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Abstract

We consider the problem of estimating the evolutionary history of a set of species (phylogeny or
species tree) from several genes. It is known that the evolutionary history of individual genes (gene
trees) might be topologically distinct from each other and from the underlying species tree, possibly
confounding phylogenetic analysis. A further complication in practice is that one has to estimate gene
trees from molecular sequences of finite length. We provide the first full data-requirement analysis of a
species tree reconstruction method that takes into account estimation errors at the gene level. Under
that criterion, we also devise a novel reconstruction algorithm that provably improves over all previous
methods in a regime of interest.
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=

INTRODUCTION

E consider the problem of estimating the common evolutionary history, more precisely
- the species treeof a set of n species using sequence data from multiple genes or
E loci. It is well known that the estimated genealogical history of a gene ( gene treg may
N be topologically distinct from the species tree that encapsulates it, possibly confounding
-— phylogenetic analysis [1]. The subject of this paper is an important source of such gene
 tree incongruence, known as incomplete lineage sortingILS), where two lineages fail to
3 coalesce in their most recent common ancestral population. That failure may lead one of the
lineages to brst coalesce with a more distantly related population thereby producing a gene
tree whose topology differs from the species tree that we are trying to estimate. Several
species tree reconstruction methods have recently been developed that address ILS. See for
instance [2], [3] and references therein. Many such methods rely on a statistical model known
as the multispecies coalescewhich, roughly speaking, generates gene trees by performing
independent coalescent processes in each ancestral population and then assembling these
together. This process is illustrated in Figure 1 below and explained in a little more detail

in Section 2.2 For more background on phylogenetic inference and coalescent theory see,
e.g., [4], [5], [6].

The accuracy of multiloci reconstruction methods has been evaluated empirically, for
instance, in [7], [8]. The focus of this paper is the mathematical characterization of the
performance of such methods. Prior theoretical work has focused mainly on statistical
consistency under the multispecies coalescent; see e.qg.,q], [9], [10], [11]. That is, assuming
access to either correct gene trees or correct pairwise distances (or coalescence times) for
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each gene, a method isstatistically consistentif it is guaranteed to converge on the correct
species tree as the number of genesm, tends to inbnity. [ 12] studies the rates of convergence
(in m) for several such methods. For instance, letting f > 0 denote the smallest branch
length in the species tree, in the limit f ! 0, it was shown that the GLASS algorithm [ 10],
which is an agglomerative clustering method in which the dissimilarity between each pair

of species is taken to be the minimum of the coalescent times among the m genes, needs
the number of genes m to scale asf ~!. On the other hand, m needs to scale asf ~2 for the
STEAC algorithm [ 8], which is also an agglomerative clustering method which instead uses
the averageof the coalescent times across them genes as the measure of dissimilarity. In
reality, however, one has to estimate gene trees and coalescent times from Pnite, say, lengthk
molecular sequences. Taking into account the resulting estimation errors at the gene level is
key to mathematically quantify and compare the performance of different methods (see e.g.,
[13], [14], [15]). Intuitively, for instance, the OminimumO used in GLASS may be signiPcantly
more sensitive to estimation errors than the OaverageO used in STEAC. We make progress
towards this goal by performing the pbrst full data requirement analysis of some species tree
reconstruction methods.

Our contribution is two-fold. First it is known that, in order to reconstruct a single gene
tree correctly with high probability, it is both necessary [ 16] and sufbcient [17] for the
sequence lengthk to scale asf ~2. Therefore, in light of this and the results in [ 12], one might
expect that the total amount of data required, mk, must scale asf =3 and f —* for GLASS
and STEAC respectively. We show that, by a crucial modibcation of STEAC, one obtains an
algorithm that is guaranteed to reconstruct the species tree exactly with high probability as
long as m scales likef 2and k " 1. In patrticular, it sufbces for the overall sample complexity,
mk, to scale like f =2 (which is much smaller than f =3 and f =% in the regime of interest,
where f # 1). Secondly, unlike GLASS, STEAC only works under the restrictive molecular
clock assumption [6], where the mutation rates and population sizes are constant across
the populations represented by the branches of the species tree. We extend the previous
data requirement result beyond the molecular clock by devising a novel STEAC-like species
tree reconstruction algorithm which we call METAL (M__etric algorithm for E stimation of
Trees based on Aggregation of L oci). This algorithm is a distance based method where the
distances are debned by concatenating the molecular sequences corresponding to all the
loci (genes).

2 PRELIMINARIES AND NOTATION

We will begin with a description of our modeling assumptions and introduce some notation
that will be used throughout the paper.

2.1 The Species Tree

At the heart of the model is an unknown species tre& = (V,E) which represents the
evolutionary history of n isolated populations; these isolated populations are represented
by the size n leaf set L of this tree. The goal is to learn the structure of S. We assume that
each branche $ E of the species tree corresponds tot, generations of evolution and we
assume that each generation in this branch has a population of size N.. As is standard in
coalescent theory, we will assign each branche $ E, a length !, > 0 in coalescent time units
debned as!, £ t./N .. The smallest branch length, f £ min,.!,, will play an important role in
our analysis and in particular, we will be interested in the case where f is very small. For a
pair of vertices X,Y $ V, we will use "%, %E to denote the unique path connecting X and
Y in S and ! xy will denote the length of this path. Notice that {! 45} 4 g forms a metric
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Fig. 1: A species tree (the thick, shaded tree) and two samples from the multispecies
coalescent. Notice that while the topology of Gene 1 agrees with the species tree, the
topology of Gene 2 does not.

on the set L and such a metric that can be written as a sum of path lengths on a tree is
called an additive metric(see e.g., f]) with respect to that tree. If we additionally assume that
the population sizes in each branch are equal to some constantN, then {! 45} 4 per forms
an ultrametric with respect to S, i.e., for any three leaves A, B, C such that S restricted to
A, B, C has the topology ((A,B),C)*, we have that

Pap & 'ac = 5c.

