
1

Quantized Incremental Algorithms for

Distributed Optimization
Michael G. Rabbat and Robert D. Nowak

Abstract

Wireless sensor networks are capable of collecting an enormous amount of data. Often, the ultimate objective is

to estimate a parameter or function from these data, and such estimators are typically the solution of an optimization

problem (e.g., maximum likelihood, minimum mean squared error, or maximum a posteriori). This paper investigates

a general class of distributed optimization algorithms for “in-network” data processing, aimed at reducing the amount

of energy and bandwidth used for communication. Our intuition tells us that processing the data in-network should, in

general, require less energy than transmitting all of the data to a fusion center. In this paper we address the questions:

When, in fact, does in-network processing use less energy, and how much energy is saved?The proposed distributed

algorithms are based on incremental optimization methods. A parameter estimate is circulated through the network,

and along the way each node makes a small gradient descent-like adjustment to the estimate based only on its local

data. Applying results from the theory of incremental subgradient optimization we find that the distributed algorithms

converge to an approximate solution for a broad class of problems. We extend these results to the case where the

optimization variable is quantized before being transmitted to the next node and find that quantization does not affect

the rate of convergence. Bounds on the number of incremental steps required for a certain level of accuracy provide

insight into the trade-off between estimation performance and communication overhead. Our main conclusion is that

as the number of sensors in the network grows, in-network processing will always use less energy than a centralized

algorithm while maintaining a desired level of accuracy.

Index Terms

Distributed algorithms, gradient methods, wireless sensor networks, energy-accuracy tradeoff.

I. I NTRODUCTION

In many envisioned applications of wireless sensor networks, the ultimate objective is not the collection of “raw”

data, but rather an estimate of certain environmental parameters or functions of interest (e.g., source locations,

spatial distributions). One means of achieving this objective is to transmit all data to a central point for processing.
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However, transmitting data from each sensor node to a central processing location may place a significant drain on

communication and energy resources. Such concerns could place undesirable limits on the practical application of

sensor networks. This paper considers an alternate approach based on distributedin-networkprocessing, in which the

environmental parameters are computed in a decentralized fashion. While the focus of this paper is on applications in

wireless sensor networks, as that was the motivation for this work, the quantized incremental subgradient algorithm

developed and analyzed in this paper could find use in other arenas (e.g., a distributed Internet anomaly detection

system). When data are distributed amongst a collection of networked nodes with limited communication or energy

resources and the nodes must collaborate to solve a problem, distributed optimization methods can significantly

decrease the communication and energy resources consumed.

As an illustration of the basic idea, consider a sensor network comprised ofn nodes randomly distributed

uniformly over the region[0, 1]2, each of which collectsm measurements. Suppose, for example, that our objective

is simply to compute the average value of all the measurements. There are three approaches one might consider:

1) Sensors transmit all the data to a central processor which then computes the average. In this approach,

assuming a constant number of bits per sample,O(mn) bits need to be transmitted over an average distance

of lengthO(1) per bit to reach the fusion center.

2) Sensors first compute a local average and then transmit the local averages to a central processor which

computes the global average. This obvious improvement requires onlyO(n) bits to be transmitted over an

average distance of lengthO(1) per bit to reach the fusion center.

3) Construct a path through the network which visits each node once. Assume the sequence of nodes can be

constructed so that the path hops from neighbor to neighbor. Such sequences occur with high probability in

large networks, and a method for finding one is discussed in Section VII. The global average can be computed

by a single accumulation process from start node to finish, with each node adding its own local average to the

total along the way. This requiresO(n) bits to be transmitted over an average distance of onlyO(
√

log2 n/n)

per bit1.

The third procedure makes much more efficient use of key resources — it requires far fewer communications than

the former schemes and hence consumes less bandwidth and energy. Similar procedures could be employed to

compute any average quantity (i.e., a least squares fit to a model with any number of parameters). Averages can be

viewed as the values minimizing quadratic cost functions. Quadratic optimization problems are very special since

their solutions are linear functions of the data, in which case an accumulation process leads to a solution.

More general optimization problems do not share this nice feature, but nevertheless can often be solved using

simple, distributed algorithms reminiscent of the way the average was calculated above in the third approach. In

particular, many estimation cost functions possess the following important factorization:

f(θ;x) =
1
n

n∑
i=1

fi(θ;xi), (1)

1This rather non-intuitive value is related to the transmission radius required to ensure that such a path through the network exists [2].
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whereθ is the parameter or function to be estimated, andf(θ;x) is a global cost function which can be expressed

as a sum ofn “local” cost functions,{fi(θ;xi)}n
i=1, in which fi(θ;xi) only depends on the dataxi measured at

sensori. For example, in the case of the sample average considered above,f(θ;x) = 1
n

∑n
i=1

∑m
j=1(θ − xi,j)2 is

the cost function to be minimized, andfi(θ;xi) =
∑m

j=1(θ − xi,j)2, wherexi,j is the jth measurement at theith

sensor.

The distributed algorithms proposed in this paper operate in a very simple manner. An estimate of the parameter

θ is passed from node to node. Each node updates the parameter by adjusting the previous value to improve (i.e.,

reduce) itslocal cost and then passes the update to the next node. In the case of a quadratic cost function, one

could construct a simple algorithm such as the one described in the third approach above which would solve

the optimization after one pass through the network. For general cost functions, the algorithms are slightly more

complex and several “cycles” through the network are required to obtain a solution. These distributed algorithms

can be viewed as incremental subgradient optimization procedures, and the number of cycles required to obtain a

good solution can be characterized theoretically. Roughly speaking, a typical result states that afterK cycles, the

distributed minimization procedure is guaranteed to produce an estimateθ̂ satisfyingf(θ̂) ≤ f(θ∗) + O(1/
√
K),

whereθ∗ is the minimizer off . Also, the procedure only requires that a total ofO(nK) bits be communicated

over an average distance ofO(
√

log2 n/n) meters. This should be contrasted with transmitting all data to a central

processor, which requires thatO(mn) bits be transmitted over an average ofO(1) meter. Ifm andn are large then

a high quality estimate can be obtained using a distributed optimization algorithm for far less energy and far fewer

communications than the centralized approach. Additionally, we analyze an incremental subgradient algorithm where

the parameter estimatesθ are quantized before they are transmitted between nodes. We find that while quantization

marginally affects the estimate quality, the number of cyclesK required for a certain performance does not change

because of quantization.

