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Abstract—Humans are adept at identifying informative regions
in individual images, but it is a slow and often tedious task to
identify the salient parts of every image in a large corpus. A
machine, on the other hand, can sift through a large amount
of data quickly, but machine methods for identifying salient
regions are unreliable. In this paper, we develop a new method
for identifying salient regions in images and compare this to
two previously reported approaches. We then consider how
such machine-saliency methods can be used to improve human
performance in a realistic target-detection task.

I. INTRODUCTION

Consider the task of an analyst searching for signs of human
habitation amongst images taken by drone planes over some
vast and sparsely occupied region. The drones are capable of
providing masses of data, but only a few will contain items
of interest. The human analysts are skilled at detecting the
interesting images when they appear, but the data is generated
much more rapidly than it can be processed: the analyst is
overwhelmed with an ever-increasing number of images, most
containing nothing of interest. How can machines help the
analyst to find the interesting images?

One idea might be to apply pattern recognition methods
to the image data, but such approaches are both resource-
intensive – requiring large amounts of human-labeled training
data – and notoriously unreliable. In this paper we instead con-
sider a salience-based approach to target detection. Salience
describes the tendency for certain subregions of a scene to
“stand out” from their surroundings in human perception. In
detection problems like that described above, the target images
often contain highly salient items viz. items that are dissimilar
to their backgrounds, such as a house in the desert or a
boat in the water, whereas the uninteresting images often do
not. In such cases, salience might provide a useful cue for
finding target images. Machines could aid in the detection
task by automatically computing the maximal salience of each
image in the corpus and prioritizing highly salient images for
presentation to the analyst.

Empirical research in human perception suggests that salient
subregions of a scene are those that carry high information
relative to other subregions [1]. There are, however, at least
two different ways of thinking about the informativeness of a

given region. The first proposes that a region is informative
if its features cannot be predicted by the features present
in its immediate spatial surroundings [2]. We will refer to
this as the center-surround approach to saliency. The second
approach stipulates that a region carries high information if it
contains features that are dissimilar to those appearing in the
scene globally. We will refer to this as the similarity-based
approach to saliency. Human saliency detection appears to
be influenced by both the spatial distribution of features in a
scene (consistent with the center-surround approach; see [3]–
[5]) and by the global similarity of features (consistent with
the similarity-based view; see [6]).

Computer models based on the center-surround approach
have been developed by [3], but we are unaware of prior
work proposing a strict similarity-based model of salience.
After reviewing existing methods for salience in Section II,
we will develop a novel similarity-based approach in Section
III. We outline the ranking schemes we developed in Section
IV. We will then compare this model with the others reviewed
in Section V. The different models will be used to rank order
the items in a corpus of 500 satellite images by maximal
salience. Fifteen percent of the images contain evidence of
human habitation, and we will investigate how many of these
”target” items appear among the highly-ranked images for
each algorithm. We will see that the models vary significantly
in their performance on this task. In an empirical study, we
will then consider how the machine rankings can be used
to dramatically improve human performance in the target
detection task. In Section VI we will present conclusions and
areas for future research.

II. EXISTING METHODS

Recently, robotic vision, anomaly detection, and vast im-
age databases have spurred interest in computer algorithms
for visual saliency. Many methods have been developed to
find salient objects in images, but much of the work in-
volves knowledge of the target object. Here we consider only
“bottom-up” methods that do not require such knowledge. In
[3], [4], [7], the authors develop a model inspired by the
center surround architecture of neurons in early visual cortex.
The final saliency map recombines normalized activation maps



across several spatial scales. In [6], the saliency map reflects
the stationary distribution on a graph where the nodes are
pixels and the weights correspond to a similarity measure
that captures both spatial proximity and feature similarity.
An information theoretic approach is taken by [8], wherein
peaks in the entropy distribution correspond to the location
of regions of interest. An extremely simple and fast method
using the Gaussian pyramid is developed in [9], but it trades off
accuracy for speed. The authors in [10] use image windows to
find the saliency map of a given image, and propose a method
to efficiently place the windows.