We will let A £ maxa e ! ap denote the diameter of the species tree. Finally, To each
branch e $ E, we will also associate a mutation rate, y, and we will let p; £ min.egHe
and Uy £ max.cp 1. denote the smallest and largest mutation rates, respectively.

2.2 The Multispecies Coalescent and the Gene Trees

Following [ 18], we assume that a multispecies coalescefSC) process producesm (indepen-
dent) random genealogies G, G?, ...,G™ based onS. These encode, say, the evolutionary
history of m different genes or loci on the genome and will be referred to as gene trees
henceforth.

It is easier to understand the MSC constructively and in the case where the population size
N. in each branch e $ E is a constant N. Consider the 3 species example of Figurel, where
the thick, shaded tree is the species treeS with edges {e}_;. As is standard in coalescent
theory, we will think of time as running backwards, that is, time (in coalescent time units)
starts at O at the leaves and increases towards the root of the tree. ByT 5 (resp. Tazc), we
mean the time when the parent population of A and B (resp. the parent population of A, B,
and C) branch (or speciate). Let us brst consider one random draw from the MSC, i.e., the
case of one particular gene, Gene 1A, B, and C each have a copy (or allele) of Gene 1 and
the MSC describes the evolutionary history of the lineages corresponding to these alleles.
From time 0 until T,p, the lineages corresponding to A and B are in isolated populations
and hence do not OcoalesceO. However, once these lineages reach the parent population @

x. We will sometimes Pnd it useful to represent trees in the so called Newick Format. For instance, the Newick
representations of the trees labelled Gene 1 and Gene 2 in Figurel are ((A, B),C) and (A, (B, C)), respectively.
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and B (represented by the branch e;), they have a chance to coalesce. According to the MSC,
the coalescence happens after a random time drawn according to the Exp(1) distribution,
that is,

Pty Tag" x| =1" €%  x" 0. (1)

Now, the coalesced A-B lineage and the lineage corresponding to C do not interact until time
Tasc, Which is when they Pnd themselves in a common population. They then coalesce at a
random time t%c which is again such that t%c " Tapc ( Exp(1). This gives us a random
gene tree with the topology ((A,B),C). To contrast with this, consider the case of Gene 2.
Here, the lineages corresponding to the alleles in A and B do not coalesce in e; (since the
randomly drawn coalescence time was more than the length of e,). So, at time T45¢, there
are three lineages present in the branch e;. When there are multiple lineages in the same
population, according to the MSC, each pair independently coalesces again after a random
time period drawn according to the Exp (1) distribution. In this case, the genealogies of B
and C alleles coalesce (at timet%) before A and B, thus giving us a second random tree
with topology (A, (B, C)). Notice that while the genealogy (evolutionary history) of Gene 1
agrees with that of the species, the genealogy of Gene 2 does not. This is an example of
incomplete lineage sorting which, as mentioned earlier, is a fundamental road block for
learning the tree of life.

We refer the reader to [18] for more details on the multispecies coalescent but, we will
state the model here for the sake of completeness. Before we proceed, we will record a

simple fact about the exponential distribution: If X,...,X, fd Exp(1), then min;eqq,.py X5 (
Exp(p). This follows since

. " " —pt
P(ieg{}? X ) HPX ) =e?, (2)
The density of the likelihood of a gene tree G = (V,E®) can now be written down as
follows. We will focus our attention on the branch e $ E of the species tree and for the
gene tree G?, let 1) and O be the number of lineages entering and leaving the branch e
respectively. For instance, consider Gene 1 in Figure 1. Here, two lineages enter the branch
e, and one lineage leaves it. On the other hand, in the case of Gene 2 in Figure 1, two

lineages enter the branch e, and two lineages leave it. Let t\), s = {1,2, 10 o 4 1}

be the s' th coalescent time corresponding to G® in the branch e. Recall that each pair
of lineages in a population can coalesce at a random time drawn according to the Exp (1)
distribution independently of each other. Therefore, after the (s' 1)-th coalescent event at

time tgs 1, there arel; () 541 surviving lineages in branch e and the likelihood that the s’ th
()

coalescence time in branche is te,l corresponds to the event that the minimum of (I 55“)

random variables distributed according to Exp (1) has the value téf)s' t)_ . Therefore using

e,s—1"
(2), the density of the likelihood of G can be written as

e e I |e 1 S+1 o ;
M 10 exp{ () e tg;_l}}, ©

ecE s=1

where, for convenience, we let t" c0 and t 19041 be respectively the divergence times of

the population in e and of its parent populatlon



DASARATHY et al.: DATA REQUIREMENT FOR PHYLOGENETIC INFERENCE FROM MULTIPLE LOCI 5

2.3 Observation Model and The Inference Problem

Much of the prior work on understanding the theoretical complexity of learning species
trees from multiple loci (or gene trees) has focused on the case where exact gene trees
are available. However, in reality one needs to estimate these gene trees from molecular
sequences and indeed there has been a recent thrust towards understanding the effect of
errors in estimating the gene trees (see e.g., 13], [14], [15]). Our approach will be to take this
error into account explicitly and in fact bypass the reconstruction of gene trees altogether.