The remainder of this paper is organized as follows. In the next section we formally state the problem and

our assumptions. In Section III we analyze the algorithm described above using existing results from the theory of

incremental subgradient optimization. These results are extended for incremental subgradient methods with quantized

steps in Section IV. In Section V we derive and discuss the energy-accuracy tradeoff which arises between distributed

incremental and centralized algorithms. Robust estimation is presented as an example application in Section VI.

Some practical issues pertaining to incremental distributed algorithms are discussed in Section VII. Finally, we

conclude in Section VIII.

II. PROBLEM STATEMENT AND ASSUMPTIONS

Before analyzing the proposed in-network algorithm, we introduce some notation and assumptions. Consider a

sensor network comprised ofn nodes. Each sensor,i = 1, . . . , n, collects a set of measurements,xi, which one

can either think of as deterministic values or realizations of random variables for our purposes. The measurements

are related to an unknown set of global parametersθ ∈ Θ through the functionsfi. We would like to find aθ ∈ Θ
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which minimizes

f(θ;x) =
1
n

n∑
i=1

fi(θ;xi).

Note that each node’s local objective function need not depend on all components ofθ. Likewise, all functionsfi

need not be of the same form.

Throughout this paper‖ · ‖ denotes the Euclidean norm. In our analysis we assume that

(A1) the functionsfi are convex (but not necessarily differentiable) and there exists a constantC0 such that

for all i = 1, . . . , n and all θ ∈ Θ, the subgradient2 g ∈ ∂fi(θ) has magnitude bounded according to

‖g‖ ≤ C0,

(A2) the setΘ ⊂ Rd is nonempty, convex, and compact with diameterB = supθ1,θ2∈Θ ‖θ1 − θ2‖, and

(A3) the optimal valuef∗ ≡ infθ∈Θ f(θ;x) > −∞.

Additionally, note that sincef is a convex function (the sum of convex functions is convex) and sinceΘ is a convex,

compact subset of Euclidean space, the set of optimal solutionsΘ∗ ≡ {θ ∈ Θ : f(θ;x) = f∗} is a non-empty

compact, convex subset ofΘ. With this setup, we are ready to define and analyze the algorithm.

III. D ISTRIBUTED INCREMENTAL ALGORITHMS FORSENSORNETWORKS

Incremental methods have an established tradition in optimization theory, and we feel they are well suited for

data processing applications in the context of networked systems. In this setup, a parameter estimate is cycled

through the network. When each sensor receives the current estimate, it makes a small adjustment based on its

local data and then passes the updated estimate on to one of its neighbors. Without loss of generality, assume that

sensors have been numberedi = 1, 2, . . . , n, with these numbers corresponding to their order in the cycle. Let

PΘ : Rd → Θ be an operator which projects its argument to the nearest point inΘ. Here, and in the remainder of

this paper, when we refer to the “nearest point” in a set, we mean nearest in the Euclidean distance sense. Note

that such an operator is well defined sinceΘ is compact and thus closed. On thekth cycle, sensori receives an

estimateψi−1,k from its predecessor and computes an update according to

ψi,k = PΘ[ψi−1,k − αgi/n], (2)

whereα is a small positive scalar step size andgi ∈ ∂fi(ψi−1,k). Thus, the sensor makes an update based on the

previous value of the estimate,ψi−1,k received from its neighbor, and based on its local data reflected ingi. After

each complete cycle through the network we get the next iterate,θk ≡ ψn,k ≡ ψ0,k+1.

Such an algorithm fits the framework of incremental subgradient algorithms first studied by Kibardin [3], and

more recently by Nedić and Bertsekas in [4], [5]. Because each step of the algorithm uses only local information,

one cannot guarantee convergence in general. One condition under which convergence to the globally optimal value

2Subgradients generalize the notion of a gradient to non-differentiable functions. For a convex functionf(x), a subgradient off at x0 is any

directiong such thatf(x) ≥ f(x0) + (x− x0)T g for all x. The set of subgradients off at a pointx is denoted∂f(x). At pointsx0 where

f is differentiable, the gradient off is the only subgradient off at x0.
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is guaranteed is when the step size gradually decreases to zero, however the rate of convergence is usually very

slow in this case. Instead, we advocate the use of a fixed step size (positive constant). Although convergence is

not guaranteed in this case, it has been observed that incremental algorithms perform well in practice. In general,

the iterates quickly reach a neighborhood of the optimal value and then continue to move around within this

neighborhood. However, in terms of rigorously analyzing their performance, the best we can hope to do is to

characterize the limiting behavior as exemplified in the following theorem.

Theorem 1 (Nedić and Bertsekas, ’99):Under assumptions (A1)-(A3), for the sequence{θk} generated by the

incremental subgradient algorithm described above we have

lim inf
k→∞

f(θk) ≤ f∗ +
αC2

0

2
.

See [4] for the proof.

Additionally, we are interested in the rate at which the incremental algorithm reaches this limiting behavior since

the amount of communication, and thus the amount of energy required for the algorithm to operate, is directly

proportional to this value. Letdist(θ0,Θ∗) denote the Euclidean distance between an arbitrary initial valueθ0 ∈ Θ

and the nearest point inΘ∗. The following result characterizes the rate at which the limiting behavior of the

algorithm is reached.

