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Abstract—This letter develops an optimal, nonlinear
estimator of a deterministic signal in noise. The meth-
ods of penalized least squares and cross validation bal-
ance the bias-variance tradeoff and lead to a closed
form expression for the estimator. The estimator is si-
multaneously optimal in a “small-sample,” predictive
sum of squares sense and asymptotically optimal in the
mean square sense.

I. INTRODUCTION

This letter considers the problem of estimating a deter-
ministic signal s € IR? in a zero mean noise 7. We assume
n > 1, i.i.d. observations x1,...,X,, where x; = s 4+ 7,.
The noise distribution is unknown, and we only assume
E[n"n] < co.

The sample mean s = n~! E?Il x; is an unbiased esti-
mator of s. We may also represent s with respect to the
orthonormal basis {b;}&, as s = Ele 0;b;, where 0; are
the coordinates of the signal in this basis. In matrix nota-
tion s = B, where B = [by,...,bsland 8 = [0, ...,04]".
The problem of estimating s is then equivalent to estimat-
ing the coefficients 6.

It is well-known that estimation performance is greatly
improved when the basis efficiently represents the un-
known signal. Selection of an appropriate basis is one way
to incorporate prior signal information into the estimation
procedure. For example, smooth wavelet bases are opti-
mal bases for estimation of signals that may contain some
points of discontinuity but otherwise are smooth [2]. In
this letter, we assume that the basis is fixed and concen-
trate on estimating 6 rather than s directly. The sample
estimator of 8 is

9 = n_lzBij (1)
ji=1

Note that § = BgAand 6 = BTs.
The estimator 8 may also be written as the solution to
the least squares problem
6 = arg min |s— B>, (2)
where || -|| is the Euclidean norm.

Now define the subspace ©,, = {0 :6; =0, 7> m} and
the constrained estimator

0 = arg Hmin s — B> (3)

€Om

The advantage of the constrained estimator is that it is
insensitive to the noise component in the span of {b;}ism
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and consequently may have a smaller variance than the
sample estimator. However, the reduction in estimator
variance may be obtained at the expense of introducing
an estimator bias.

This letter considers a penalized least squares approach
to balancing the trade-off between bias and variance. Us-
ing a predictive sum of squares (PRESS) criterion and the
method of cross validation [1,5], we determine the proper
amount of penalization. We show that the PRESS-optimal
solution can be computed in closed form.

The results in this paper are related to many well known
methods in statistical signal processing. For example,
see [1,3,5,6]. These methods are based on the linear statis-
tical model. The linear statistical model'! assumes a single,
indirect observation of the unknown signal parameters 6:

(4)

where H is a known matrix and n is a vector of scalar,
zero mean, i.i.d. noises. In this model, the signal H 6 has
a parametric form specified by the columns of H.

Our problem formulation is quite different from the lin-
ear statistical model. We directly observe multiple vector
observations of a deterministic signal s, each with i.i.d.
vector noises. The most distinguishing feature of our for-
mulation is that the distribution of the noise vectors is
completely unknown and the scalar noises within each vec-
tor are not necessarily 1.i.d.

y=H8 +n,

II. PENALIZED LEAST SQUARES ESTIMATION OF 6

A penalized least squares estimator for 8 is

ot
SN—

E(A):argmain s —B6|* + 67 A#, (

where A is a diagonal matrix with entries A; > 0. The
term 0T A@ is called the penalizing functional. Increas-
ing A; increases the cost associated with signal estimates
having a large component in the b; direction. Hence, the
penalizing functional can be designed to weight undesir-
able or unlikely solutions more heavily than desirable or
likely solutions.

It is easily verified that the unique minimizer is 8(A) =
I+ A)_lg. Furthermore, because A is diagonal, (I +
A)~! =I-T, where T is diagonal with entries vy; = 11’)\1.
Since each A; ranges over [0, 00), we have v; € [0,1]. The
v; are referred to as regularization parameters.

Rewriting E(A) as a function of I' produces

6(r)=6-T8, (6)

where 6 is the sample mean estimator (1). Equation (6)
shows that 6(A) is a type of shrinkage estimator [3, 6];

1This model is also referred to as the linear regression model in
the statistics literature.



E(F) “shrinks” @ closer to the origin. Setting v; = 0, ¢ =
1,...,mandy; =1,2=m+1,...,dyields the constrained
estimator (3).

