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Abstract

We consider the problem of estimating the evolutionary history of a set of species (phylogeny or
species tree) from several genes. It is known that the evolutionary history of individual genes (gene
trees) might be topologically distinct from each other and from the underlying species tree, possibly
confounding phylogenetic analysis. A further complication in practice is that one has to estimate gene
trees from molecular sequences of finite length. We provide the first full data-requirement analysis of a
species tree reconstruction method that takes into account estimation errors at the gene level. Under
that criterion, we also devise a novel reconstruction algorithm that provably improves over all previous
methods in a regime of interest.
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phylogenetic inference, incomplete lineage sorting, multispecies coalescent, distance methods,
sample complexity, molecular clock
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1 INTRODUCTION

WE consider the problem of estimating the common evolutionary history, more precisely
the species tree, of a set of n species using sequence data from multiple genes or

loci. It is well known that the estimated genealogical history of a gene (gene tree) may
be topologically distinct from the species tree that encapsulates it, possibly confounding
phylogenetic analysis [1]. The subject of this paper is an important source of such gene
tree incongruence, known as incomplete lineage sorting (ILS), where two lineages fail to
coalesce in their most recent common ancestral population. That failure may lead one of the
lineages to first coalesce with a more distantly related population thereby producing a gene
tree whose topology differs from the species tree that we are trying to estimate. Several
species tree reconstruction methods have recently been developed that address ILS. See for
instance [2], [3] and references therein. Many such methods rely on a statistical model known
as the multispecies coalescent which, roughly speaking, generates gene trees by performing
independent coalescent processes in each ancestral population and then assembling these
together. This process is illustrated in Figure 1 below and explained in a little more detail
in Section 2.2. For more background on phylogenetic inference and coalescent theory see,
e.g., [4], [5], [6].

The accuracy of multiloci reconstruction methods has been evaluated empirically, for
instance, in [7], [8]. The focus of this paper is the mathematical characterization of the
performance of such methods. Prior theoretical work has focused mainly on statistical
consistency under the multispecies coalescent; see e.g., [8], [9], [10], [11]. That is, assuming
access to either correct gene trees or correct pairwise distances (or coalescence times) for
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each gene, a method is statistically consistent if it is guaranteed to converge on the correct
species tree as the number of genes, m, tends to infinity. [12] studies the rates of convergence
(in m) for several such methods. For instance, letting f > 0 denote the smallest branch
length in the species tree, in the limit f ! 0, it was shown that the GLASS algorithm [10],
which is an agglomerative clustering method in which the dissimilarity between each pair
of species is taken to be the minimum of the coalescent times among the m genes, needs
the number of genes m to scale as f�1. On the other hand, m needs to scale as f�2 for the
STEAC algorithm [8], which is also an agglomerative clustering method which instead uses
the average of the coalescent times across the m genes as the measure of dissimilarity. In
reality, however, one has to estimate gene trees and coalescent times from finite, say, length-k
molecular sequences. Taking into account the resulting estimation errors at the gene level is
key to mathematically quantify and compare the performance of different methods (see e.g.,
[13], [14], [15]). Intuitively, for instance, the “minimum” used in GLASS may be significantly
more sensitive to estimation errors than the “average” used in STEAC. We make progress
towards this goal by performing the first full data requirement analysis of some species tree
reconstruction methods.

Our contribution is two-fold. First it is known that, in order to reconstruct a single gene
tree correctly with high probability, it is both necessary [16] and sufficient [17] for the
sequence length k to scale as f�2. Therefore, in light of this and the results in [12], one might
expect that the total amount of data required, mk, must scale as f�3 and f�4 for GLASS
and STEAC respectively. We show that, by a crucial modification of STEAC, one obtains an
algorithm that is guaranteed to reconstruct the species tree exactly with high probability as
long as m scales like f�2 and k � 1. In particular, it suffices for the overall sample complexity,
mk, to scale like f�2 (which is much smaller than f�3 and f�4 in the regime of interest,
where f ⌧ 1). Secondly, unlike GLASS, STEAC only works under the restrictive molecular
clock assumption [6], where the mutation rates and population sizes are constant across
the populations represented by the branches of the species tree. We extend the previous
data requirement result beyond the molecular clock by devising a novel STEAC-like species
tree reconstruction algorithm which we call METAL (Metric algorithm for Estimation of
Trees based on Aggregation of Loci). This algorithm is a distance based method where the
distances are defined by concatenating the molecular sequences corresponding to all the
loci (genes).

2 PRELIMINARIES AND NOTATION
We will begin with a description of our modeling assumptions and introduce some notation
that will be used throughout the paper.

2.1 The Species Tree
At the heart of the model is an unknown species tree S = (V,E) which represents the
evolutionary history of n isolated populations; these isolated populations are represented
by the size n leaf set L of this tree. The goal is to learn the structure of S. We assume that
each branch e 2 E of the species tree corresponds to te generations of evolution and we
assume that each generation in this branch has a population of size Ne. As is standard in
coalescent theory, we will assign each branch e 2 E, a length ⌧e > 0 in coalescent time units
defined as ⌧e , te/Ne. The smallest branch length, f , mine ⌧e, will play an important role in
our analysis and in particular, we will be interested in the case where f is very small. For a
pair of vertices X, Y 2 V , we will use ⇡S

XY ⇢ E to denote the unique path connecting X and
Y in S and ⌧XY will denote the length of this path. Notice that {⌧AB}A,B2L forms a metric



DASARATHY et al.: DATA REQUIREMENT FOR PHYLOGENETIC INFERENCE FROM MULTIPLE LOCI 3

Gene 2 Gene 1

Ti
m

e 

Fig. 1: A species tree (the thick, shaded tree) and two samples from the multispecies
coalescent. Notice that while the topology of Gene 1 agrees with the species tree, the
topology of Gene 2 does not.

on the set L and such a metric that can be written as a sum of path lengths on a tree is
called an additive metric (see e.g., [6]) with respect to that tree. If we additionally assume that
the population sizes in each branch are equal to some constant N , then {⌧AB}A,B2L forms
an ultrametric with respect to S, i.e., for any three leaves A,B,C such that S restricted to
A,B,C has the topology ((A,B), C)

⇤, we have that

⌧AB  ⌧AC = ⌧BC .

We will let � , maxA,B2L ⌧AB denote the diameter of the species tree. Finally, To each
branch e 2 E, we will also associate a mutation rate, µe and we will let µL , mine2E µe

and µU , maxe2E µe denote the smallest and largest mutation rates, respectively.

