the main ideas used to derive it.

To build some intuition, imagine we suspect that S is one
of the subspaces in U?. We want to determine whether it
truly is one of the subspaces in U?. From the discussion
in Section 4 it follows that if we had a complete column
in general position from each of the subspaces in U?, we
could check whether S fits any of these columns, knowing
that almost surely, it will do so if and only if S 2 U?.

When handling incomplete data one cannot count on hav-
ing a complete column. But what if we had several in-
complete ones instead? Could a set of incomplete columns
behave just as a complete column in the sense that S will
only fit such set if S 2 U?? The answer to this question is
yes, and is given by Theorem 3, which, in a way, is telling
us that a set of incomplete columns will behave as a single
but complete one if it is observed in the right places.

We are thus interested in knowing when will a set of N⌧

incomplete columns have the property that only a subspace
from U? can fit them. As discussed in Section 4, a complete
column in general position on S?

k will fit in S if and only
if S = S?

k . Similarly, an incomplete column x! in general
position on S?

k will fit in S if and only if the projections of
S and S?

k on ! are the same, i.e., if S! = S?
k! .

Therefore, we can restate the problem of interest as fol-
lows: suppose we are given N⌧ projections of some of the
subspaces in U? onto small subsets of the canonical coor-
dinates. When will only one of the subspaces in U? agree
with this set of projections?
Question. (Qa) Can we guarantee that only a subspace in
U? will agree with the given projections if there is only one
r-dimensional subspace that agrees with these projections?
The answer is no.

Example 5. Let U? be as in Example 3, and assume that
we only observe the following set of projections:

8
>><

>>:
span

2

664

1

1

0

0

3

775 , span

2

664

0

1

1

0

3

775 , span

2

664

1

0

1

0

3

775 , span

2

664

1

0

0

4

3

775

9
>>=

>>;
,

corresponding to subspaces {1, 1, 1, 2} in U?. It is not hard
to see that S = span[1 1 1 4]

T is the only 1-dimensional
subspace that agrees with these projections. But S /2 U?.

Question. (Qb) Can we guarantee that only a subspace
in U? will agree with the set of given projections if all the
projections correspond to the same subspace in U?? Again,
the answer is no.

Example 6. With U? as in Example 3, suppose
that we only observe the following projections:
{span[1 1 0 0]

T, span[0 0 1 1]

T}, both corre-
sponding to S?

1

. It is easy to see that for ↵ 2 R\{0, 1},
S = span[1 1 ↵ ↵]T agrees with these projections, even
though S /2 U?.

Fortunately, we can guarantee that only one of the sub-
spaces in U? will agree with the given set of projections
if both conditions hold, i.e., if (a) there is only one r-
dimensional subspace that agrees with these projections,
and (b) all the given projections correspond to the same
subspace S?

k . To see this, observe that if (b) holds, then it
is trivially true that S?

k will agree with all the given projec-
tions. If in addition (a) holds, we automatically know that
S?
k is the only subspace that agrees with the projections.

Notice that these conditions are also necessary in the sense
that if either (a) or (b) fail, it cannot be guaranteed that only
one of the subspaces in U? will agree with the given set of
projections, as explained in Examples 5 and 6.
We will thus characterize the sets of projections that sat-
isfy conditions (a) and (b). To this end, we will use the
d ⇥N⌧ binary matrix ⌦⌧ to encode the information about
the given projections. Recall that !i denotes the ith column
of ⌦⌧ , and that ⌦⌧ is a matrix formed with a subset of the
columns in ˘

⌦. Let the nonzero entries of !i indicate the
canonical coordinates involved in the ith projection. Let
K := {ki}N⌧

i=1

be a multiset of indices in {1, . . . ,K} indi-
cating that the ith given projection (or equivalently, the col-
umn of ˘

X⌦̆ corresponding to !i) corresponds to the ki
th

subspace in U?. In Example 5, K = {1, 1, 1, 2}. Recall
that S?

!i
denotes the restriction of S?

ki
to the nonzero coor-

dinates in !i. We will use S as shorthand for S(U?,K,⌦⌧ ),
which denotes the set of all r-dimensional subspaces S of
Rd that satisfy S!i = S?

!i
8 i. In words, S is the set of all

r-dimensional subspaces matching projections of some of
the subspaces in U? (indexed by K) on ⌦⌧ . Notice that S
may be empty.
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CONDITIONS TO GUARANTEE (a)

The conditions to guarantee that there is only one subspace
consistent with a set of projections are given by Theorem 1
by (Pimentel-Alarcón et al., 2015b). We restate this result
with some adaptations to our context as follows.
Lemma 4. Let A1 hold. W.p. 1 there is at most one sub-
space in S(U?,K,⌦⌧ ) if and only if there is a matrix ⌦⌧�i

formed with d� r columns of ⌦⌧ that satisfies (ii).

Lemma 4 states that d�r projections onto the right canoni-
cal coordinates are sufficient to guarantee that there is only
one subspace consistent with these projections. Intuitively,
this means that if you have d � r good projections, there
is only one way that you can stitch them together into one
subspace. In the union of subspaces setting, though, these
good projections could correspond to different subspaces
in U?, so when we stitch them together, we could end up
with a false subspace. This is what happened in Examples
3 and 5. That is why, in addition to guaranteeing that (a)
there is only one subspace consistent with the given set of
projections, we also need to guarantee that (b) all of these
projections come from the same subspace.