Theorem 2 (Nedić and Bertsekas, ‘00):Under assumptions (A1)-(A3), for the sequence{θk} generated by the

incremental subgradient algorithm described above and for anyε > 0 we have

min
0≤k≤K

f(θk) ≤ f∗ +
αC2

0 + ε

2
,

whereK is given by

K =

⌊(
dist(θ0,Θ∗)

)2
αε

⌋
.

See [5] for the proof.

The theorem above confirms that the iterates attain a value of arbitrary accuracy in a finite number of cycles.

The theorem characterizes the distance betweenf(θk) and f∗. Settingε = αC2
0 , it is clear that forα arbitrarily

small we obtainmin0≤k≤K f(θk) arbitrarily close tof∗. Here, however, there is a trade-off in that the number of

cyclesK (and thus the amount of communication) required is inversely related to the step size. More generally, this

theorem tells us that the iteratesf(θk) are guaranteed to reach a value withinO(α) of f∗ afterO(1/α2) cycles.

Alternatively, one could consider using a decreasing sequence of step sizesαk → 0 ask →∞ (e.g.αk ∝ 1/k)

in which case convergence tof∗ is guaranteed under very mild assumptions. However, while the decreasing step

size approach may convergence to a neighborhood around the solution in a reasonable number of steps, the rate of

convergence slows down dramatically asαk gets small, and the overall convergence behavior is generally slower than

that of a constant step size algorithm. In many applications of wireless sensor networks, acquiring a coarse estimate

of the desired parameter or function may be an acceptable trade-off if the amount of energy and bandwidth used

by the network is less than that required to achieve a more accurate estimate. Furthermore, many of the proposed
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applications of wireless sensor networks involve deployment in a dynamic environment for the purpose of not only

identifying but also tracking phenomena. For these reasons we advocate the use of a fixed step size.

IV. A QUANTIZED DISTRIBUTED INCREMENTAL ALGORITHM

We modify the incremental subgradient algorithm discussed above by quantizing each iterate in a very simple

fashion as described next. For a given scalar∆ > 0, consider the quantization lattice defined by

Λ = {(λ1∆, λ2∆, . . . , λd∆)T : λi ∈ Z, i = 1, . . . , d} ⊆ Rd.

This lattice consists of points regularly spaced by∆ along each coordinate axis. SetΘq = Θ∩Λ, and letQ : Rd →

Θq be an operator which projects its argument first onto the setΘ and then onto the nearest lattice point inΘq.

ThusQ[·] ≡ PΘq
[PΘ[·]]. Note that applying the operatorQ[x] to x ∈ Rd is not equivalent to directly projectingx

to the nearest point inΘq. In particular whenx /∈ Θ, the nearest point tox in Θq can be different fromQ[x], and

may result in a larger error. We will study the quantized incremental subgradient algorithm where, upon receiving

ϑi−1,k from its neighbor, nodei computes and transmits an incremental update according to

ϑi,k = Q[ϑi−1,k − αgi,k/n], (3)

where gi,k ∈ ∂fi(ϑi−1,k), andα > 0 is, again, a small constant step size. After a complete cycle through the

network we obtain the iterate

θk ≡ ϑn,k ≡ ϑ0,k+1. (4)

Each incremental step of the quantized algorithm amounts to computing the usual incremental step of the unquantized

algorithm and then projecting this new value to the nearest quantization lattice point inΘq. Thus, applying the

operatorQ enforces the constraintθ ∈ Θ at each incremental step and also ensures thatϑi,k lies on a point inΘq

so that it can be transmitted using a finite number of bits. SinceΘ is bounded there are a finite number of lattice

points inΘq, and thus any point inΘq can be coded with a finite number of bits. We have the following theorem

which summarizes the limiting behavior of this algorithm.

Theorem 3:Under assumptions (A1)-(A3), for the sequence{θk} generated by the quantized incremental sub-

gradient algorithm (3)-(4), we have

lim inf
k→∞

f(θk) ≤ f∗ +
(αC0 + n

√
d∆)2 + 2n

√
d∆B

2α
, (5)

whered is the dimension of the variablesθk andϑi,k, andB is as defined in assumption (A2). Furthermore, for

any ε > 0 we have

min
0≤k≤K

f(θk) ≤ f∗ +
(αC0 + n

√
d∆)2 + 2n

√
d∆B + αε

2α
, (6)

where

K =

⌊(
dist(θ0,Θ∗)

)2
αε

⌋
, (7)
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anddist(θ0,Θ∗) is the minimum Euclidean distance fromθ0 to a point inΘ∗.

A proof is presented in the appendix.

The error terms in the limiting expression can be classified as follows. There is an error ofαC2
0/2 attributed to

the localized, myopic nature of the incremental subgradient update step, which we also observe in the unquantized

algorithm (c.f., Theorem 1). An additional error of

∆

(
2n
√
dαC0 + n2d∆ + 2n

√
dB

2α

)
arises from the fact that we are quantizing each incremental step before transmitting it. If the quantization is very

precise then this term is negligible. However, for the highly resource-constrained scenarios envisioned as standard

sensor network applications we expect that coarse quantization will be used to reduce the amount of energy expended

in communication, and this error must be taken into consideration. Theorem 3 also indicates that although there

is an additional error because we quantize the values before transmitting, the number of incremental steps,K,

required to reach the limiting behavior is not affected. We emphasize that Theorem 3 describes the worst-case

limiting behavior of the algorithm, and that experimentally we observe better average behavior.