It can be seen that all methods can be broadly classified into
two categories: local and global. Local methods use the biolog-
ically motivated principle of finding objects that are different
from their immediate surroundings (scale is incorporated to
vary the “size” of surroundings). Global methods, on the other
hand, tend to look for objects that are most different in the
entire image; they look for outliers in the image.

III. CLUSTER BASED SALIENCY

We now describe a novel technique to find salient regions
in images. Like some of methods above, our approach uses
unsupervised clustering and outlier detection to find salient
regions. Most outlier detection schemes detect point outliers
in the data, but we are interested in finding an outlier cluster:
data that is an essential part of the image, and is thus not an
outlier in the true sense of the word. Related work was reported
by [11], wherein the authors use the spatial scan statistic [12]
to find spatially anomalous clusters.

The algorithm extracts features from every pixel in the
image, including color (red, green, blue, yellow), orientation
(0◦, 45◦, 90◦, 135◦), scale and intensity. Note here that for
grayscale images, no color information is extracted and for
color images, the intensity would just be the average of the
three (RGB) color planes. This yields a feature vector for
every pixel in the image, which are then clustered using the
scheme developed in [13]. (Other methods for clustering were
tried, but were either not suitable for a very large amount
of data, or did not give satisfactory clustering performance.)
To measure the “salience” of each cluster, we first construct
normalized probability distributions associated with the cluster
itself, and with a supercluster formed by combining all other
clusters ( Figure 3). We then take the Kullback- Leibler
divergence between the two distributions thus formed as a
measure of cluster saliency: the cluster that is most distant in
KL divergence from all other clusters will be deemed most
salient. Figure III shows some results obtained on natural
images.

Though similar in some ways to the approach of [6],
our approach differs in two respects. First, it does not take
the spatial proximity of different pixels into account–thus it
represents a pure feature-similarity-based approach to saliency.
The contrast of our approach to that of [6] thus allows us to
investigate to what extent the spatial distribution of features
contributes to salience detection. Second, [6] employ graph-
based methods for clustering whereas we apply the method of

[13] to non-graphical data.

Pseudocode
• input image I of size m x n
• ∀ pixel i ∈ I , extract features fi

– cluster fi into k clusters C1 · · · Ck
• ∀j ∈ 1, 2, , k

– normalize Cj and Cjc = ∪iCi\Cj
– dj = KL(Cj ||Cjc)

• find d = maxjdj , and s = argmaxjdj
• output Cs, d
Note that this method varies from some others mentioned

in this paper, in that the saliency map is not a distribution
of saliency values of individual pixels but groups of pixels
(corresponding to specific clusters). In the raw version of the
algorithm, only the most salient cluster is returned. If the
saliency value of every pixel in the image is to be returned,
then the algorithm can be modified to return all clusters in
decreasing order of the pairwise distances returned.

To assess the face validity of our approach, we found the
most salient cluster for a database of 225 images created using
the images used by [3] to assess the center-surround method.
Figure III shows some results that we obtain using the clus-
tering method to identify salient regions in images. We found
that the method identified the salient object in approximately
79.6 % of the 225 test images, which is comparable to other
existing algorithms (see results in [3], [6] for comparison).

IV. RANKING SCHEMES

Our main concern in the current work, however, is not the
overall accuracy of the algorithm, but its potential for helping
to aid human performance in target detection tasks. How can
the salience measures returned by different models be used
toward this goal? The key idea is that images with targets
should contain a highly salient region whereas images without
targets should not (under the assumption that targets tend to
be more salient than non-target regions). What is needed, then,
is a method for ranking images according to the salience of
their most salient region.

The ranking scheme for the center-surround and graph-
based methods is inspired from the normalization scheme
used in [3]. We use the difference between the peak value
of the saliency map and its mean value to determine the
“saliency rank” of that image (Figure 2). So, an image whose
saliency map has an isolated large peak but is otherwise
flat, will have a large max-mean difference as opposed to
in image whose saliency map has many peaks of varying
heights. Consequently, the former image will be deemed more
important.