2.2 The Multispecies Coalescent and the Gene Trees
Following [18], we assume that a multispecies coalescent (MSC) process produces m (indepen-
dent) random genealogies G(1),G(2), . . . ,G(m) based on S. These encode, say, the evolutionary
history of m different genes or loci on the genome and will be referred to as gene trees

henceforth.
It is easier to understand the MSC constructively and in the case where the population size

Ne in each branch e 2 E is a constant N . Consider the 3 species example of Figure 1, where
the thick, shaded tree is the species tree S with edges {ei}5i=1. As is standard in coalescent
theory, we will think of time as running backwards, that is, time (in coalescent time units)
starts at 0 at the leaves and increases towards the root of the tree. By TAB (resp. TABC), we
mean the time when the parent population of A and B (resp. the parent population of A,B,
and C) branch (or speciate). Let us first consider one random draw from the MSC, i.e., the
case of one particular gene, Gene 1. A,B, and C each have a copy (or allele) of Gene 1 and
the MSC describes the evolutionary history of the lineages corresponding to these alleles.
From time 0 until TAB, the lineages corresponding to A and B are in isolated populations
and hence do not “coalesce”. However, once these lineages reach the parent population of A

⇤. We will sometimes find it useful to represent trees in the so called Newick Format. For instance, the Newick
representations of the trees labelled Gene 1 and Gene 2 in Figure 1 are ((A,B), C) and (A, (B,C)), respectively.
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and B (represented by the branch e4), they have a chance to coalesce. According to the MSC,
the coalescence happens after a random time drawn according to the Exp(1) distribution,
that is,

P
h

t
(1)
AB � TAB � x

i

= 1� e�x, x � 0. (1)

Now, the coalesced A-B lineage and the lineage corresponding to C do not interact until time
TABC , which is when they find themselves in a common population. They then coalesce at a
random time t

(1)
ABC which is again such that t(1)ABC � TABC ⇠ Exp(1). This gives us a random

gene tree with the topology ((A,B), C). To contrast with this, consider the case of Gene 2.
Here, the lineages corresponding to the alleles in A and B do not coalesce in e4 (since the
randomly drawn coalescence time was more than the length of e4). So, at time TABC , there
are three lineages present in the branch e5. When there are multiple lineages in the same
population, according to the MSC, each pair independently coalesces again after a random
time period drawn according to the Exp(1) distribution. In this case, the genealogies of B

and C alleles coalesce (at time t
(2)
BC) before A and B, thus giving us a second random tree

with topology (A, (B,C)). Notice that while the genealogy (evolutionary history) of Gene 1
agrees with that of the species, the genealogy of Gene 2 does not. This is an example of
incomplete lineage sorting which, as mentioned earlier, is a fundamental road block for
learning the tree of life.

We refer the reader to [18] for more details on the multispecies coalescent but, we will
state the model here for the sake of completeness. Before we proceed, we will record a
simple fact about the exponential distribution: If X1, . . . , Xp

iid⇠ Exp(1), then mini2{1,...,p} Xi ⇠
Exp(p). This follows since

P
✓

min

i2{1,...,p}
Xi � t

◆

=

p
Y

i=1

P (Xi � t) = e�pt. (2)

The density of the likelihood of a gene tree G(i)
=

�V (i), E (i)
�

can now be written down as
follows. We will focus our attention on the branch e 2 E of the species tree and for the
gene tree G(i), let I(i)e and O

(i)
e be the number of lineages entering and leaving the branch e

respectively. For instance, consider Gene 1 in Figure 1. Here, two lineages enter the branch
e4 and one lineage leaves it. On the other hand, in the case of Gene 2 in Figure 1, two
lineages enter the branch e4 and two lineages leave it. Let t(i)e,s, s =

n

1, 2, . . . , I
(i)
e �O

(i)
e + 1

o

be the s�th coalescent time corresponding to G(i) in the branch e. Recall that each pair
of lineages in a population can coalesce at a random time drawn according to the Exp(1)
distribution independently of each other. Therefore, after the (s� 1)-th coalescent event at
time t

(i)
e,s�1, there are I

(i)
e �s+1 surviving lineages in branch e and the likelihood that the s�th

coalescence time in branch e is t
(i)
e,s corresponds to the event that the minimum of

�

I
(i)
e

�s+1
2

�

random variables distributed according to Exp(1) has the value t
(i)
e,s � t

(i)
e,s�1. Therefore using

(2), the density of the likelihood of G(i) can be written as

Y

e2E

I
(i)
e

�O
(i)
e

+1
Y

s=1

exp

(

�
✓

I
(i)
e � s+ 1

2

◆

h

t(i)e,s � t
(i)
e,s�1

i

)

, (3)

where, for convenience, we let t(i)e,0 and t
(i)

e,I
(i)
e

�O
(i)
e

+1
be respectively the divergence times of

the population in e and of its parent population.
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2.3 Observation Model and The Inference Problem
Much of the prior work on understanding the theoretical complexity of learning species
trees from multiple loci (or gene trees) has focused on the case where exact gene trees
are available. However, in reality one needs to estimate these gene trees from molecular
sequences and indeed there has been a recent thrust towards understanding the effect of
errors in estimating the gene trees (see e.g., [13], [14], [15]). Our approach will be to take this
error into account explicitly and in fact bypass the reconstruction of gene trees altogether.

We model the sample generation process according to the standard Jukes-Cantor (JC)
model (see e.g., [6]). That is, given a gene tree G = (V , E), we will associate to each ẽ 2 E , a
probability pẽ (whose dependence on the length of ẽ we will make explicit below). Then, the
JC model assigns a character from {A, T, G, C} uniformly at random to the root of G. Moving
away from the root, with probability pẽ, each edge ẽ changes the state of its ancestor to one
of the other three, chosen uniformly at random. The states at the leaves of G are assembled
into a length n vector to get the first sample; this process is repeated k times to generate
the data set. Notice that k models the number of sites or the sequence length of each gene.

Now, we will define pẽ. To each edge ẽ of the random gene tree G is associated a random
length �ẽ according to the MSC. Also, given an edge e 2 E of the species tree, we will
write �e\ẽ to denote the length of the portion ẽ that overlaps with e. This lets us define
the effective (mutation rate adjusted) branch lengths, �ẽ =

P

e2E µe�e\ẽ. As before, for any
two vertices X, Y 2 V , ⇡G

XY denotes the path joining X and Y in G and �XY (resp. �XY )
denotes the length of this path under � (resp. under �). Now, for an edge ẽ 2 E , we define
pẽ , 3

4(1�e�
4
3 �ẽ

). Notice that this definition implies that the probability pXY of disagreement
between the characters at vertices X and Y satisfies, pXY =

3
4(1� e�

4
3 �XY

).
The goal then, is to learn the structure of S given the data {�ij}i2[m],j2[k] which is an

n⇥m⇥k array composed of the characters {A, T, G, C}, where {�ij}j2[k] is the data generated
from the random gene tree G(i) according to the Jukes-Cantor model.