In the previous section we saw that the error term in the unquantized algorithm is controlled by the step size

parameterα. To summarize Theorem 2, the unquantized incremental subgradient algorithm is guaranteed to achieve

a worst-case error proportional toα after, at most, a number of iterations inversely proportional toα2. For a given

problem specification (fixingB, d, andC0), the error term in Theorem 3 above for the quantized algorithm depends

both the step sizeα and the quantization bin width∆. Consider the error term in (6). If we takeα arbitrarily small

without adjusting the bin width∆, the error due to quantization will dominate the expression. Likewise, if the

quantizer is infinitely precise then the we get the same expression as for the unquantized algorithm and the error

depends solely onα. In order to balance the error bounds associated with these two parameters we set

∆ =
α2

n
√
d
, (8)

in which case the error term in (6) reduces to

(C2
0 + 2B)α+ 2C0α

2 + α3 + ε

2
.

For α small (e.g.,α� 1) theα2 andα3 terms are negligible in comparison to theα term. Takingε = α we can

summarize Theorem 3 as saying that the quantized incremental subgradient algorithm is guaranteed to achieve a

worst-case error (roughly) proportional toα after no more than a number of iterations which is inversely proportional

to α2.

V. A N ENERGY-ACCURACY TRADEOFF

In this section we derive the tradeoff between the energy expended in running our algorithm and the accuracy

achieved, and compare this performance to the approach where all data is quantized and transmitted to a fusion center

for processing. It is commonly accepted that the amount of energy consumed for a single wireless communication of

one bit is orders of magnitude greater than the energy required for a single local computation [6]. Accordingly, we
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focus our analysis on the energy used for wireless communication and compare the energy used by our in-network

processing algorithm to that required for every sensor to transmit its data to a fusion center for processing. We assume

that the network employs multi-hop communication as opposed to direct point-to-point communication. Chakrabarti

et al. have shown that multi-hop communication asymptotically achieves the optimal throughput (as the number of

nodes in the network tends to infinity) for the fusion center accumulation setup [7], and our incremental algorithm

lends itself to a multi-hop setup since all communication occurs between neighboring nodes in the network. We find

it most interesting to study the asymptotic properties of the distributed and centralized algorithms as the number

of nodes in the sensor network tends to infinity. Our main conclusion is that as the size of the sensor network

increases, the amount of energy used by the quantized incremental algorithm in the entire network isO
(
n log n

)
bit-hops in comparison toO

(
n3/2/

√
log n

)
bit-hops for the centralized algorithm.

For a given data-processing algorithm using multi-hop communication, and for a network ofn nodes, letc(n)

denote the number of bits transmitted through the network, leth(n) be the average number of hops traversed per

bit, and lete(n) denote the amount of energy expended when a node transmits one bit over one hop. The total

energy used for in-network communication as a function of the number of nodes in the sensor network for any

algorithm is given by

E(n) = c(n)× h(n)× e(n).

In general,e(n) depends on the density of nodes, the actual communication implementation employed, and physical

layer channel properties. Rather than restricting our analysis to a particular setup, we express energy consumption

in units of e(n) (i.e., one unit,e(n), per bit-hop).

Now let’s take a look at what happens for the in-network algorithm described in Section IV. Each sensor makes

a single communication to a neighboring node, so the number of hops per bit for the distributed algorithm is

hd(n) = 1. Using the uniform scalar quantization scheme described in the previous section, the number of bits

which must be transmitted to reach the limiting behavior of the incremental subgradient algorithm is

cd(n) = (num. bits per transmission)× n×K,

since each node transmits once in each cycle. Suppose that the uniform scalar quantizerQ has been designed to

useb bits per component so that anyθ ∈ Θq can be represented usingbd bits. Then, based on the assumed bound

on the diameter ofΘ, we know that the range of values taken by each componentθ(j) of any θ ∈ Θ is such that

sup
θ1,θ2∈Θ

|θ1(j)− θ2(j)| ≤ B,

for j = 1, . . . , d. Distributing 2b points uniformly over an interval of lengthB gives us a maximum quantization

error of∆ = B2−b per coordinate. Setting∆ according to (8) to balance the error terms we find that the appropriate

number of bits for a given number of sensors grows like

b = log2

(
n
√
dB

α2

)
= O(log n).
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Additionally, we setε = α and find that the number of cycles needed to reach the limiting behavior is

K =
⌊

(dist(θ0,Θ∗))2

α2

⌋
≤ B2

α2

= O(1),

where the inequality follows from the assumed bound on the diameter ofΘ. In other words, as the number of nodes

in the network tends to infinity, the upper bound on the number of cycles necessary to achieve a specified level of

accuracy remains constant. Thus, we have

cd(n) = O
(
log n

)
× n×O(1),

and the total energy required to run the distributed incremental algorithm grows with the number of nodes in the

network according to

Ed(n) = O(n log n)× 1× e(n).

In the centralized case, nodes must also quantize their data before transmitting it to the fusion center for processing,

hence there will be some error incurred. It is difficult to say exactly what this error is without further specifying the

functionsfi(θ;xi). However, for the sake of making a point, suppose sensors do their best to minimize the amount

of data to be transmitted to the fusion center without affecting the accuracy of the centralized algorithm. After they

process their data (via local averaging, coding, quantizing, etc.), each of then sensors transmits at least one bit so

that cc(n) ≥ n. We model the deployment of nodes in the sensor network using a random geometric graph model

where nodes are randomly distributed uniformly over a unit square region[0, 1]2. For a network ofn nodes in

this model, it has been shown that nodes must set their transmit power such that the communication radius decays

like a
√

log n/n for some positive constanta in order to guarantee that the network will be connected with high

probability3 [8]. Consequently, the expected radius of the network in hops (equivalently, the expected number of

hops to the fusion center) grows roughly like the inverse of the communication radius, andhc(n) = a−1
√
n/ log n.

Thus, the expected total energy for a centralized processing scheme grows at best like

Ec(n) ≥ n× a−1
√
n/ log n× e(n)

∝ n3/2/
√

log n× e(n).

We emphasize that this is an extremely optimistic analysis, and that in general much more energy will be required

for the centralized approach.