We model the sample generation process according to the standard Jukes-Cantor (JC)
model (see e.g., p]). That is, given a gene tree G= (V, E), we will associate to each€$ E, a
probability p: (whose dependence on the length of &€ we will make explicit below). Then, the
JC model assigns a character from{ A, T, G, C} uniformly at random to the root of G. Moving
away from the root, with probability p;, each edgeé changes the state of its ancestor to one
of the other three, chosen uniformly at random. The states at the leaves of G are assembled
into a length n vector to get the brst sample; this process is repeatedk times to generate
the data set. Notice that k models the number of sites or the sequence length of each gene.

Now, we will dePne p;. To each edgeé of the random gene tree G is associated a random
length #: according to the MSC. Also, given an edge e $ E of the species tree, we will
write #.-: to denote the length of the portion & that overlaps with e. This lets us debne
the effective (mutation rate adjusted) branch lengths, & = > _. U.#.ne. As before, for any
two vertices X,Y $ V, "%, denotes the path joining X and Y in G and #xy (resp. $xv)
denotes the length of this path under # (resp. under $). Now, for an edge €$ E, we debne
p: £ %(1' e*%‘sé). Notice that this debnition implies that the probability pxy of disagreement
between the characters at verticesX and Y satisbes,pxy = %(1' e*é‘SXY).

The goal then, is to learn the structure of S given the data {%'},,,;c;y Which is an
n) m) k array composed of the characters{A, T, G, C}, where {%’} ;< is the data generated
from the random gene tree G according to the Jukes-Cantor model.

The Jukes-Cantor model was chosen because it lends itself to easy presentation. Since the
techniques developed here are distance-baseall our results can be generalized to the more
realistic Generalized Time-Reversible (GTR) model [19] using spectral techniques as in [20],
[21].

3 MAIN RESULTS

We now state the main results of the paper. First, we will deal with the case where the
strong molecular clock [ 6] assumption holds. We will then turn our attention to the more
general case that does away with this assumption.

3.1 The Molecular Clock Assumption Holds

Assuming that the molecular clock hypothesis holds is often unrealistic; it is equivalent
to believing that all extant and ancestral populations have the same population size and
that the mutations happen at the same rate through time and across populations. It has
however proven to be a useful abstraction for developing powerful methods. In our setting,
this is equivalent to assuming that for all e$ E, u. = u> 0, and N, = N, both constants
independent of e.

In order to infer the species tree from samples, we will begin by debning a distance
measure on the leaves. For each pair of leavesA,B $ L, we debne

N 1 y g
Pas = — S (%= %), @

i€[m],j€[k]
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which can be thought of as the normalized hamming distance between the concatenated
molecular sequences corresponding to speciesA and B. Our prst result, which is proved in
Appendix A, is that, in expectation, {ﬁAB}ABeL is not only a metric on L, but is in fact an
ultrametric with respect to S.

Theorem 1. {E [pag]} 4 e fOrms an ultrametric with respect to the true species tfedn fact,
for any triple A,B,C $ L with the topology((A,B),C) in S, we have

Se—%MTACu
_ 5
SU+ 3 ©)

This result inspires the following procedure for reconstructing S: Use {pPas}.a per as
a dissimilarity measure for L and use a standard algorithm that accepts a dissimilarity
measure and returns an ultrametric tree (see e.qg., F], [6] for background on distance based
methods). For the sake of simplicity, we may assume that we use the UPGMA algorithm
[22], the standard method for bottom-up agglomerative clustering, in order to produce
an ultrametric tree. Then, recalling that p denotes the (common) mutation rate across the
populations represented by the species tree S, and A denotes diameter of S, we have the
following performance guarantee.

E [Pac] = E [Psc] > E[Pas] +

Theorem 2. Given an& > 0, using UPGMA on L with the dissimilarity measurd Pas} 4,5
results in the correct tre& being output with probability no less thanh' &as long as the number
of genesn, and the sequence lengthsatisfy

m" C;(hA,Nn&) f 2 and k" 1, (6)

8 n
whereC,(u, A,n, & = mew;#log <@)

Theorem 2, which is proved in Appendix B, tells us that the above procedure succeeds
with high probability as long as we get molecular sequences of length at least one from
at least O(f %) genes. That is, a total sequence length ofmk = O(f —2) sufbces for reliable
learning.

Notice that the procedure we propose is similar to the STEAC algorithm [ 8] except instead
of using the average coalescent time as the distance measure, we use4), which can be
considered as the normalized hamming distance. It turns out that this modibcation is crucial
to obtaining our improved sample complexity result.

3.2 The Molecular Clock Assumption Does Not Hold

We will now consider the more general case where the strong molecular clock assumption
does not hold. That is, we will assume that each branch e of the species tree has a (possibly)
distinct mutation rate p. and population size N..