The Jukes-Cantor model was chosen because it lends itself to easy presentation. Since the
techniques developed here are distance-based, all our results can be generalized to the more
realistic Generalized Time-Reversible (GTR) model [19] using spectral techniques as in [20],
[21].

3 MAIN RESULTS
We now state the main results of the paper. First, we will deal with the case where the
strong molecular clock [6] assumption holds. We will then turn our attention to the more
general case that does away with this assumption.

3.1 The Molecular Clock Assumption Holds
Assuming that the molecular clock hypothesis holds is often unrealistic; it is equivalent
to believing that all extant and ancestral populations have the same population size and
that the mutations happen at the same rate through time and across populations. It has
however proven to be a useful abstraction for developing powerful methods. In our setting,
this is equivalent to assuming that for all e 2 E, µe = µ > 0, and Ne = N , both constants
independent of e.

In order to infer the species tree from samples, we will begin by defining a distance
measure on the leaves. For each pair of leaves A,B 2 L, we define

bpAB =

1

mk

X

i2[m],j2[k]

{�ij
A 6= �ij

B}, (4)
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which can be thought of as the normalized hamming distance between the concatenated
molecular sequences corresponding to species A and B. Our first result, which is proved in
Appendix A, is that, in expectation, {bpAB}A,B2L is not only a metric on L, but is in fact an
ultrametric with respect to S.

Theorem 1. {E [bpAB]}A,B2L forms an ultrametric with respect to the true species tree S. In fact,

for any triple A,B,C 2 L with the topology ((A,B), C) in S, we have

E [bpAC ] = E [bpBC ] > E [bpAB] +
3e�

4
3µ⌧ACµ

8µ+ 3

f. (5)

This result inspires the following procedure for reconstructing S: Use {bpAB}A,B2L as
a dissimilarity measure for L and use a standard algorithm that accepts a dissimilarity
measure and returns an ultrametric tree (see e.g., [4], [6] for background on distance based
methods). For the sake of simplicity, we may assume that we use the UPGMA algorithm
[22], the standard method for bottom-up agglomerative clustering, in order to produce
an ultrametric tree. Then, recalling that µ denotes the (common) mutation rate across the
populations represented by the species tree S, and � denotes diameter of S, we have the
following performance guarantee.

Theorem 2. Given an ✏ > 0, using UPGMA on L with the dissimilarity measure {bpAB}A,B2L
results in the correct tree S being output with probability no less than 1� ✏ as long as the number

of genes m, and the sequence length k satisfy

m � C1(µ,�, n, ✏)⇥ f�2
and k � 1, (6)

where C1(µ,�, n, ✏) = 16 e
8
3µ�(8µ+3)2

9µ2 log

✓

8
(

n

3)

✏

◆

.

Theorem 2, which is proved in Appendix B, tells us that the above procedure succeeds
with high probability as long as we get molecular sequences of length at least one from
at least O(f�2

) genes. That is, a total sequence length of mk = O(f�2
) suffices for reliable

learning.
Notice that the procedure we propose is similar to the STEAC algorithm [8] except instead

of using the average coalescent time as the distance measure, we use (4), which can be
considered as the normalized hamming distance. It turns out that this modification is crucial
to obtaining our improved sample complexity result.

3.2 The Molecular Clock Assumption Does Not Hold
We will now consider the more general case where the strong molecular clock assumption
does not hold. That is, we will assume that each branch e of the species tree has a (possibly)
distinct mutation rate µe and population size Ne.

First, we observe that {E[bpAB]}A,B2L as defined above is no longer an ultrametric with
respect to S and therefore, the above procedure (and for a similar reason, the STEAC
algorithm) cannot be used to recover the species tree. In such situations, one usually turns
to distance methods that rely on the 4-point condition (see e.g., [6]). However, it is not
immediately clear how to define a metric that satisfies the 4-point condition in our setting.
Our next result, which is arguably the most important contribution of this paper, shows
that this can be done. As before, we will first consider an idealized measure of dissimilarity
as follows:

dAB = �3

4

log

✓

1� 4

3

E [bpAB]

◆

, A,B 2 L,
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where bpAB is as defined in (4). Our next result, which parallels Theorem 1, shows that
this “idealized” dissimilarity measure is actually an additive metric with respect to S. Re-
call that this means that the four point condition holds, i.e., for a quadruple of leaves
A,B,C,D that are such that the topology of S restricted to these 4 leaves is ((A,B), (C,D))

or (((A,B), C), D), the above distances satisfy

dAB + dCD  dAC + dBD = dAD + dBC .

See [6], for instance, for more information about tree metrics.

Theorem 3. The set of dissimilarities {dAB}A,B2L forms an additive metric with respect to S. In

fact, suppose the leaves A,B,C,D 2 L are such that either ((A,B), (C,D)) or (((A,B), C), D)

holds with respect to S, then

dAC + dBD = dAD + dBC > dAB + dCD + ↵add, (7)

where ↵add =

3
4 log

�

8
3µL(1� e�f

) + 1

�

> 0 and µL , mine2E µe is the smallest mutations rate, as

defined in Section 2.1.

It is somewhat surprising that this result is true. It tells us that if one ignores the fact that
there are multiple loci and pretends as though all samples came from a single gene tree, then
the gene tree estimated from this “concatenated molecular sequence” has the same topology
as S. Furthermore, this result is also interesting since phylogenetic mixtures are known to
cause problems for distance-based methods [23]. We prove Theorem 3 in Appendix C.

In light of this, we propose the following algorithm to reconstruct S. First, we define the
following sample-based corrected measure of dissimilarity (with bpAB as defined in (4))

bdAB , �3

4

log

✓

1� 4

3

bpAB

◆

. (8)

Now, use any quartet-test based algorithm (like Neighbor Joining [24]) which returns an
additive tree using {bdAB}A,B2L defined as in (8) as the input dissimilarity measure. We call
this algorithm METAL (for Metric algorithm for Estimation of Trees based on Aggregation
of Loci).

Recall that µU and µL are respectively the maximum and minimum mutation rates, and
� is the diameter of the species tree S (c.f. Section 2.1). We then have the following result.