It is clear from this analysis that the distributed incremental algorithm scales better than a centralized approach.

Also, we emphasize that the analysis of the distributed incremental algorithm accounts for the worst-case behavior

3In [8], Gupta and Kumar analyze the case where nodes are uniformly distributed over the unit disc at random, however a similar analysis

reveals that the radius must decay at the same rate for nodes uniformly, randomly distributed over the unit square. See, e.g., [2].
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so thatO
(
n log n

)
is an upper bound on the growth rate of expected total energy. To put it plainly, we have a lower

bound on energy usage for the centralized processing approach which grows faster than the upper bound on energy

usage for a distributed incremental algorithm.

The above analysis dealt with the total energy used over the entire network for both the in-network and centralized

algorithms. It is also worth making a few remarks on per-node energy usage. In the distributed incremental scheme,

each node transmits once per cycle so energy is used uniformly throughout the network. On the other hand, when

all nodes transmit their data to a fusion center there is a greater demand on the resources of nodes which are close

to the fusion center since they must transmit the data of other nodes which are further away in addition to their

own data.

To further illustrate this point, we can compare the per-node energy usage for the distributed incremental algorithm

Ed(n)
n

= O(log n)× e(n),

with the per-node energy usage for the centralized approach

Ec(n)
n

≥ c

√
n

log n
× e(n).

Thus, the number of transmissions per sensor grows logarithmically in the distributed case as opposed to polyno-

mially in the centralized approach.

VI. EXAMPLE : ROBUST ESTIMATION

In parametric statistical inference the model underlying the inference procedure plays an important role in the

overall performance of the procedure. If the model used in constructing the inference procedure does not exactly

match the true model then the accuracy and variance of the estimator can suffer greatly. The field of statistics known

asrobust statisticsis concerned with developing inference procedures which are insensitive to small deviations from

the assumptions [9].

In sensor networks, there are many reasons one might want to consider using robust estimates rather than

standard inference schemes. Consider the following illustrative example. Suppose that a sensor network has been

deployed over an urban region for the purpose of monitoring pollution. Each sensor collects a set of pollution level

measurements,{xi,j}m
i=1, i = 1, . . . , n, over the course of a day, and at the end of the day the sample mean pollution

level, p̂ = 1
mn

∑
i,j xi,j , is calculated. If the variance of each measurement isσ2 then, assuming i.i.d. samples,

the variance of the estimator isσ2/mn. However, what if some ratio – say10% – of the sensors are damaged or

mis-calibrated so that they give readings with variance100σ2? Then the estimator variance increases by a factor of

roughly 10. From simulations of this simple example we will see that robust estimation techniques can be extremely

useful in a practical system.

In robust estimation, the typical least squares loss function

f(θ) =
1
mn

n∑
i=1

m∑
j=1

||xi,j − θ||2, (9)
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is replaced with a different loss function

frobust(θ) =
1
mn

n∑
i=1

m∑
j=1

ρ(xi,j , θ), (10)

with ρ(x, θ) typically chosen to give less weight to data points which deviate greatly from the parameter,θ. The

`-1 distance is one example of a robust loss function. Another standard example is the Huber loss functional for

1-dimensional data,

ρH(x; θ) =

 (x− θ)2/2, for |x− θ| ≤ γ

γ|x− θ| − γ2/2, for |x− θ| > γ.

This choice of loss function acts as the usual squared error loss function if the data pointx is close (withinγ) to

the parameterθ, but gives less weight to points outside a radiusγ from the locationθ [9].

A distributed robust estimation algorithm is easily achieved in the incremental subgradient framework by equating

fi(θ) ≡
∑m

j=1 ρ(xi,j ; θ)/mn. Consider an incremental subgradient algorithm using the Huber loss function. In order

to fix a step size and determine the convergence rate of this algorithm, observe that

||∇fi(θ)|| ≤ γ/n ≡ C.

Then, for a desired level of accuracy,ε, we need at mostO(1/ε2) cycles. We find that in practice this bound is

very loose and much quicker convergence and a finer level of accuracy are achieved.

To demonstrate the usefulness of this procedure, we have simulated the scenario described above where sensors

take i.i.d. one dimensional measurements corrupted by additive white Gaussian noise. In this example 100 sensors

each make 10 measurements, however10% of the sensors are damaged and give noisier readings than the other

sensors. We use the notationX ∼ N (µ, σ2) to denote a Gaussian distributed random variableX with meanµ and

varianceσ2. A sensor which is working makes readings with distributionxi,j ∼ N (10.3, 1), and a damaged sensor

makes readings distributed according toxi,j ∼ N (10.3, 100). We use the Huber loss function withγ = 1 and step

sizeα = 0.1. Examples showing convergence of quantized and unquantized incremental methods using both least

squares (which corresponds the maximum likelihood estimate, in this case), and robust loss functions are shown in

Figure 1. The plots depict the evolution of the residual error after each node makes an update. The gray horizontal

dashed lines in each plot show the magnitude of the clairvoyant maximum likelihood estimate. That is, the dashed

lines indicate the error which would be achieved if all of the unquantized, real-valued sensor data was processed

at a fusion center. The figures on the left show the residual for each unquantized incremental algorithm, and the

figures on the right show residuals for the quantized algorithms. The algorithms used to generate both figures on

the right used quantization bins of width∆ = 1. We repeated each scenario 100 times and found that the algorithm

always converges after two cycles through the network which is much lower than the theoretical bound. We declare

that the incremental procedure has converged if after successive cycles the change in estimate values is less than

0.1. Also, note that the true mean,10.3, is not an integer, and thus does not lie on one of the quantization lattice

points.
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Fig. 1. Example of (a) unquantized and (b) quantized robust incremental estimation procedure using the Huber loss function when10%

of the sensors are damaged. The network consists of 100 sensors, each making 10 measurements. Good sensors make measurements from a

N (10.3, 1) distribution, and measurements from damaged sensors are distributed according toN (10.3, 100). In comparison, the residuals for

(c) unquantized and (d) quantized incremental least squares (in-network maximum likelihood) estimates are also depicted. In all figures, the

horizontal dashed lines indicate the error that a clairvoyant centralized algorithm would produce for this data set. In each quantized algorithm

integer precision is used.