First, we observe that {E[pag]} 4,5 as debPned above is no longer an ultrametric with
respect to S and therefore, the above procedure (and for a similar reason, the STEAC
algorithm) cannot be used to recover the species tree. In such situations, one usually turns
to distance methods that rely on the 4-point condition (see e.g., [6]). However, it is not
immediately clear how to debPne a metric that satispes the 4-point condition in our setting.
Our next result, which is arguably the most important contribution of this paper, shows
that this can be done. As before, we will brst consider an idealized measure of dissimilarity
as follows:

3 4
dAB:I Z—llog (1' EE[pAB}),A,B $L;
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where pap is as debned in (4). Our next result, which parallels Theorem 1, shows that
this OidealizedO dissimilarity measure is actually an additive metricwith respect to S. Re-
call that this means that the four point condition holds, i.e., for a quadruple of leaves
A,B,C,D that are such that the topology of S restricted to these 4 leaves is((A,B ), (C,D))
or (((A,B),C),D), the above distances satisfy

dap +dep & dyc +dpp = dap + dpe.
See ], for instance, for more information about tree metrics.

Theorem 3. The set of dissimilaritie§dz} 4 e, forms an additive metric with respect ®. In
fact, suppose the leavésB,C,D $ L are such that eithef(A,B),(C,D)) or (((A,B),C),D)
holds with respect t&, then

dsc +dpp =dap +dpe >dap+dop + ' ada; (7)

where' ,qq = 2log (3p, (1" e€7/)+1) > 0 and py £ mineep Y. is the smallest mutations rate, as
debned in Sectiol.l

It is somewhat surprising that this result is true. It tells us that if one ignores the fact that
there are multiple loci and pretends as though all samples came from a single gene tree, then
the gene tree estimated from this Oconcatenated molecular sequenceO has the same topology
as S. Furthermore, this result is also interesting since phylogenetic mixtures are known to
cause problems for distance-based methods R3]. We prove Theorem 3 in Appendix C.

In light of this, we propose the following algorithm to reconstruct S. First, we debPne the
following sample-based correctedmeasure of dissimilarity (with pap as debned in (4))

~ 3 4
I ZIOg (1' 3 pAB) : (8)
Now, use any quartet-test based algorithm (like Neighbor Joining [ 24]) which returns an
additive tree using {d4g} 4 5cr debPned as in (8) as the input dissimilarity measure. We call
this algorithm METAL (for M __etric algorithm for E_stimation of T rees based on_Aggregation
of Loci).
Recall that uy and p; are respectively the maximum and minimum mutation rates, and

A is the diameter of the species tree S (c.f. Section2.1). We then have the following result.

Theorem 4. For any & >0, METAL succeeds in reconstructing (the unrooted version®fijith
probability at leastl * &as long asn and k satisfy

g 2 i) [16(;
k* landm» & OHu TS TS wa)f ) 16(5) )
162' 2, &
where' ,qq = 3log (Sp. (1" e /) +1).
In the limit asf ! 0, the right side above approaches
s (8py +3)2 . [16(7
Co(Uy, U, AN, & ) 72, whereCy(uy, Uz, AN, & = éHgU ) log (%)
L

Remark. Following [ 17], the diameter A can be replaced by the (often much smaller) pleptH
of the tree by employing a distance method that uses only those distances that are Osmall
enoughO.

1. The depth of an edge e is the length (under 7) of the shortest path between two leaves crossing e; the depth of a tree
is the maximum edge depth.
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We prove Theorem 4 using arguments that are similar in spirit to those in the proof of
Theorem 2. We refer the reader to Appendix D for the exact details.

Theorem 4 tells us that as long as m scales like O(f —2) and k " 1, the species tree can be
reconstructed (upto the location of the root) reliably. It should be noted here that we assume
that for each population/branch e $ E, the mutation rate p. iS constant across gene trees;
generalizing this analysis to the case where the mutation rates are allowed to change is an
interesting avenue for future work.

4 DISCUSSION

Irrespective of the sequence length k of each gene, the number of genesm required needs to
satisfy m $ Q(f ~!) for consistent species tree estimation. To see this, consider the species tree
in Figure 1. Given m gene trees drawn according to the MSC based on this species tree, the
probability that none of them have a coalescent event in branch e, is given by e " (this is
the probability that m independent exponentials are bigger than !.,). Therefore, if m <! 1,
then with probability greater than e~!, none of the m the gene trees have a coalescence event
in e, that is, there is no evidence for the existence of this branch from the sample. This
argument can also be formalized by observing that any algorithm that is able to estimate S
reliably should be able to perform a reliable hypothesis test between two shifted exponential
distributions. Therefore, this result follows from the fact that Dk, (p(X;! ap +f )+p(X;! aB)) =
f, where p(x;a) = e =91 {x " a} and D, (&+Ais the Kullback-Liebler divergence [ 25].

On the other hand, we know from [ 16] that even without the confounding effect of the
multispecies coalescent, a total sequence length ) k) of at least Q(f —2) is needed for
consistent estimation. These two together imply that there is a constant C > 0 such that m
needs to satisfy the following for consistent estimation of the species tree

-2
m" Cmax{f _l,fT}. (10)

As mentioned earlier, the results in this paper show that m $ O(f 2) is achievable
irrespective of the value of k, i.e., in particular, a total data set size of mk $ O(f 2) is
achievable. Prior to this, to the best of our knowledge, the best complexity bounds were
provably attained by GLASS [ 10] (as shown in [12]) which requires that m " O (f ~!) and
k"O (f 2), i.e., a total data set size ofmk $ O (f —3).