Theorem 4. For any ✏ > 0, METAL succeeds in reconstructing (the unrooted version of) S with

probability at least 1� ✏ as long as m and k satisfy

k � 1 and m � e
8µ

U

�
3

(8µU + 3)

2
(24 + 8↵add)

2

162↵2
add

log

 

16

�

n
4

�

✏

!

(9)

where ↵add =

3
4 log

�

8
3µL(1� e�f

) + 1

�

.

In the limit as f ! 0, the right side above approaches

C2(µU , µL,�, n, ✏) ⇥ f�2, where C2(µU , µL,�, n, ✏) =
8e

8µ
U

�
3

(8µU + 3)

2

9µ2
L

log

 

16

�

n
3

�

✏

!

.

Remark. Following [17], the diameter � can be replaced by the (often much smaller) depth

1

of the tree by employing a distance method that uses only those distances that are “small
enough”.

1. The depth of an edge e is the length (under ⌧ ) of the shortest path between two leaves crossing e; the depth of a tree
is the maximum edge depth.
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We prove Theorem 4 using arguments that are similar in spirit to those in the proof of
Theorem 2. We refer the reader to Appendix D for the exact details.

Theorem 4 tells us that as long as m scales like O(f�2
) and k � 1, the species tree can be

reconstructed (upto the location of the root) reliably. It should be noted here that we assume
that for each population/branch e 2 E, the mutation rate µe is constant across gene trees;
generalizing this analysis to the case where the mutation rates are allowed to change is an
interesting avenue for future work.

4 DISCUSSION
Irrespective of the sequence length k of each gene, the number of genes m required needs to
satisfy m 2 ⌦(f�1

) for consistent species tree estimation. To see this, consider the species tree
in Figure 1. Given m gene trees drawn according to the MSC based on this species tree, the
probability that none of them have a coalescent event in branch e4 is given by e�m⌧

e4 (this is
the probability that m independent exponentials are bigger than ⌧e4). Therefore, if m < ⌧�1

e4
,

then with probability greater than e�1, none of the m the gene trees have a coalescence event
in e4, that is, there is no evidence for the existence of this branch from the sample. This
argument can also be formalized by observing that any algorithm that is able to estimate S
reliably should be able to perform a reliable hypothesis test between two shifted exponential
distributions. Therefore, this result follows from the fact that DKL (p(x; ⌧AB + f)kp(x; ⌧AB)) =

f , where p(x; a) = e�(x�a) {x � a} and DKL (·k·) is the Kullback-Liebler divergence [25].
On the other hand, we know from [16] that even without the confounding effect of the

multispecies coalescent, a total sequence length (m ⇥ k) of at least ⌦(f�2
) is needed for

consistent estimation. These two together imply that there is a constant C > 0 such that m
needs to satisfy the following for consistent estimation of the species tree

m � Cmax

⇢

f�1,
f�2

k

�

. (10)

As mentioned earlier, the results in this paper show that m 2 O(f�2
) is achievable

irrespective of the value of k, i.e., in particular, a total data set size of mk 2 O(f�2
) is

achievable. Prior to this, to the best of our knowledge, the best complexity bounds were
provably attained by GLASS [10] (as shown in [12]) which requires that m � O(f�1

) and
k � O(f�2

), i.e., a total data set size of mk 2 O(f�3
).

This raises two very interesting open questions. (A) What is the precise tradeoff between
m and k for reliable recovery of S and in particular, is it possible to devise an algorithm that
recovers S given m 2 o(f�2

) when the sequence length, k, is moderate, say, O(f�1
)? (B) Is

there a procedure that attains all points (values of m and k) in this tradeoff, as opposed to
the current situation where it appears as though GLASS meets the lower bounds for large
k and METAL meets the lower bound for small k?
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APPENDIX A
PROOF OF THEOREM 1
Recall that for any pair of leaves A,B 2 L, we define

bpAB =

1

mk

X

i2[m],j2[k]

{�ij
A 6= �ij

B}. (11)

Theorem 1. {E [bpAB]}A,B2L
† forms an ultrametric with respect to the true species tree S. In

fact, for any triple A,B,C 2 L with the topology ((A,B), C) in S, we have

E [bpAC ] = E [bpBC ] > E [bpAB] +
3e�

4
3µ⌧ACµf

8µ+ 3

. (12)

Proof: Suppose that A,B,C 2 L are three arbitrary leaves of the species tree with the
topology ((A,B), C). By definition, we have that

E [bpAC ] = E


3

4

⇣

1� e�
4
3 �AC

⌘

�

,

where �AC is the distance between A and C on a random gene tree drawn according to the
MSC. Notice that it satisfies �AC = µ⌧AC + 2µZ with Z ⇠ Exp(1). Therefore, we have

†. Unless otherwise noted, expectations will be with respect all the randomness present.
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E [bpAC ]� E [bpAB] = �3

4

e�
4
3µ⌧ACE

h

e�
8
3µZ
i

+�3

4

e�
4
3µ⌧ABE

h

e�
8
3µZ
i

(a)
=

3

⇣

e�
4
3µ⌧AB � e�

4
3µ⌧AC

⌘

4(

8
3µ+ 1)

(b)

� 3e�
4
3µ⌧ACµf

(8µ+ 3)

,

where (a) follows from the fact that if X ⇠ Exp(1), for any ↵ > 0, E[e�↵X
] = (↵ + 1)

�1 and
(b) follows from observing that for any ↵ > 0 and x < y, we have

e�↵x

↵
� e�↵y

↵
=

Z y

x

e�↵t dt � (y � x)e�↵y

Proceeding similarly, It can be seen that E [bpAC ] = E [bpBC ]. This concludes the proof.

APPENDIX B
PROOF OF THEOREM 2
We now prove Theorem 2 which guarantees that S can be reliably recovered by using a
standard distance-based algorithm like UPGMA or bottom-up agglomerative clustering with
{bpAB}A,B2L as a dissimilarity measure for L.
Theorem 2. Given an ✏ > 0, using UPGMA on L with the dissimilarity measure {bpAB}A,B2L
results in the correct tree S being output with probability no less than 1� ✏ as long as the
number of genes m, and the sequence length k satisfy

m � C1(µ,�, n, ✏)⇥ f�2 and k � 1, (13)

where C1(µ,�, n, ✏) = 16 e
8
3µ�(8µ+3)2

9µ2 log

✓

8
(

n

3)

✏

◆

.