VII. D ISCUSSION OFOTHER PRACTICAL ISSUES

A. Cyclic Routing

For the purpose of analyzing routing schemes we represent the network by a graph where sensor nodes in the

network correspond to nodes in the graph, and an edge is placed between two nodes if the two sensor nodes have a

direct line of communication (they are neighbors). Our in-network processing algorithm hinges on finding a cycle

through the network which touches each node once. In graph theoretic terms such a cycle is known as a Hamilton

cycle, and the problem of determining whether a graph contains a Hamilton cycle is known to be NP-complete

[10]. While this may seem discouraging, there are results pertaining to Hamilton cycles in random geometric graphs

which are relevant in the context of this paper.

A random geometric graph is one where nodes are placed uniformly at random in the unit square4, and two

4In more mathematical terms, the nodes of a random geometric graph are placed according to a planar Poisson point process
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nodes are joined with a link if the distance between them is less than a radiusr > 0. Let {rn} be a sequence of

radii. A well known result states that if the radius decays according torn = Θ(
√

log n/n) as a function of the

number of nodes in the network, then asn → ∞ the resulting random geometric graph is connected5 with high

probability. Gupta and Kumar use this result as a condition on the rate of decay for the communication radius to

ensure connectivity in a heterogeneous sensor network [8].

A similar result due to Petit states that if

rn =
√
an/n wherern → 0 andan/ log n→∞,

then not only is the random geometric graph connected, but it also contains a Hamilton cycle with high probability

[2]. This result is encouraging in that it tells us that we can obtain a network which contains a Hamilton cycle

for the small price of increasing the communication radius by a negligible amount (e.g.,rn ∝
√

log2 n/n). In

his paper, Petit also discusses a divide-and-conquer approach for finding a Hamilton cycle in a random geometric

graph by dividing the unit square into smaller squares, finding a Hamilton cycle through the nodes in each of these

smaller regions, and then patching the smaller Hamilton cycles together at the boundaries to get a Hamilton cycle

for the entire graph. The intuition behind this procedure stems from the notion that nodes in a random geometric

graph are nicely distributed over the unit square, making it possible to guarantee that there will be cycles in the

smaller squares and that these cycles can be connected. Petit describes in further detail how to set the size of the

smaller boxes appropriately. Additionally, Levy et al. describe a distributed algorithm which finds Hamilton cycles

in more general random graphs with high probability when they exist [11]. Their algorithm runs in polynomial time

(as a function of the number of nodes and edges in the graph) and may be useful for finding Hamilton cycles in

smaller squares before patching them together according to Petit’s scheme. Such algorithms could be used in an

initialization phase to establish a cycle though the network, on which the distributed incremental algorithm could

then be run.

B. Imperfect Transmission

Throughout this paper we have assumed that a node can transmit perfectly and reliably to its neighbor, however

in reality this may not be the case. A thorough study of the effects of lossy channels and other physical layer

communication issues is beyond the scope of this work, however we do have a few remarks. For the centralized

data processing approach where all nodes transmit their data to a fusion center, if some data is corrupted with

transmission noise or if some data is even lost in transit, because all of the data is being transmitted to the fusion

center it is not likely that errors or losses will have a major effect on the computation. On the other hand, with in-

network processing and cyclic routing, if a packet is dropped then the optimization parameter is effectively gone and

the process must be restarted. If this happens too often then the algorithm will never run long enough to achieve the

limiting behavior. This problem can be remedied if a reliable transmission scheme is used to avoid dropped packets,

5A graph is connected if there is a path between any two nodes
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however reliable transmission generally comes at the cost of higher latency. If channel conditions are extremely

unreliable transmissions may need to be rerouted which would also incur a delay and require additional energy

and bandwidth resources. We are currently investigating ways of adaptively dealing with unreliable networking

conditions in the context of decentralized incremental algorithms.

VIII. C ONCLUSION

This paper is concerned with determining when in-network processing makes more efficient use of network

resources than a centralized approach. We adopted a class of incremental subgradient methods from optimization

theory which are well suited to the task of distributed optimization in sensor networks, and developed a quantized

version of the algorithm which addresses the need, in practice, to transmit information in a finite number of bits. We

found that the amount of energy required to run the quantized incremental algorithm (in the worst-case) is on the

order ofn log n bit-hops, whereas the amount of energy required for nodes to transmit a minimal amount of data to a

fusion center grows at best liken3/2/
√

log n. Thus, the in-network algorithm scales much better than the centralized

approach. An example application of robust estimation in sensor networks demonstrated the performance of our

distributed incremental algorithm. Throughout this paper we have assumed that the local objective functions were

convex. In our other work we have investigated the use of incremental algorithms for solving non-convex problems,

and experimental results indicate that these algorithms behave well for minimizing some important non-convex

applications, including source localization and tracking [1], [12].

The major drawbacks of the proposed distributed incremental algorithm revolve around the fact that routing

occurs on a cycle through the network which touches each node exactly once. Because it is sequential in nature, the

latency of this algorithm will generally be higher than that needed to accumulate data from all sensors at a fusion

center. Additionally, since only one node makes an update at each point in time, it seems as though some energy is

being wasted since many nodes may hear the broadcast of an updated value if they are in the neighborhood of the

transmitter. Finally, maintaining a cycle through the network is a non-trivial task when faced with challenges such

as faulty communication channels or failing nodes. This begs the question,can similar algorithms be designed for

other routing structures?We plan to address all of these issues in the near future.
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APPENDIX

Before proceeding with the proof of Theorem 3 we derive a few useful properties of the operatorQ[·] described

in Section IV.