Note that we can study the relatlonshlp between 0( )

and T along each coordinate 0 (i) = 0; — 7 0; inde-
pendently. The theoretically optimal 7;, in the MSE
sense, is easily expressed. The value of 7; minimizing

E[l6: — 6:(x) 2] is

2
(MSE) — g; 7
v o +no?’ (7)

where 07 = E[(b!(x — s))?] and 67 = (bl's)?, the noise
and signal power, respectively, in the subspace spanned by
b;. The MSE-optimal estimator is GEMSE) = Z(MSE) ;.

A simple approach at this point would be to compute
sample estimates of ¢ and 07 from the data xi,...,x%,
and then plug these estimates into (7) to obtain an esti-

(MSE).

mate of v; However, this estimate directly involves
the estimate of the unknown parameter 6;. Alternatively,
we consider choosing 7; using the method of cross valida-

tion.

I11. ESTIMATING THE REGULARIZATION PARAMETERS
BY CROSS-VALIDATION

Cross validation is a standard procedure for assessing
the performance of an estimator [1]. To formulate a cross
validation procedure for this problem, first compute a pe-
nalized least squares estimate of @ with the jth data vec-
tor x; omitted: 8(T); = (I-T) 1= Dokt B”x;. This
“leaving-one-out” estimate is then used to predict Bij.
The predictive sum of squares (PRESS)

1 &
=~ Zna(r
j=1

may be viewed as a small-sample optimality criterion mea-
suring the quality of the estimator and of the parameters
I'. The objective is to choose I' to minimize V/(T').

A closed form expression for the minimizer exists. After
some algebra, we have

V(T) =
< - )Z[” — % 207167 + 97 072G} + n(n — V|,

i=1

(8)

- BTlelz’

where 0; = n~! E;:l bZ-ij, and unbiased estimate of 6;,

and g7 = (n—1)71! Z?zl[biij —672-]2, an unbiased estimate
of o2,

We can study the quadratic relationship between V/(T')
and I along each coordinate independently. Setting j—x =
0 and solving for v; produces

(min) 8'22

n=16? + (n — 1)0?

: (9)

Note that 'ylgmin) > 0. It is easily verified that 'ygmin) >
1 implies that V is strictly decreasing on 0 < ; < 1.

Therefore, if 'y(mm) > 1, then the PRESS is minimized at
vi = 1. Hence the PRESS optimal choice of 7; is

)

(PRESS)

o2
: =T L —
K =157 1 (n— 1)3?

where 7 is the threshold nonlinearity

i ={ 7

3

(10)

y<1
721

(11)

The PRESS-optimal estimator is S(PRESS) =0, —’y(PRESS)@
Note that 7(PRESS)

mating ’y( *®) from the sample statistics. In fact, plugging

is quite different from simply esti-

the unbiased estimates 77 and 52 into (7) produces a es-
timate ’y(MSE) <7 (PRESS) Hence, the estimate ’y(MSE) may
be over- conservatlve n the PRESS sense.
It is easily verified that 0 < EPRESS)
0 < n1o?
(PRESS) __
i

< 1 whenever

< 92 The two extremes at 'y(PRESS) 1 and

= 0 are especially interesting.

(PRESS)
[

=1 (0~(PRESS) = 0) if and only if 922 < n7l5Z

2

Given n i.1.d. observations, the quantity n='5? is an
estimate of the averaged noise power in the subspace
S; spanned by b; (the true noise power is n='o?). @2
is an estimate signal power in ;. Hence, the PRESS-
optimal estimate of 6; is zero if and only if the SNR

in &; is less than or equal to 0dB.

(PRESS)
[

=0 (8""*%) = §,) if and only if 52 = 0. This

shows that the sample mean estimator 672 is subopti-
mal in the PRESS sense ezcept when there is no noise
in &;. This situation does not occur very often: In [4]
it is shown that if the distribution of x is absolutely
(prESS) _ 0] = 0. It is also

(MSE)

continuous, then Probly;
shown that under the same condition Prob[y;

0] = 0, where 'y( *%) is the MSE-optimal regulariza-
tion parameter (7). One interpretation of this result
is the following. If x is absolutely continuous, then it
is always possible to reduce the estimator variance by
an amount € > 0 at the expense of adding a squared
bias < €. This type of result is widely known in the
statistical literature [3].