To derive a ranking for the cluster-based approach, recall
that this method uses the KL divergence between clusters (after
normalization) to determine the important cluster. Naturally,
we can use the distance between the salient cluster and the
remaining clusters as the metric used to rank images. Hence,
a salient cluster that is well separated from the combination



Fig. 1. Results of the cluster based saliency method. The images on the left
are the original images, and the ones on the right display the salient object
occluded by an opaque patch.

Fig. 2. Ranking for center surround and graph based methods. The length
of the double headed arrow indicates the difference between max and mean
in the final saliency map. A higher length indicates the particular image is
ranked higher, or is more important

of all other clusters will be deemed more important that one
that is not that well separated. The idea here is that a larger
degree of separation (in the KL divergence sense) implies that
the salient object is “more different” than the other objects in
the image.

Fig. 3. Cluster based saliency. The ellipse around the clusters on the left
indicates that they are all considered to be a single cluster, and the KL
divergence is calculated between this supercluster and the isolated cluster
on the right. Note that this happens in a much higher dimensional setting in
our case. The length of the double headed arrow indicates the KL divergence
between the supercluster indicated by the ellipse and the smaller cluster on
the right. A higher length indicates the particular image is ranked higher, or
is more important.

V. COMPARING SALIENCY MODELS FOR TARGET
DETECTION

To test the ranking schemes, we formed a database of 500
aerial images taken over various terrain including forest, sea,
desert, snow and fields. Of these, 75 images contained man-
made objects such as boats, houses, warehouses, roads, and so
on. These comprised the “salient” images. Figure 4 and Figure
5 show a small sample of the images we used. The models
were compared by using them to rank-order the 500 images
by maximal salience. We then considered how many of the 75
target images appeared in the top 75 ranked images for each
model.

All three of the models we considered–center surround,
graph based and cluster based saliency–employ the same
features extracted from the given image. These features are
essentially those introduced by [3], which were motivated
by properties of neurons in early visual cortex. To make
all algorithms comparable, we modified the multiscale center
surround method to incorporate scale as a separate feature.
Scale of a pixel is determined by entropy peaks as in [8].

Figure 6 shows how many of the 75 target images ap-
pear within the top n-ranked images, with n plotted along
the abscissa. All three models produce rankings that exceed
random performance, but there are clear differences among
them. Notably, the graph-based and clustering models–both of
which take feature similarity into account–strongly outperform
the center-surround approach. Taken on their own, however,
the models are far from optimal. Table I shows, for each



Fig. 4. sample of target images.

Fig. 5. sample of images without targets.

Fig. 6. Comparison of various ranking schemes. The y axis corresponds to
the proportion of salient images (out of 75) identified and ranked. The x axis
is the rank assigned. An optimal method would have all the salient images in
the first 75 after ordering, and a random ordering will result in a 45◦ line

model, how many of the 75 target images appear within
the top-75 ranked images (Hits), and how many non-targets
(false alarms). The table also shows the hit rate (hits / total
number of targets) and false alarm rate (false alarms / total
number of non-targets) associated with each model, and the
corresponding d’(hit rate - false alarm rate) for discriminating
targets and non-targets. Even the best-peforming graph-based
model detects just above 50% of the targets, and achieves a
d’ of just 1.57. The clustering model is next-best, followed by
the center-surround model.

TABLE I
HIT RATES FOR THE METHODS WITHOUT HUMANS. ’HITS’ CORRESPONDS

TO THE NUMBER OF IMPORTANT IMAGES IN THE TOP 75 IMAGES AS
RANKED BY THE SCHEMES (IDEALLY HITS WILL BE 75).