Lemma 1:The quantization operatorQ : Rd → Θq described in Section IV has the following properties:
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1) For all θ ∈ Θ the quantization error is bounded by

‖Q[θ]− θ‖ ≤
√
d∆.

2) For all x ∈ Rd, θ ∈ Θ we have

‖Q[x]− θ‖ ≤ ‖x− θ‖+
√
d∆.

Proof: Becauseθ ∈ Θ, the operationQ[θ] amounts to quantizingθ to the nearest lattice point inΘq. The first

property follows from the design of the quantization latticeΛ and that assumption thatΘ is a convex, compact set.

For the second property observe that in generalQ
[
x
]

= Q
[
PΘ[x]

]
andPΘ[x] ∈ Θ. Invoking the triangle inequality

and using the first property from this lemma we have

‖Q[x]− θ‖ = ‖Q[x]− PΘ[x] + PΘ[x]− θ‖

≤ ‖PΘ[x]− θ‖+ ‖Q[x]− PΘ[x]‖

≤ ‖PΘ[x]− θ‖+
√
d∆

≤ ‖x− θ‖+
√
d∆,

where the last line follows sincePΘ projects its argument ontoΘ which is a convex set.

The next result characterizes the performance of a single cycle of the incremental algorithm and will be the basis

of the proof of Theorem 3.

Lemma 2:Under assumptions (A1)-(A3) listed in Section II, for the sequence{θk} generated by the quantized

incremental subgradient algorithm (3)-(4), for allθ ∈ Θ and for allk ≥ 1 we have

‖θk − θ‖2 ≤ ‖θk−1 − θ‖2 − 2α
(
f(θk−1)− f(θ)

)
+ (αC0 + n

√
d∆)2 + 2n

√
d∆B. (11)

Proof: This proof is similar to the proof of Lemma 2.1 in [4]. Without loss of generality, we assume thatθ0 ∈ Θq

so thatϑi,k ∈ Θq for all i = 0, . . . , n, andk ≥ 1. Applying part 2 of Lemma 1 yields

‖ϑi,k − θ‖2 = ‖Q[ϑi−1,k − αgi,k/n]− θ‖2 (12)

≤
(
‖ϑi−1,k − αgi,k/n− θ‖+

√
d∆
)2

(13)

= ‖ϑi−1,k − αgi,k/n− θ‖2 + 2
√
d∆‖ϑi−1,k − αgi,k/n− θ‖+ d∆2. (14)

Invoking the triangle inequality we obtain

‖ϑi,k − θ‖2 ≤ ‖ϑi−1,k − αgi,k/n− θ‖2 + 2
√
d∆
(
‖ϑi−1,k − θ‖+ ‖αgi,k/n‖

)
+ d∆2

= ‖ϑi−1,k − θ‖2 − 2α
n
〈gi,k, ϑi−1,k − θ〉+ ‖αgi,k/n‖2 + 2

√
d∆(‖ϑi−1,k − θ‖+ ‖αgi,k/n‖) + d∆2

≤ ‖ϑi−1,k − θ‖2 − 2α
n
〈gi,k, ϑi−1,k − θ〉+ (αC0/n)2 + 2

√
d∆(B + αC0/n) + d∆2

= ‖ϑi−1,k − θ‖2 − 2α
n
〈gi,k, ϑi−1,k − θ〉+ (αC0/n+

√
d∆)2 + 2

√
d∆B,
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where the second to last line follows from the bounds described in assumptions (A1) and (A2). Sincegi,k is a

subgradient of the convex functionfi at ϑi−1,k, by definition

〈gi,k, θ − ϑi−1,k〉 ≤ fi(θ)− fi(ϑi−1,k), (15)

so that

‖ϑi,k − θ‖2 ≤ ‖ϑi−1,k − θ‖2 − 2α
n

(
fi(ϑi−1,k)− fi(θ)

)
+ (αC0/n+

√
d∆)2 + 2

√
d∆B. (16)

Summing both sides of the above inequality overi = 1, . . . , n and rearranging terms we obtain

‖ϑn,k − θ‖2 +
n−1∑
i=1

‖ϑi,k − θ‖2 ≤
n∑

i=2

‖ϑi−1,k − θ‖2 + ‖ϑ0,k − θ‖2 − 2α
n

n∑
i=1

(
fi(ϑi−1,k)− fi(θ)

)
+n(αC0/n+

√
d∆)2 + 2n

√
d∆B.

Recalling thatϑn,k = θk = ϑ0,k+1, the above expression is equivalent to

‖θk − θ‖2 ≤ ‖θk−1 − θ‖2 − 2α
n

n∑
i=1

(
fi(ϑi−1,k)− fi(θk−1) + fi(θk−1)− fi(θ)

)
+n(αC0/n+

√
d∆)2 + 2n

√
d∆B (17)

= ‖θk−1 − θ‖2 − 2α
(
f(θk−1)− f(θ)

)
− 2α

n

n∑
i=2

(
fi(ϑi−1,k)− fi(θk−1)

)
+n(αC0/n+

√
d∆)2 + 2n

√
d∆B. (18)

Note that the summation in the last line is only over termsi = 2, . . . , n sinceϑ0,k = θk−1. Let gi(θk−1) ∈ ∂fi(θk−1)

so that, similar to (15), we have

〈g(θk−1), ϑi−1,k − θk−1〉 ≤ fi(ϑi−1,k)− fi(θk−1). (19)

Using this in (18) and applying the Cauchy-Schwarz inequality we obtain

‖θk − θ‖2 ≤ ‖θk−1 − θ‖2 − 2α
(
f(θk−1)− f(θ)