This raises two very interesting open questions. (A) What is the precise tradeoff between
m and k for reliable recovery of S and in particular, is it possible to devise an algorithm that
recovers S given m $ o(f —2) when the sequence length, k, is moderate, say, O(f ~1)? (B) Is
there a procedure that attains all points (values of m and k) in this tradeoff, as opposed to
the current situation where it appears as though GLASS meets the lower bounds for large
k and METAL meets the lower bound for small k?
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APPENDIX A
PROOF OF THEOREM 1
Recall that for any pair of leaves A,B $ L, we debne
N 1 & o/
Pa = i Z 1{9%] = %} . (11)
i€[m],j€[k]
Theorem 1{E [Pap]} 4.5cr' forms an ultrametric with respect to the true species tree S. In
fact, for any triple A,B,C $ L with the topology ((A,B),C) in S, we have
3e sHmacpf
8+ 3

Proof: Suppose that A,B,C $ L are three arbitrary leaves of the species tree with the
topology ((A,B ), C). By debnition, we have that

E [Pac] =E P (1' 936‘40)] :

E [Pac] = E [Psc] > E [Pas] + (12)

4

where $,¢ is the distance between A and C on a random gene tree drawn according to the
MSC. Notice that it satisPes $4¢c = WU! 4¢ + 2uZ with Z ( Exp(1). Therefore, we have

t. Unless otherwise noted, expectations will be with respect all the randomness present.
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EPac]" E[Pas] =" %e_gmACE [e_%“z} +' Ze_g”TABE [e_%“z}
w3 <e—%MAB ' e—%umc)
B A(5H+1)
() 3~ srmacyf
(Bu+3) °

where (a) follows from the fact that if X ( Exp(1), for any '> 0, EeX] = (" +1)~! and
(b) follows from observing that for any '> 0 and x<y, we have

efax efay Yy
g :/ e dt" (y' x)e®

Proceeding similarly, It can be seen that E [pac| = E [psc]. This concludes the proof. O

APPENDIX B
PROOF OF THEOREM 2

We now prove Theorem 2 which guarantees that S can be reliably recovered by using a
standard distance-based algorithm like UPGMA or bottom-up agglomerative clustering with
{Pan} A Bcr as a dissimilarity measure for L.

Theorem 2Given an & >0, using UPGMA on L with the dissimilarity measure {Pag} 4.5eL
results in the correct tree S being output with probability no less than 1' &as long as the
number of genes m, and the sequence lengthk satisfy

m" Ci(h,An&) f2 and k" 1, (13)

8 . n
where C; (1, A, n, & = 1663”9A++3)210g <@)
Proof: Recall that the algorithm we propose to recover the tree uses {Pap}a per as
a dissimilarity measure and uses an agglomerative clustering algorithm. Therefore, this
procedure errs if for any triple of leaves A, B,C which have the topology ((A,B),C) with
respect to S, either pag > Pac Or Pus > Prc. Letting (L) denote the set of all unordered

- . . - 3
triples in L, we can use the union bound and over-estimate the error as follows

PEmor] =P | | J {The triple ((A,B),C) is such that Pag > Pac OF Pag > ﬁBC}
((4,B),0)e(%)
& > PlPap> Pacl + P[Pas > Pac]. (14)

((4,B),0)e(%)

We will now upper bound the term P [pas > Pac], the other term will satisfy the same upper
4

bound. Debning '\, = 3glff3‘;f, for an arbitrary triple ((A,B),C) we have
P[Pap" Pac> 0] =Ppap’ E[Pas]" Pac +E[Pac] > E[Pac]’ E[Pas]]
(a) . . N .
& P[Pap" E[Pas]"' Pac +E[Pac]>" um
& P |Pas' Elpas]> —-

5 } +P [E [Pac]' Pac > ;m , (15)
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where (a) follows from Theorem 1. Let us Prst look at the Pbrst term in (15). The second one
will follow similarly.

Ppas' E[pas]>" um/?2]

(a) o . 'um
=E |P | Pas ZpAB+ ZpAB E [Pas {815} icm)

26 [m] 1€[m)]

&E |P|Pap’ Zp

7 1 7 ] e~
{$1(433}i€[m] +P m Z s’ ElPag) >

i€[m]

=E PaB ZpAB

{ $,(¢83} i€[m) Z pAB E [Pas] > Zm

(16)

In (a), we condition on {$§33}2-e[m], where $fj33, as before, is the random distance between
the leaves A and B on the gene tree G%. We then add and subtract 1 o Diclm ij, where

p% = ?l 1’ e‘§5w> The next inequality follows from a union bound. The two terms in

the last equation can now be upper bounded using HoeffdingOs inequality:

k Z Z ! Z pA " um {dj)B} & e—mkaﬁm/lfi. (17)
i=1 j=1 |
% Z p%B " E[Pas] > | Zm & e M%im/16 (18)

1€[m)]

These inequalities follow since E [X ($f4'> ] = pAB and E [pAB} = E [Pag].
Substituting these in (14), we have

P [Error] & Z P [Pas > Pac] +P[Pas > Pac]
(AB)C)e (%)

& Z 4 (e—mkaﬁm/lfi + e—maﬁm/16>
(AB)O)e(%)

2 (n>4 (e—mkaﬁm/m n e—magm/w)
3

Therefore, the probability of error can be made less than &if we pick m and k as shown in

(6) or (13). 0]
APPENDIX C

PROOF OF THEOREM 3

Recall that we debned,z =" 2log (1' 3E[pag]) and Theorem 3, which we will prove now,

tells us that these distances form an additive metric with respect to S.