Proof: Recall that the algorithm we propose to recover the tree uses {p̂AB}A,B2L as
a dissimilarity measure and uses an agglomerative clustering algorithm. Therefore, this
procedure errs if for any triple of leaves A,B,C which have the topology ((A,B), C) with
respect to S, either bpAB > bpAC or bpAB > bpBC . Letting

�

L
3

�

denote the set of all unordered
triples in L, we can use the union bound and over-estimate the error as follows

P [Error] = P

2

6

4

[

((A,B),C)2
(

L

3)

n

The triple ((A,B), C) is such that bpAB > bpAC or bpAB > bpBC

o

3

7

5


X

((A,B),C)2
(

L

3)

P [bpAB > bpAC ] + P [bpAB > bpBC ] . (14)

We will now upper bound the term P [bpAB > bpAC ], the other term will satisfy the same upper
bound. Defining ↵um =

3e�
4
3�µf

(8µ+3) , for an arbitrary triple ((A,B), C) we have

P [bpAB � bpAC > 0] = P [bpAB � E [bpAB]� bpAC + E [bpAC ] > E [bpAC ]� E [bpAB]]

(a)

 P [bpAB � E [bpAB]� bpAC + E [bpAC ] > ↵um]

 P
h

bpAB � E [bpAB] >
↵um

2

i

+ P
h

E [bpAC ]� bpAC >
↵um

2

i

, (15)
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where (a) follows from Theorem 1. Let us first look at the first term in (15). The second one
will follow similarly.

P [bpAB � E[pAB] > ↵um/2]

(a)
= E

2

4P

0

@

bpAB � 1

m

X

i2[m]

p
(i)
AB +

1

m

X

i2[m]

p
(i)
AB � E [bpAB] >

↵um

2

�

�

�

�

�

�

{�(i)AB}i2[m]

1

A

3

5

 E

2

4P

0

@

bpAB � 1

m

X

i2[m]

p
(i)
AB >

↵um

4

�

�

�

�

�

�

{�(i)AB}i2[m]

1

A

+ P

0

@

1

m

X

i2[m]

p
(i)
AB � E [bpAB] >

↵um

4

�

�

�

�

�

�

{�(i)AB}i2[m]

1

A

3

5

= E

2

4P

0

@

bpAB � 1

m

X

i2[m]

p
(i)
AB >

↵um

4

�

�

�

�

�

�

{�(i)AB}i2[m]

1

A

3

5

+ P

0

@

1

m

X

i2[m]

p
(i)
AB � E [bpAB] >

↵um

4

1

A .

(16)

In (a), we condition on {�(i)AB}i2[m], where �
(i)
AB, as before, is the random distance between

the leaves A and B on the gene tree G(i). We then add and subtract 1
m

P

i2[m] p
(i)
AB, where

p
(i)
AB , 3

4

⇣

1� e�
4
3 �

(i)
AB

⌘

. The next inequality follows from a union bound. The two terms in
the last equation can now be upper bounded using Hoeffding’s inequality:

E
"

P
"

1

mk

m
X

i=1

k
X

j=1

X ij
AB � 1

m

m
X

i=1

p
(i)
AB >

↵um

4

�

�

�

�

�

n

d
(i)
AB

o

##

 e�mk↵2
um/16. (17)

P

0

@

1

m

X

i2[m]

p
(i)
AB � E [bpAB] >

↵um

4

1

A  e�m↵2
um/16. (18)

These inequalities follow since E
h

X ij
AB

�

�

�

�
(i)
AB

i

= p
(i)
AB and E

h

p
(i)
AB

i

= E [bpAB].
Substituting these in (14), we have

P [Error] 
X

((AB)C)2
(

L

3)

P [bpAB > bpAC ] + P [bpAB > bpBC ]


X

((AB)C)2
(

L

3)

4

⇣

e�mk↵2
um/16

+ e�m↵2
um/16

⌘


✓

n

3

◆

4

⇣

e�mk↵2
um/16

+ e�m↵2
um/16

⌘

Therefore, the probability of error can be made less than ✏ if we pick m and k as shown in
(6) or (13).

APPENDIX C
PROOF OF THEOREM 3
Recall that we define dAB = �3

4 log
�

1� 4
3E [bpAB]

�

and Theorem 3, which we will prove now,
tells us that these distances form an additive metric with respect to S.
Theorem 3. The set of dissimilarities {dAB}A,B2L forms an additive metric with respect to S. In
fact, suppose the leaves A,B,C,D 2 L are such that either ((A,B), (C,D)) or (((A,B), C), D)

holds with respect to S, then

dAC + dBD = dAD + dBC > dAB + dCD + ↵add,
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where ↵add =

3
4 log

�

8
3µL(1� e�f

) + 1

�

> 0.
Proof: We begin by observing that by definition,

dAC + dBD � dAB � dCD = �3

4

log

✓

1� 4

3

E [bpAC ]

◆

� 3

4

log

✓

1� 4

3

E [bpBD]

◆

+

3

4

log

✓

1� 4

3

E [bpAB]

◆

+

3

4

log

✓

1� 4

3

E [bpAB]

◆

(19)

=

3

4

log

0

@

E
h

e�
4
3 �AB

i

E
h

e�
4
3 �CD

i

E
h

e�
4
3 �AC

i

E
h

e�
4
3 �BD

i

1

A , (20)

where the expectations in the last equation are with respect to the multispecies coalescent
and the �’s are the random gene tree distances as defined in Section 2.3.

We will prove this theorem by lower bounding the quantity
E
h
e�

4
3 �

AB

i
E
h
e�

4
3 �

CD

i

E
h
e�

4
3 �

AC

i
E
h
e�

4
3 �

BD

i appropri-

ately. Towards this end, we note that for any 4 leaves of the species tree A,B,C,D, there
are only 2 possible topologies with respect to S upto relabeling: (a) ((A,B), (C,D)) and (b)
(((A,B), C), D). We will consider each case separately and bound the above quantity in
what follows.

Case (a): ((A,B), (C,D)) In order to tackle the first case, we will use the notation from
Figure 2a below, which shows the species tree S restricted to the leaves A,B,C,D. Let o1, o2
and o3 be the common ancestors of (A,B), (C,D) and (A,C) respectively. Let EAB be the
event that the lineages corresponding to A and B coalesce in the segment (o1, o3) of the tree in
Figure 2a and let EAB be the event that this does not occur. Similarly, we define the events ECD

and ECD. To reduce notational clutter, for w, v 2 S, we will write µwv to denote
P

e2⇡S

wv

µe⌧e.
Now, for leaves X, Y 2 L, let ZXY denote the random quantity 1

2(�XY � µXY ), i.e., it is the
effective (mutation rate adjusted) coalescent time after the lineages corresponding to X and
Y find themselves in a common population. By the memoryless property of the exponential
distribution, it is easy to check that the quantities ZAB � µo1o3 | EAB, ZCD � µo2o3 | EAB, ZAC ,
and ZBD have the same distribution. Let Z denote this common random variable; this is
shown diagrammatically in Figure 2a.