CONDITIONS TO GUARANTEE (b)

The following lemma states that d � r + 1 projections
(onto the right canonical coordinates) guarantee that a set
of given projections correspond to the same subspace in
U?, i.e., that ki = kj for every j 2 {1, . . . , d� r + 1}.
Lemma 5. Let A1 hold. Suppose S(U?,K,⌦⌧ ) is
nonempty, and ⌦⌧ has d � r + 1 columns. W.p. 1, if ⌦⌧

satisfies (i), then ki = kj for every i, j.

Notice that the conditions of Lemma 5 imply those of
Lemma 4. This means that once we know that d � r + 1

projections correspond to the same subspace in U?, we au-
tomatically know that there is only one subspace consistent
with these projections, and it can only be one of the sub-
spaces in U?. In order to prove Lemma 5, let a!i 2 Rr+1

denote a nonzero vector orthogonal to S?
!i

, and recall that
ai is the vector in Rd with the entries of a!i in the nonzero
locations of !i and zeros elsewhere. Let A denote be the
d⇥ (d� r+1) matrix with {ai}d�r+1

i=1

as its columns. We
will use A

0 to denote a matrix formed with a subset of the
columns in A, and i to denote the indices of such columns,
i.e. i := {i : ai 2 A

0}.

We say that A

0 is minimally linearly dependent if the
columns in A

0 are linearly dependent, but every proper sub-
set of the columns in A

0 is linearly independent. Recall that
n(A0

) and m(A

0
) denote the number of columns and the

number of nonzero rows in A

0. We first determine when
will some projections correspond to the same subspace of
U?, i.e., when will ki = kj for some pairs (i, j).
Lemma 6. Let A1 hold. W.p. 1, if A0 is minimally linearly
dependent, then ki = kj for every i, j 2 i.

Proof. Let A0
= [A

00
ai] be minimally linearly dependent.

Then A

00� = ai for some � 2 Rn(A00
), where every

entry of � is nonzero. On the other hand, ai is a nonzero
function of S?

ki
. Similarly, every column aj of A

00 is a
nonzero function of S?

kj
. Under A1, w.p.1 the subspaces in

U? keep no relation between each other, so A

00� = ai

can only hold if S?
ki

= S?
kj

8 i, j 2 i, i.e., if ki = kj 8
i, j 2 i.

Now we can determine when will all the projections corre-
spond to the same subspace of U?.
Lemma 7. Let A1 hold. W.p. 1, if A is minimally linearly
dependent, then ki = kj for every i, j.

The next lemma uses Lemma 2 in (Pimentel-Alarcón et al.,
2015b) (which we state here as Lemma 9) to characterize
when will A be minimally linearly dependent.
Lemma 8. Let A1 hold. W.p. 1, A is minimally lin-
early dependent if S(U?,K,⌦⌧ ) 6= ; and every matrix A

0

formed with a proper subset of the columns in A satisfies
m(A

0
) � n(A0

) + r.
Lemma 9. Let A1 hold. W.p. 1, the columns in A

0 are lin-
early independent if m(A

00
) � n(A00

)+ r for every matrix
A

00 formed with a subset of the columns in A

0.

Proof. (Lemma 8) Suppose every matrix A

0 formed with
a proper subset of the columns in A satisfies m(A

0
) �

n(A0
) + r. By Lemma 9, every proper subset of the

columns in A is linearly independent. To see that the
columns in A are linearly dependent, recall that kerAT

contains every element of S (see Section 3 in (Pimentel-
Alarcón et al., 2015b)). Therefore, A contains at most d�r
linearly independent columns (otherwise dimkerA

T < r,
and S would be empty). But since A has d�r+1 columns,
we conclude that they are linearly dependent.

We now give the proofs of Lemma 5 and Theorem 3.

Proof. (Lemma 5) Suppose ⌦⌧ satisfies (i). Under A1,
an entry of A is nonzero if and only if the same entry of
⌦⌧ is nonzero, which implies A satisfies the conditions of
Lemma 8. It follows that A is minimally linearly depen-
dent, so by Lemma 7, ki = kj 8 i, j.

Proof. (Theorem 3) Let x!i denote the column of ˘

X⌦̆ cor-
responding to the ith column of ⌦⌧ , and suppose S fits
X

0
⌦0 . By definition, x!i 2 S!i . On the other hand,

x!i 2 S?
!i

by assumption, which implies x!i 2 S!i\S?
!i

.
Therefore, S!i = S?

!i
w.p. 1 (because if S!i 6= S?

!i
, then

x!i /2 S!i \ S?
!i

w.p. 1). Since this is true for every i, we
conclude that S 2 S. Now assume ⌦⌧ satisfies (i). Then
⌦⌧ satisfies the conditions of Lemmas 4 and 5. By Lemma
5, ki = kj for every i, j, which trivially implies S?

ki
2 S.

By Lemma 4, there is only one subspace in S. This implies
S = S?

ki
.
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