Theorem 3The set of dissimilarities {daz} 4 e, forms an additive metric with respectto S. In
fact, suppose the leavesA,B,C,D $ L are such that either ((A,B), (C,D)) or (((A,B),C),D)
holds with respect to S, then

dsc +dpp =dap +dpe >dap+dop + ' ada;
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where ' 44 = 3log (Sp. (1" e/)+1) > 0.
Proof: We begin by observing that by dePnition,

3 4 , 3 , 4
dac +dpp' dap' dop =" ZIOg (1' gE[pAc]) 11035 (1 gE[pBD])

3 4 3 4
-1 1" =E[p. -1 1" =E|p 1
+7 Og( 3 [IOAB]) +7 Og( 3 [pAB]) (19)
B [eiouu] £ [e-iter)
=—lo

17\ B e toue] B e im0
where the expectations in the last equation are with respect to the multispecies coalescent

and the $Os are the random gene tree distances as debned in Sectich3.

E[efgéAB}E[efétsCD]

: (20)

We will prove this theorem by lower bounding the quantity

Ele-3%4c|E[e—3%BD appropri-

ately. Towards this end, we note that for any 4 leaves of the species tree A,B, C,D, there
are only 2 possible topologies with respect to S upto relabeling: (a) ((A,B),(C,D)) and (b)
(((A,B),C),D). We will consider each case separately and bound the above quantity in
what follows.

Case (a):((A,B),(C,D)) In order to tackle the Prst case, we will use the notation from
Figure 2abelow, which shows the species tree S restricted to the leaves A,B,C,D . Let 0,0,
and o3 be the common ancestors of (A,B), (C,D) and (A, C) respectively. Let E4p be the
event that the lineages corresponding to A and B coalesce in the segment(o;, 0;) of the tree in
Figure 2aand let E, 5 be the event that this does not occur. Similarly, we debne the events Eq
and E-p. To reduce notational clutter, for w,v$ S, we will write ,, to denote Zeeﬁw He!e.
Now, for leaves X,Y $ L, let Zxy denote the random quantity %($Xy' HUxy), i.e., it is the
effective (mutation rate adjusted) coalescent time after the lineages corresponding to X and
Y bnd themselves in a common population. By the memoryless property of the exponential
distribution, it is easy to check that the quantities Zip' Hoo; | Easy ZeD' Hoyos | Eany Zac,
and Zzp have the same distribution. Let Z denote this common random variable; this is
shown diagrammatically in Figure 2a.
Now, using the fact that by debnition, $,5 = Hap + 2Z 45, We have

E |:e*%5ABi| — e*%MABE [e*gZAB:|

— e*%MAB {]E |:e*%ZAB

(a)

w e 3HAB {e—gﬂor)sP (Eap) + e 3R [e_%z} P ($>}

EAB} P(Eip) + E [e*%ZAB

e )

_ g3 (nant2m00) {1@ (Ep) + E [e—%Z] iy (m)} , (21)
where (a) follows from the fact that conditioned on Esp, Zap & H,,,, and that conditioned

on Eip, Zag 174 Ho,0s- Similarly, we get the following lower bound corresponding to the
leaves C, D.

_4

E {e—gaw] v a5 (HoD+2p050) {]P(ECD) R [e—gz] ]P’(E)} 22)

On the other hand, notice that $,c = Hac + 2Zac 4 Hac +2Z and $sp = Upp + 2Zpp 4
Usp + 2Z. Therefore, we have

E |:e_%6AC] _ @ FHACE [e—gz] , and E [e_%‘SBD} — g SMBPR [e_gz} : (23)
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From equations (21) - (23), we have
o5 (BaB+240105) {]P’ (Eap) +E [efgz] P (@)}
1) ; ; :
E [e—gmc} E [e—§5BD] g sHaCR [e‘ﬁz]
e*%(#oD+2u0203) {]P) (ECD) +E [e—gz} P (E)}
e 3H5D[E [e‘gz}
(riew = [o] 2 @)} {r(eon 2 [e] ¢ )

([e])

E[e-tou] R [ertios

) (24)

—
)
~

= [ 2B pEm)|) | ey

2o sfr]

where in (a), we have used the fact that pap + Uep + 2Ho05 + 2Hoy0s = Hac + Uep and in the
last step we divide each term in the numerator by E [e—gz}_

P (Ecp) (25)

Next, observe that Z stochastically dominates the random variable p,Z, where Z (
Exp(1). Therefore, we have
~ 1
E [e—%z} &E [e—%mz} S (26)
ML +1

Substituting this in ( 25) gives us

B [e-to0] B [etr]

E [e_%éw} . [e_%éBD] " |:(§HL + 1) P (Eag) + P (E)} ) Kgm + 1) P (Ecp) + P (Eop)

= |:§“LP(EAB) + 1} ) EHLP (Ecp) + 1} (27)

Finally, we observe that the probability that the event E,z occurs is given by 1' e 713, where
o105 IS the length of the path (o, 03) in the species tree; this follows from the memoryless
property of the exponential distribution. Since !,,, " f, we have that P(Esz) " 1' e/,
and similarly P(Ezp)" 1' e /. Substituting this in ( 27), we get the following lower bound

E [e‘%fﬂm} E [e—%(gc*D} 18 o )
E [e*%%c] E [e*%&m} {_“L (1" e)+ 11 (28)

Next, we consider Case (b).