Now, using the fact that by definition, �AB = µAB + 2ZAB, we have

E
h

e�
4
3 �AB

i

= e�
4
3µABE

h

e�
8
3ZAB

i

= e�
4
3µAB

n

E
h

e�
8
3ZAB

�

�

�

EAB

i

P (EAB) + E
h

e�
8
3ZAB

�

�

�

EAB

i

P
�EAB

�

o

(a)

� e�
4
3µAB

n

e�
8
3µo1o3P (EAB) + e�

8
3µo1o3E

h

e�
8
3Z
i

P
�EAB

�

o

= e�
4
3(µAB

+2µ
o1o3)

n

P (EAB) + E
h

e�
8
3Z
i

P
�EAB

�

o

, (21)

where (a) follows from the fact that conditioned on EAB, ZAB  µo1o3 and that conditioned
on EAB, ZAB

d
= Z + µo1o3 . Similarly, we get the following lower bound corresponding to the

leaves C,D.

E
h

e�
4
3 �CD

i

� e�
4
3(µCD

+2µ
o2o3)

n

P (ECD) + E
h

e�
8
3Z
i

P
�ECD

�

o

(22)

On the other hand, notice that �AC = µAC + 2ZAC
d
= µAC + 2Z and �BD = µBD + 2ZBD

d
=

µBD + 2Z. Therefore, we have

E
h

e�
4
3 �AC

i

= e�
4
3µACE

h

e�
8
3Z
i

, and E
h

e�
4
3 �BD

i

= e�
4
3µBDE

h

e�
8
3Z
i

, (23)
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From equations (21) - (23), we have

E
h

e�
4
3 �AB

i

E
h

e�
4
3 �AC

i ⇥
E
h

e�
4
3 �CD

i

E
h

e�
4
3 �BD

i �
e�

4
3(µAB

+2µ
o1o3)

n

P (EAB) + E
h

e�
8
3Z
i

P
�EAB

�

o

e�
4
3µACE

h

e�
8
3Z
i

⇥
e�

4
3(µCD

+2µ
o2o3)

n

P (ECD) + E
h

e�
8
3Z
i

P
�EAB

�

o

e�
4
3µBDE

h

e�
8
3Z
i (24)

(a)
=

n

P (EAB) + E
h

e�
8
3Z
i

P
�EAB

�

on

P (ECD) + E
h

e�
8
3Z
i

P
�ECD

�

o

⇣

E
h

e�
8
3Z
i⌘2

=

2

4

P (EAB)

E
h

e�
8
3Z
i

+ P
�EAB

�

3

5⇥
2

4

P (ECD)

E
h

e�
8
3Z
i

+ P
�ECD

�

3

5 (25)

where in (a), we have used the fact that µAB +µCD +2µo1o3 +2µo2o3 = µAC +µBD and in the
last step we divide each term in the numerator by E

h

e�
8
3Z
i

.
Next, observe that Z stochastically dominates the random variable µL

˜Z, where ˜Z ⇠
Exp(1). Therefore, we have

E
h

e�
8
3Z
i

 E
h

e�
8
3µL

Z̃
i

=

1

8
3µL + 1

. (26)

Substituting this in (25) gives us

E
h

e�
4
3 �AB

i

E
h

e�
4
3 �CD

i

E
h

e�
4
3 �AC

i

E
h

e�
4
3 �BD

i �
✓

8

3

µL + 1

◆

P (EAB) + P
�EAB

�

�

⇥
✓

8

3

µL + 1

◆

P (ECD) + P
�ECD

�

�

=



8

3

µLP (EAB) + 1

�

⇥


8

3

µLP (ECD) + 1

�

(27)

Finally, we observe that the probability that the event EAB occurs is given by 1�e�⌧
o1o3 , where

⌧o1o3 is the length of the path (o1, o3) in the species tree; this follows from the memoryless
property of the exponential distribution. Since ⌧o1o3 � f , we have that P (EAB) � 1 � e�f ,
and similarly P (ECD) � 1� e�f . Substituting this in (27), we get the following lower bound

E
h

e�
4
3 �AB

i

E
h

e�
4
3 �CD

i

E
h

e�
4
3 �AC

i

E
h

e�
4
3 �BD

i �


8

3

µL

�

1� e�f
�

+ 1

�2

(28)

Next, we consider Case (b).

Case (b) : (((A,B), C), D) Here, we will write o1, o2, o3 to denote the most recent common
ancestors of (A,B), (A,C) and (A,D) respectively. Again we will use notation from the
previous case for random variables of the form ZXY , X, Y 2 L. In this case, we let EAB

denote the event that the lineages corresponding to A and B coalesce in the branch (o1, o2)
in Figure 2b. Again, from the memoryless property, it can be seen that ZAB�µo1o2 | EAB and
ZAC have the same distribution and we let Z1 denote a random variable with this common
distribution. Similarly ZCD and ZBD have the same distribution and we let Z2 denote a
random variable with this distribution.
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A B C D

ZAB ZCD

Z
(d)
= ZAC

(d)
= ZBD

o2o1

o3

(a) Case (a)
A B C D

ZAB o2

o1

o3

Z1
(d)
= ZAC

Z2
(d)
= ZBD

(d)
= ZCD

(b) Case (b)

Fig. 2: Pictures showing the random variables and internal nodes used in Proof of Theorem 3

Reasoning as before, we see that since �AB = µAB + 2ZAB,

E
h

e�
4
3 �AB

i

= e�
4
3µAB

n

E
h

e�
8
3ZAB

�

�

�

EAB

i

P (EAB) + E
h

e�
8
3ZAB

�

�

�

EAB

i

P
�EAB

�

o

(a)

� e�
4
3µAB

n

e�
8
3µo1o2P (EAB) + e�

8
3µo1o2E

h

e�
8
3Z1

i

P
�EAB

�

o

= e�
4
3(µAB

+2µ
o1o2)

n

P (EAB) + E
h

e�
8
3Z1

i

P
�EAB

�

o

, (29)

where, as before, (a) follows from the fact that conditioned on EAB, ZAB  µo1o2 and that
conditioned on EAB, ZAB

d
= Z1 + µo1o2 . On the other hand, we have

E
h

e�
4
3 �CD

i

= e�
4
3µCDE

h

e�
8
3Z2

i

(30)

E
h

e�
4
3 �AC

i

= e�
4
3µACE

h

e�
8
3Z1

i

(31)

E
h

e�
4
3 �BD

i

= e�
4
3µBDE

h

e�
8
3Z2

i

. (32)

Therefore, from (29)-(32), we have that

E
h

e�
4
3 �AB

i

E
h

e�
4
3 �CD

i

E
h

e�
4
3 �AC

i

E
h

e�
4
3 �BD

i � e�
4
3(µAB

+µ
CD

+2µ
o1o2�µ

AC

�µ
BD

)

0

@

1

E
h

e�
8
3Z1

iP (EAB) + P
�EAB

�

1

A

=

P [EAB]

E
h

e�
8
3Z1

i

+ P
⇥EAB

⇤

(33)

where the second step follows from the fact that µAB + µCD + 2µo1o2 = µAC + µBD. Finally,
as in case (a), we use the bounds E

h

e�
8
3Z1

i

 1
8
3µL

+1
and that P [EAB] � 1 � e�f to get the

following lower bound.