~(PRESS)
In addition to the PRESS-optimality of 6 ,
can show that H(PRESS) is asymptotically optimal in the

mean square sense, that is 7§pRESS)/ (Mse) g w.p. 1.
The result is obtained by a simple application of the
strong law of large numbers; the details are given in [4].

Arguing along similar lines, it is easily established that
fé(PRESS)

we

— BTs w.p. 1.

IV. NUMERICAL EXAMPLE

To demonstrate the performance of the PRESS-optimal
estimator, consider the problem of estimating the inten-
sity of a spatially varying Poisson process. This problem
arises in planar nuclear medicine imaging, for example.



The maximum likelihood estimate (MLE) of the intensity
is proportional to the the total counts (over the entire ob-
servation period T') in each detector bin. We advocate
splitting the observation period T into n intervals, each of
time duration T'/n, providing n independent observations
needed to form the PRESS-optimal estimator.

The true intensity s depicted in Fig. 1 (a). The perfor-
mance of the MLE and the PRESS-optimal estimator are
compared in 50 independent trials. The intensity of the
simulated process is adjusted so that the maximum num-
ber of counts/pixel is approximately 100 (total counts over
the entire observation period T'). The observation period
T is split into n = 25 intervals. The Haar wavelet basis is
chosen to represent the unknown intensity, because of its
excellent localization and approximation properties. Table
I summarizes the performance of the MLE and PRESS-
optimal estimator. All quantities are normalized by the
true intensity. The MLE and PRESS-optimal estimate
obtained in a typical trial are shown in Fig. 1 (b) and (c),
respectively.

Table 1: Comparison of MLE and PRESS-optimal estima-
tors of Poisson intensity.

Estimator || Bias Squared | Variance | M.S.E.

MLE 5 0.0012 0.0551 [ 0.0563
s(PrBESS) 0.0018 0.0246 | 0.0263

V. RELATED WORK AND CONCLUSIONS

In this letter we have developed an optimal signal esti-
mator based on the method of cross validation. Applica-
tions of the estimator include moment estimation in array
and signal processing, in which case the moment plays the
role of signal and the noise is the variability of the data
about the moment.

The PRESS-optimal estimator is closely related to
James-Stein and related “shrinkage” estimators [2, 3,5, 6].
Stone was apparently the first to draw the connection be-
tween shrinkage estimators and cross validation in the con-
text of the linear statistical model [5].

One of the interesting features of the PRESS-optimal
estimator is that the amount of shrinkage is determined in-
dependently for each coordinate and this amount is related
to the estimated SNR in the coordinate. In this respect,
the PRESS-optimal estimator is similar to the data adap-
tive rank shaping methods developed in [6]. The methods
in [6] are based on the linear statistical model and as-
sume an additive white noise with known variance. Their
methods take full advantage of this prior information and
produce a suite nonlinear, data-adaptive filters that dra-
matically outperform the classical Wiener filter in many
cases.

In contrast, the PRESS-optimal estimator does not re-
quire any prior knowledge of the noise, except that the
noise is zero mean has finite second order moments. We do,
however, require n > 1 i.i.d. noisy observations of the sig-
nal. The methods of [6] only require a single observation.
Also, the PRESS-optimal estimator is simultaneously opti-

mal in the small-sample PRESS sense and asymptotically
optimal in the MSE sense. This is due to the fact that the
PRESS-optimal estimator is derived using the method of
CV. CV is not considered in [6].

Finally, note that the PRESS and MSE optimality of
the PRESS-optimal estimator is with respect to the basis
B. Although the rate of convergence does not depend on
B, the small-sample error is affected by the choice B. Intu-
ition suggests that the estimator will provide best results
(small PRESS and MSE) if the basis B is well-matched to
the unknown signal. Although it is difficult to characterize
the PRESS-optimal basis, this intuition is partially justi-
fied by considering the MSE-optimal basis. The following
result is proved in [4]: Assume that the noise is white; that
is, 07 = ¢? Vi, independent of the basis. Then the MSE,
Ele E[(0; — HZ(MSE))2], is minimized by every orthonormal
basis with by = s/||s||. Ongoing work is aimed at the basis
selection problem.

(b)

Figure 1: Estimation of spatial Poisson intensity. (a) True
Poisson intensity, (b) MLE, (c) PRESS-optimal estimate.
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