Case (b) :(((A,B),C),D) Here, we will write o0;,0,,03 to denote the most recent common
ancestors of (A,B), (A,C) and (A,D) respectively. Again we will use notation from the
previous case for random variables of the form Zyy,X,Y $ L. In this case, we let E4p
denote the event that the lineages corresponding to A and B coalesce in the branch(oy, 0;)
in Figure 2b. Again, from the memoryless property, it can be seen that Z 45" U,,., | Eaz and
Z 4o have the same distribution and we let Z; denote a random variable with this common
distribution. Similarly Zcp and Zgp have the same distribution and we let Z, denote a
random variable with this distribution.
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(a) Case (a) (b) Case (b)

Fig. 2: Pictures showing the random variables and internal nodes used in Proof of Theorem 3

Reasoning as before, we see that sinceb, g = Uap + 2Z 45,

E |:e*%§AB:| — e*%MAB {]E [e*%ZAB

EAB} P(Eip) + E [e*%ZAB

e )
(@) e~ 3HaB {efgﬂolozp(EAB) 1 @ 3hoeR [e—gzl} P (E)}
— e 5(raB+2uor0,) {IP’ (Eag) + E [e—gzl] P (@)} ’ (29)

where, as before, (a) follows from the fact that conditioned on Esp, Ziap & Mo, and that
conditioned on Eap, Zap < Z, + Ho,0,- ON the other hand, we have

E [e*%‘;CD} = e 3D [efgzﬂ (30)
E [e*%‘”w} — e SHacR [e*%ZI} (31)
E|e ir| e i [ei%). (32)

Therefore, from (29)-(32), we have that

E [e*é‘SAB] E [e*é‘SCD}
4
" e—g(HAB+MCD+2#0102—#A0—#BD)

) EP[LEAB;]] +P[Eu] )

where the second step follows from the fact that pap + Hop + 2Ho,0, = Hac + Mpp- Finally,
as in case (a), we use the boundsE [e‘gzﬂ & w7 and that P[Esp] " 1" e/ to get the
following lower bound. ’

E [e‘g‘”‘B} E [e‘%éw] ) o
- [efgm] B [efgaw] ghe(lh e+l (34)

Since (3p (1" e f)+1)" 1, from (28) and (34), we have that for any 4 leaves A,B,C,D
such that the species treeS restricted to these four leaves satisbes either((A,B ), (C,D)) or
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(((A,B),C),D), then
E [e—%‘sw} E [e—%ts(m] g o
E[o 152 £ e t900] gl &)+l (35)

Substituting this lower bound in ( 20), we get the desired result. O

APPENDIX D
PROOF OF THEOREM 4

We will now prove the last main result in our paper that shows that Theorem 3 can be
used to design a tree reconstruction algorithm when one only has access to molecular data
and also provides sample complexity results for this algorithm. Recall that we propose the
following measure of dissimilarity from the samples

~ 3 4
dap = 1 log (1' 3 pAB) : (36)

where pp is as debned in ().

In light of Theorem 3, we proposed the following tree reconstruction procedure, which
we call METAL: use any distance algorithm (like Neighbor Joining [ 24]) which returns an
additive tree using {dap} 4 e as the dissimilarity measure. We then have the following
result.

Theorem 4For any & >0, the METAL algorithm succeeds in reconstructing (the unrooted
version of) S with probability at least 1' &as long asm and k satisfy

8uyA

L 2 ro2 16("
K" landm" & (8uy +3)7(24 + 8 ada) log <_(4)> (37)

162" 2, &

where ' a0 = 3log (3p (1" e /) +1).
In the limit as f ! 0, the right side above approaches

CZ(HU!uLaA1n1& ) f721 Where CQ(“U1“L$A1n1& -

= 2 (16(1
Se ¥ (Buy +3)° ) ( (5)> |
op3 &

Proof: Notice that the above algorithm makes an error only if there exists a set of four
leaves A,B,C,D suchthat! g +'!'cp & '4c +'8p ='ap + ! Be, but the 4-point condition is
not satisbed by d, that is:

dap+dop' dac’ dpp>0 or dagp+dep’ dap' dpe> 0
Therefore, using the union bound, the probability of error can be upper bounded as follows:
P (Error) & > P [dAB +dep' duc' dpp > 0]

A,B,C,DeL:
TAB+TeD<TAC+TBD=TAD+TBC

+P [dAB +dep' dap' dpe > 0] (38)
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We will bound the prst term inside the summation of ( 38) and the second one will follow
similarly. Setting ' .qa = 2log (§u.(1' e/)+1), observe that for a quadruple of leaves
A/B,C,D suchthat! s.g+'!'cp & 'ac +!'8p ='ap + ! Bc, We have

P |dup + acp ' aAC ' dpp > 0} =P [CTAB " dap + aCD " dep! aAc + dac’ dsp + dap
>dsc+dpp' dap' dCD]
&P [a\AB " dap+0dep’ dep' dac+dac’ dpp +dpp > add} ,

where the second inequality follows from Theorem 3 which says that d,c+dgp' dag' dep >
' .ada- We will again use the union bound to get

P |dup + acD ' aAc' dpp > 0} & IED[aAB " dap + a\CD' dep' a\AC + dac' dpp + dgp > add}

&P [a\ABI dup > ' de} +P [a\CD' dep > ' de}
P [dACI dyc > | de} +P [dBD' dgp > l add] :