E
h

e�
4
3 �AB

i

E
h

e�
4
3 �CD

i

E
h

e�
4
3 �AC

i

E
h

e�
4
3 �BD

i � 8

3

µL(1� e�f
) + 1 (34)

Since
�

8
3µL(1� e�f

) + 1

� � 1, from (28) and (34), we have that for any 4 leaves A,B,C,D
such that the species tree S restricted to these four leaves satisfies either ((A,B), (C,D)) or
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(((A,B), C), D), then

E
h

e�
4
3 �AB

i

E
h

e�
4
3 �CD

i

E
h

e�
4
3 �AC

i

E
h

e�
4
3 �BD

i � 8

3

µL(1� e�f
) + 1 (35)

Substituting this lower bound in (20), we get the desired result.

APPENDIX D
PROOF OF THEOREM 4
We will now prove the last main result in our paper that shows that Theorem 3 can be
used to design a tree reconstruction algorithm when one only has access to molecular data
and also provides sample complexity results for this algorithm. Recall that we propose the
following measure of dissimilarity from the samples

bdAB , �3

4

log

✓

1� 4

3

bpAB

◆

. (36)

where bpAB is as defined in (4).
In light of Theorem 3, we proposed the following tree reconstruction procedure, which

we call METAL: use any distance algorithm (like Neighbor Joining [24]) which returns an
additive tree using {bdAB}A,B2L as the dissimilarity measure. We then have the following
result.
Theorem 4. For any ✏ > 0, the METAL algorithm succeeds in reconstructing (the unrooted
version of) S with probability at least 1� ✏ as long as m and k satisfy

k � 1 and m � e
8µ

U

�
3

(8µU + 3)

2
(24 + 8↵add)

2

162↵2
add

log

 

16

�

n
4

�

✏

!

(37)

where ↵add =

3
4 log

�

8
3µL(1� e�f

) + 1

�

.
In the limit as f ! 0, the right side above approaches

C2(µU , µL,�, n, ✏) ⇥ f�2, where C2(µU , µL,�, n, ✏) =
8e

8µ
U

�
3

(8µU + 3)

2

9µ2
L

log

 

16

�

n
3

�

✏

!

.

Proof: Notice that the above algorithm makes an error only if there exists a set of four
leaves A,B,C,D such that ⌧AB + ⌧CD  ⌧AC + ⌧BD = ⌧AD + ⌧BC , but the 4-point condition is
not satisfied by bd, that is:

bdAB +

bdCD � bdAC � bdBD > 0 or bdAB +

bdCD � bdAD � bdBC > 0

Therefore, using the union bound, the probability of error can be upper bounded as follows:

P (Error) 
X

A,B,C,D2L:
⌧
AB

+⌧
CD

⌧
AC

+⌧
BD

=⌧
AD

+⌧
BC

P
h

ˆdAB +

ˆdCD � ˆdAC � ˆdBD > 0

i

+ P
h

ˆdAB +

ˆdCD � ˆdAD � ˆdBC > 0

i

(38)
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We will bound the first term inside the summation of (38) and the second one will follow
similarly. Setting ↵add , 3

4 log
�

8
3µL(1� e�f

) + 1

�

, observe that for a quadruple of leaves
A,B,C,D such that ⌧AB + ⌧CD  ⌧AC + ⌧BD = ⌧AD + ⌧BC , we have

P
h

bdAB +

bdCD � bdAC � bdBD > 0

i

= P
h

bdAB � dAB +

bdCD � dCD � bdAC + dAC � bdBD + dBD

> dAC + dBD � dAB � dCD

i

 P
h

bdAB � dAB +

bdCD � dCD � bdAC + dAC � bdBD + dBD > ↵add

i

,

where the second inequality follows from Theorem 3 which says that dAC+dBD�dAB�dCD >
↵add. We will again use the union bound to get

P
h

bdAB +

bdCD � bdAC � bdBD > 0

i

 P
h

bdAB � dAB +

bdCD � dCD � bdAC + dAC � bdBD + dBD > ↵add

i

 P
h

bdAB � dAB >
↵add

4

i

+ P
h

bdCD � dCD >
↵add

4

i

+P
h

dAC � bdAC >
↵add

4

i

+ P
h

dBD � bdBD >
↵add

4

i

.
(39)

To proceed, we will focus our attention on the first term in (39). The remaining terms will
follow similarly. For notational clarity, let us define the function `(x) , �3

4 log
�

1� 4
3x
�

and
let p(i)AB denote the random quantity 3

4

⇣

1� e�
4
3 �

(i)
AB

⌘

= `�1
⇣

�
(i)
AB

⌘

, where, as usual, �(i)AB is the
distances between A and B on the random gene tree G(i) drawn according to the MSC. Now,
observe that, by definition, bdAB and dAB are equal to `(bpAB) and `(E [bpAB]) respectively.

Our strategy will be to first show that with high probability bpAB is close to 1
m

Pm
i=1 p

(i)
AB

which is in turn close to E [bpAB]. We will then use the fact that `(x) is a well-behaved function
to obtain an upper bound on the the first term of (39).

Conditioned on a particular realization of the MSC process
n

�
(i)
AB

o

i2[m]
, let E1(⇠) and E2(⇠)

denote the events that
�

�

�

1
m

P

i2[m] p
(i)
AB � EbpAB

�

�

�

> ⇠ and
�

�

�

1
m

P

i2[m] p
(i)
AB � bpAB

�

�

�

> ⇠, respectively.
Now, notice we can bound the first term in (39) as follows.