)
− 2α

n

n∑
i=2

〈g(θk−1), ϑi−1,k − θk−1〉

+n(αC0/n+
√
d∆)2 + 2n

√
d∆B (20)

≤ ‖θk−1 − θ‖2 − 2α
(
f(θk−1 − f(θ)

)
+

2α
n

n∑
i=2

‖gi(θk−1)‖ · ‖ϑi−1,k − θk−1‖

+n(αC0/n+
√
d∆)2 + 2n

√
d∆B. (21)

Next, observe that using part 2 of Lemma 1 we can write

‖ϑi,k − ϑi−1,k‖ = ‖Q[ϑi−1,k − αgi,k/n]− ϑi−1,k‖

≤ ‖ϑi−1,k − αgi,k/n− ϑi−1,k‖+
√
d∆

≤ αC0/n+
√
d∆,

where we use the bound from assumption (A1) to obtain the last line. Moreover,

ϑi−1,k − θk−1 =
i−1∑
j=1

ϑj,k − ϑj−1,k,
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so that after taking the norm of both sides and applying the triangle inequality we obtain

‖ϑi−1,k − θk−1‖ ≤ (i− 1)(αC0/n+
√
d∆).

Using this last result in (21) we find that

‖θk − θ‖2 ≤ ‖θk−1 − θ‖2 − 2α
(
f(θk−1)− f(θ)

)
+ 2

n∑
i=2

∑
j=1

(i− 1)(αC0/n)(αC0/n+
√
d∆)

+n(αC0/n+
√
d∆)2 + 2n

√
d∆B

≤ ‖θk−1 − θ‖2 − 2α
(
f(θk−1)− f(θ)

)
+ 2

n∑
i=2

(i− 1)(αC0/n+ d∆)2

+n(αC0/n+
√
d∆)2 + 2n

√
d∆B,

where the last line holds sinceαC0/n+
√
d∆ ≥ αC0/n. To finish off the proof, observe that

2(αC0/n+
√
d∆)2

n∑
i=2

(i− 1) + n(αC0/n+
√
d∆)2 = n2(αC0/n+

√
d∆)2

= (αC0 + n
√
d∆)2.

Then we have that for allθ ∈ Θ and allk ≥ 1,

‖θk − θ‖2 ≤ ‖θk−1 − θ‖2 − 2α
(
f(θk−1)− f(θ)

)
+ (αC0 + n

√
d∆)2 + 2n

√
d∆B.

Proof of Theorem 3: This proof is similar to Nedíc and Bertsekas’s proofs of Proposition 2.1 in [4] and

Proposition 2.3 in [5], but we restate it here for completeness.

We first establish the limiting behavior of the sequence generated by the algorithm (3)-(4). Suppose, for the sake

of a contradiction, that there exists aδ > 0 such that

lim inf
k→∞

f(θk) > f∗ +
(αC0 + n

√
d∆)2 + 2n

√
d∆B

2α
+ 2δ.

Let θ̃ be a point inΘ such that

lim inf
k→∞

f(θk) ≥ f(θ̃) +
(αC0 + n

√
d∆)2 + 2n

√
d∆B

2α
+ 2δ. (22)

Additionally, for all k ≥ 0 we have

f(θk) ≥ lim inf
k→∞

f(θk)

≥ lim inf
k→∞

f(θk)− δ. (23)

Combining the statements (22) and (23) we get that for allk ≥ 0

f(θk)− f(θ̃) ≥ (αC0 + n
√
d∆)2 + 2n

√
d∆B

2α
+ δ.
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In particular, this equation holds fork − 1 ≥ 0, and applying it in equation (11) from Lemma 2 withθ = θ̃ we

find that

‖θk − θ̃‖2 ≤ ‖θk−1 − θ̃‖2 − 2α

(
(αC0 + n

√
d∆)2 + 2n

√
d∆B

2α
+ δ

)
+ (αC0 + n

√
d∆)2 + 2n

√
d∆B

= ‖θk−1 − θ̃‖2 − 2αδ

≤ ‖θk−2 − θ̃‖2 − 4αδ
...

≤ ‖θ0 − θ̃‖2 − 2kαδ.

For large enoughk the right hand side can be made negative contradicting the definition of a norm as being

non-negative. Hence, we have

lim inf
k→∞

f(θk) ≥ f∗ +
(αC0 + n

√
d∆)2 + 2n

√
d∆B

2α
.

Next, we examine the number of steps required to approximate this limiting behavior to within a factor of

ε > 0. Let θ∗ ∈ Θ∗ be an optimal solution which achieves‖θ0 − θ∗‖ = dist(θ0,Θ∗). Assume, for the sake of a

contradiction that for allk ≤ K =
⌊
‖θ0 − θ∗‖2/αε

⌋
f(θk) > f(θ∗) +

(αC0 + n
√
d∆)2 + 2n

√
d∆B + αε

2α

f(θk)− f(θ∗) >
(αC0 + n

√
d∆)2 + 2n

√
d∆B + αε

2α
.

Using this inequality in equation (11) from Lemma 2 above withθ = θ∗ now, we find that

‖θK+1 − θ∗‖2 ≤ ‖θK − θ∗‖2 − 2α

(
(αC0 + n

√
d∆)2 + 2n

√
d∆B + αε

2α

)
+ (αC0 + n

√
d∆)2 + 2n

√
d∆B

= ‖θK − θ∗‖2 − αε

≤ ‖θK−1 − θ∗‖2 − 2αε
...

≤ ‖θ0 − θ∗‖2 − (K + 1)αε

The left hand side is a normed quantity, implying that the right hand side is greater than or equal to zero, but if

‖θ0 − θ∗‖2 − (K + 1)αε ≥ 0

then

K ≤ ‖θ0 − θ∗‖2

αε
− 1,

which contradicts the definition ofK, as desired.
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