4 (39)

To proceed, we will focus our attention on the prst term in ( 39). The remaining terms will
follow similarly. For notational clarity, let us debne the function ((x) ="' 2log (1' %x) and

let p{’), denote the random quantity 3 (1' e_§5§g> = (! <$1(39), where, as usual, ${), is the

distances betweenA and B on the random gene tree G% drawn according to the MSC. Now,

observe that, by debnition, cTAB and d,p are equal to ((pag) and ((E [pag]) respectively.
Our strategy will be to brst show that with high probability  p4p is close to % Yoy pfjg

which is in turn close to E [p4z]. We will then use the fact that ((x) is a well-behaved function

to obtain an upper bound on the the prst term of ( 39).
Conditioned on a particular realization of the MSC process {$(i) } ' let Ei()) and Ex())
i€lm

denote the events that ‘% Zie[m} D% % Zze[m] pf&;' ﬁAB‘ > ), respectively.
Now, notice we can bound the brst term in ( 39) as follows.

Pldis' dap> 2] =P [((Pan) (BPan) > —]

P {((PaB)" ((Epap) >

{$‘(39}ie[m]} ]
%’BE[]P _((ﬁAB)' ((Epagp) > jfd {$ g}le[ ],E()> E2<)>H

(i
e (eolisa), )] 2 (@), )] @

where in (a) we condition on {$§33 , a particular realization of the MSC. In (b) we use the
following fact: for any three events E,, E, E., the following inequality holds

P(E) =PEIE . E)P(E,E )+ P(EIE -E.)P(E -E)
& P(E,,E.) +P(E|E -EY)
& P(E)+P(E)+PEIE-EL),
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where we identify E,, E,, and E. with the events EAB' dap > 224, E () ), and E() ) respectively.

Our goal now is to pick a value of ) so that the brst term in (40) is 0. Towards this end, we
will use the following result that we prove in Section D.1.

Claim 1. For any) > 0, conditioned on a particular realizatio{|$fj}9} - of the MSC process,
ielm

and the event&; () )¢ and E() )¢, the following inequality holds

. , . 2
|((Pan)" ((EPan)| & m (41)
%MU+1 3
Now, Claim 1 tells us that if we make the following choice for )
A 9" aq€ 3HUA
pu— pu— ) 42
) )0 (24 +' add)(SlJ-U + 3) ( )
then conditioned on the events E;()o)¢ and E()o)¢, we have that
((Pan)' ((EPan) & =
Therefore, we have
P [((%) ' (Bpan)> P {$h ) B0 E2<>o>c] = 0. (43)
Using this in (40), we have
~ " add (i) i)
Pldis' dip> 2] & E []P’ (El()o) {$A3}ie[m])] L E [IP’ (Ez()o) {$A3}ie[m])]
& e72méi 4 g 2mhed, (44)

where the second inequality comes from applying HoeffdingOs inequality to each term, as
in (17) and (18). Since this upper bound is independent of the choice of the pair of leaves,
we can use @4) and (39) in (38) to get

P [Error] & > 8 <e‘2m68 + e‘2mk53>

A,B,C,DEL:
TAB+TcD<TAC+TBD=TAD+TBC

&8 (2) (e72méd - e2mit). (45)

Now, if we pick m and k as in (37) (also (9)), we see that the right side above is less than&
which concludes the proof. The limit as f ! 0 can also be readily computed by observing
that ' .qq! 2u.f asf ! 0. O

D.1 Proof of Claim 1

We will begin by using the fact that ((x) satisbes the following Lipschitz property: for any
0& X &y & B, we have

((y)" ((x)=" zlog (1' %y)wL%log (1' §x>

v
[
. 13t

(46)
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From this, we have that
)

(ZpAB) Pl & T E B 1))

where we have chosen the B (of (46)) to be E [pag] +), since conditioned on E () ), we have
that

&

conditioned on E()), 47)

—Zp & E [Pap] +). (48)

)

Similarly, conditioned on E())¢ and E() )¢, we have
13 (% Zze[m] pAB +)>
& ) (49)

1 Dl A
( (m Z pi;)B) ((Pan)
i€[m]
1" 5(EPap] +2))’
where in the brst inequality we have chosen B (of (46)) to be %Zie[m] p% + ), since
conditioned on E())¢, we have that pap & %Zidm] p% +), and the second inequality
follows from ( 48). Therefore from (47) and (49), we have that the following inequality holds
( Z P ) E[pas])

1€[m]

2)
Finally, to conclude the proof of the claim, we bound E[pag| using the properties of
the multispecies coalescent. Notice that, by dePnition, the random distance $,5 is equal to

conditioned on E())° and E())“:
1 N TN
( (E Z D(AE) ((Pas)
1€[m]
& —
1" 5 (E[Pasl +2))
Map + 2Z A, Where pap and Z 45 are as debned in SectionC. Therefore,

[((Pas) " ((E[Pas

(50)

E [pag] = E {%(1 ' eé&ag)}
= 2 (1' e‘%lmBE [e_%ZAB}> 1)

Next, we observe that the random variable Z ,5 is stochastically dominated by the random
variable pyZ, where Z ( Exp(1). This implies that
E [e sZAB] " E [e‘ng}
1
Using this and the fact that psp & pyA in (51), we have

3 g sHud
Epapl & -1 ——— .

Substituting this in ( 50) concludes the proof.
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