P
h

bdAB � dAB >
↵add

4

i

= P
h

`(bpAB)� `(EbpAB) >
↵add

4

i

(a)
= E

"

P


`(bpAB)� `(EbpAB) >
↵add

4

�

�

�

�

n

�
(i)
AB

o

i2[m]

�

#

(b)

 E


P


`(bpAB)� `(EbpAB) >
↵add

4

�

�

�

�

n

�
(i)
AB

o

i2[m]
, E1(⇠)c, E2(⇠)c

��

+E


P
✓

E1(⇠)
�

�

�

�

n

�
(i)
AB

o

i2[m]

◆�

+ E


P
✓

E2(⇠)
�

�

�

�

n

�
(i)
AB

o

i2[m]

◆�

, (40)

where in (a) we condition on
n

�
(i)
AB

o

, a particular realization of the MSC. In (b) we use the
following fact: for any three events Ea, Eb, Ec, the following inequality holds

P(Ea) = P(Ea|Eb [ Ec)P (Eb [ Ec) + P(Ea|Ec
b \ Ec

c )P (Ec
b \ Ec

c )

 P(Eb [ Ec) + P(Ea|Ec
b \ Ec

c )

 P (Eb) + P (Ec) + P(Ea|Ec
b \ Ec

c ),
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where we identify Ea, Eb, and Ec with the events bdAB�dAB > ↵add
4 , E1(⇠), and E2(⇠) respectively.

Our goal now is to pick a value of ⇠ so that the first term in (40) is 0. Towards this end, we
will use the following result that we prove in Section D.1.

Claim 1. For any ⇠ > 0, conditioned on a particular realization

n

�
(i)
AB

o

i2[m]
of the MSC process,

and the events E1(⇠)c and E2(⇠)c, the following inequality holds

|`(bpAB)� `(EbpAB)|  2⇠
e�4µ

U

�/3

8
3µU

+1
� 8⇠

3

. (41)

Now, Claim 1 tells us that if we make the following choice for ⇠

⇠ = ⇠0 ,
9↵adde

� 4
3µU

�

(24 + ↵add)(8µU + 3)

, (42)

then conditioned on the events E1(⇠0)c and E2(⇠0)c, we have that

`(bpAB)� `(EbpAB)  ↵add

4

Therefore, we have

P


`(bpAB)� `(EbpAB) >
↵add

4

�

�

�

�

n

�
(i)
AB

o

i2[m]
, E1(⇠0)c, E2(⇠0)c

�

= 0. (43)

Using this in (40), we have

P
h

bdAB � dAB >
↵add

4

i

 E


P
✓

E1(⇠0)
�

�

�

�

n

�
(i)
AB

o

i2[m]

◆�

+ E


P
✓

E2(⇠0)
�

�

�

�

n

�
(i)
AB

o

i2[m]

◆�

 e�2m⇠20
+ e�2mk⇠20 , (44)

where the second inequality comes from applying Hoeffding’s inequality to each term, as
in (17) and (18). Since this upper bound is independent of the choice of the pair of leaves,
we can use (44) and (39) in (38) to get

P [Error] 
X

A,B,C,D2L:
⌧
AB

+⌧
CD

⌧
AC

+⌧
BD

=⌧
AD

+⌧
BC

8

⇣

e�2m⇠20
+ e�2mk⇠20

⌘

 8

✓

n

4

◆

⇣

e�2m⇠20
+ e�2mk⇠20

⌘

. (45)

Now, if we pick m and k as in (37) (also (9)), we see that the right side above is less than ✏,
which concludes the proof. The limit as f ! 0 can also be readily computed by observing
that ↵add ! 2µLf as f ! 0.

D.1 Proof of Claim 1
We will begin by using the fact that `(x) satisfies the following Lipschitz property: for any
0  x  y  B, we have

`(y)� `(x) = �3

4

log

✓

1� 4

3

y

◆

+

3

4

log

✓

1� 4

3

x

◆

=

Z y

x

1

1� 4
3t

dt

 (y � x)

1� 4
3B

. (46)
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From this, we have that
�

�

�

�

�

�

`

0

@

1

m

X

i2[m]

p
(i)
AB

1

A� ` (E[pAB])

�

�

�

�

�

�

 ⇠

1� 4
3 (E [bpAB] + ⇠)

, conditioned on E1(⇠), (47)

where we have chosen the B (of (46)) to be E [bpAB] + ⇠, since conditioned on E1(⇠), we have
that

1

m

m
X

i=1

p
(i)
AB  E [bpAB] + ⇠. (48)

Similarly, conditioned on E2(⇠)c and E1(⇠)c, we have
�

�

�

�

�

�

`

0

@

1

m

X

i2[m]

p
(i)
AB

1

A� ` (bpAB)

�

�

�

�

�

�

 ⇠

1� 4
3

⇣

1
m

P

i2[m] p
(i)
AB + ⇠

⌘

 ⇠

1� 4
3 (E [bpAB] + 2⇠)

, (49)

where in the first inequality we have chosen B (of (46)) to be 1
m

P

i2[m] p
(i)
AB + ⇠, since

conditioned on E2(⇠)c, we have that bpAB  1
m

P

i2[m] p
(i)
AB + ⇠, and the second inequality

follows from (48). Therefore from (47) and (49), we have that the following inequality holds
conditioned on E1(⇠)c and E2(⇠)c:

|`(bpAB)� `(E [bpAB])| 
�

�

�

�

�

�

`

0

@

1

m

X

i2[m]

p
(i)
AB

1

A� ` (E[pAB])

�

�

�

�

�

�

+

�

�

�

�

�

�

`

0

@

1

m

X

i2[m]

p
(i)
AB

1

A� ` (bpAB)

�

�

�

�

�

�

 2⇠

1� 4
3 (E [bpAB] + 2⇠)

(50)

Finally, to conclude the proof of the claim, we bound E[pAB] using the properties of
the multispecies coalescent. Notice that, by definition, the random distance �AB is equal to
µAB + 2ZAB, where µAB and ZAB are as defined in Section C. Therefore,

E [bpAB] = E


3

4

(1� e�
4
3 �AB

)

�

=

3

4

⇣

1� e�
4
3µABE

h

e�
8
3ZAB

i⌘

(51)

Next, we observe that the random variable ZAB is stochastically dominated by the random
variable µUZ, where Z ⇠ Exp(1). This implies that

E
h

e�
8
3ZAB

i

� E
h

e�
8
3µU

Z
i

=

1

8
3µU + 1

.

Using this and the fact that µAB  µU� in (51), we have

E [bpAB]  3

4

 

1� e�
4
3µU

�

8
3µU + 1

!

.

Substituting this in (50) concludes the proof.
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