Method Hits False Alarms Hit Rate FA Rate d’
Graph 42 33 0.56 0.08 1.57
Cluster 36 39 0.48 0.09 1.28

CS 28 47 0.37 0.11 0.89
Random 11 64 0.15 0.15 0.00

Given the mediocre performance of these different models,
we next inquired whether they could be of use in improving
human performance on the target-detection task. We conducted
a behavioral study that was a simple analog of the detection
task: participants were given 3 minutes to identify among
the 500 items as many items containing evidence of human
habitation as possible. Images were presented sequentially to
the participant, who pressed a button to indicate whether any
man made objects were visible in the scene. Participants had
as long as they liked to inspect each image, but were told
they had only 3 minutes to find as many targets as possible.
As soon as a decision for a given image was made, a new
image appeared. There were four different conditions varying
only in the order in which the images were presented to the
participants: images could be ordered at random or according
to the rankings generated by one of the three models. We
then considered, for each condition, how many targets were
detected and how many false-alarms were generated.

TABLE II
HIT RATES AND FALSE ALARM RATES FOR THE METHODS. THE HIT RATES
ARE CALCULATED FOR THE IMAGES SEEN, WHEREAS THE FALSE ALARMS
FOR THE ENTIRE DATABASE. FA STANDS FOR FALSE ALARM, HR STANDS

FOR HIT RATE AND FA R, FOR FALSE ALARM RATE

Method Images seen Hits F A HR FA R
Graph 115 45 11 0.61 0.03
cluster 133 39 4 0.52 0.01

center surround 141 34 9 0.46 0.02
Random 145 26 36 0.34 0.09

Table II shows the mean number of hits, false alarms, hit
and false alarm rates achieved by human participants in the
four different conditions. The random condition provides base-
line performance against which the models can be assessed.
The orderings generated by all three models were dramatic
improvements over the random ordering, showing that even
mediocre ranking algorithms can significantly improve human



performance. However, there were strong differences across
the algorithms as well. The clustering and graph-based meth-
ods both generated superior performance compared to the
center-surround model. Though the graph-based orderings pro-
duced the largest number of hits, it also generated substantially
more false alarms, leading to an overall smaller d’ compared
to the clustering method.

Why does the rank-ordering improve performance so sub-
stantially relative to random ordering? The reason is that,
among the subset of images they can view in the limited time
permitted, the participants view a larger number of targets.
They are not “wasting” their time on images that are very
unlikely to contain interesting regions. Instead, their limited
resources are optimized–the machine can weed out obviously
uninteresting images, and the analyst can spend her more
valuable time sorting among images that are more likely to
contain targets. Of course, the better the algorithm, the better
the human-machine pair will perform overall.

TABLE III
NUMBER OF IMPORTANT IMAGES IN THE TOTAL NUMBER OF IMAGES

ANALYZED BY HUMAN SUBJECTS.

Method images seen target images
random 145 29

center surround 141 39
graph 115 51
cluster 133 44

VI. CONCLUSIONS AND FUTURE WORK

We have shown that automatic computation of saliency in an
image can be used as a cue for detecting targets in tasks where
the targets differ in important ways from their surroundings.
Using maximal salience to detect images with targets, and
using current state-of-the-art saliency models, machines alone
will achieve only mediocre performance. Our research shows,
however, that even this level of performance can dramatically
improve the performance of human analysts working without
machine aid by de-prioritizing images with no highly-salient
regions.

Our results also suggest that approaches to saliency that
include featural similarity as a major cue will achieve superior
performance to those based solely upon center-surround con-
trast: the graph-based method and the cluster-based approach
introduced here both out-performed a center-surround method
introduced by [3].

It is possible that these salience measures could be further
improved by adding feature selection steps to the algorithm.
There may also exist other metrics to determine the salient
cluster. For instance, one might consider the clustering scheme
itself to determine the salient cluster. Specifically, if the
scheme chooses k clusters, we then force it to use k - 1
clusters, and determine what cluster when “absorbed” into the
other clusters provide the worst fit to the data. We leave these
developments for future work.

Interestingly, we also found that human participants show
higher false-alarm rates when the images are presented in

random order. We anticipate that this is a consequence of the
target sparsity–in a given time, participants encounter very few
targets, and so may be more inclined to “jump the gun” for
questionable images. The reasons for this are interesting from
a psychological point of view, and can be investigated in future
work.
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