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Abstract
Representational Similarity Learning (RSL)
aims to discover features that are important in
representing (human-judged) similarities among
objects. RSL can be posed as a sparsity-
regularized multi-task regression problem. Stan-
dard methods, like group lasso, may not select
important features if they are strongly correlated
with others. To address this shortcoming we
present a new regularizer for multitask regression
called Group Ordered Weighted `1 (GrOWL).
Another key contribution of our paper is a novel
application to fMRI brain imaging. Representa-
tional Similarity Analysis (RSA) is a tool for test-
ing whether localized brain regions encode per-
ceptual similarities. Using GrOWL, we propose
a new approach called Network RSA that can dis-
cover arbitrarily structured brain networks (pos-
sibly widely distributed and non-local) that en-
code similarity information. We show, in theory
and fMRI experiments, how GrOWL deals with
strongly correlated covariates.

1. Introduction
This paper considers the following learning task. Suppose
we have a set of items along with human-judged pairwise
similarities among them. For instance, the items could
be visual stimuli such as advertisements, pictures, or dia-
grams. Assume that we also have a high-dimensional fea-
ture associated with each item. These could be numerical
features quantifying the characteristics of each item or, in
the case of fMRI, the features are voxel responses to stim-
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uli. The learning task is to determine the subset of fea-
tures that is most predictive of the human-judged similari-
ties. This can be posed mathematically as follows. Let S
be an n×nmatrix of pairwise similarities between n items.
Let X be an n × p matrix where the ith row is the 1 × p
vector of the features for item i. We then wish to find a
weight matrix W such XWXT ≈ S. The weight matrix
reveals which features are most important and how they are
combined to represent the human-judged similarities. We
call this Representational Similarity Learning (RSL). This
problem can be viewed as special case of regression metric
learning, see (Kulis, 2012), but the focus of RSL is to iden-
tify the subset of features that are most strongly influencing
human-judged similarities. The theory and methods devel-
oped in this paper may also be applicable to other metric
learning problems (Atzmon et al., 2015; Ying et al., 2009).

Let us illustrate this learning problem with two applica-
tions. First, suppose the items are diagrams of chemical
molecules, and each diagram is also described by a vector
comprised of many visual features (e.g., counts of differ-
ent atom types, bonds, bond angles, etc). Novice chem-
istry students may miss critical similarities and differences
when comparing different diagrams. After gathering pair-
wise similarity judgments from the students, RSL could be
used to identify which features they are attending to and,
thus, which important features they may be overlooking
(Rau et al., 2016). Second, consider Representational Sim-
ilarity Analysis (RSA) in fMRI brain imaging (Kriegesko-
rte et al., 2008). In RSA a person is scanned while viewing
n different visual stimuli. Pairwise similarities are obtained
through other experiments, such as asking people to look
at pairs of stimuli and rate the similarity. In this case, the
features are the stimuli responses of p voxels in the brain,
and the goal is to determine which voxels (and hence brain
regions) are encoding the similarities. RSA is depicted in
Figure 1, and it is the focus of our application in Section 4.
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Figure 1. Representational Similarity Analysis. Traditional RSA
methods consider only localized brain regions of interest or spher-
ical clusters in the cortex (upper left) (Kriegeskorte et al., 2006;
2008). In Section 4, we propose a new Network RSA (NRSA)
method that can potentially identify non-local brain networks that
encode similarity information (lower left).

1.1. Representational Similarity Learning

Let X ∈ Rn×p denote a feature matrix. Each row cor-
responds to p features associated with a specific item, and
each column corresponds to the values of a specific feature
for the n items. The goal of RSL is to find a sparse and
symmetric matrixW ∈ Rp×p such that S ≈XWXT .

By sparse we mean that at most k < p rows/columns of
W are nonzero. The locations of the nonzero elements
indicate which features are included in the similarity repre-
sentation. For instance, consider the n × 1 vectors corre-
sponding features xk and x` (i.e., the kth and `th columns
of X). It is easy to show that the contribution of these
two features to the similarity representation is given by
Wk,` xkx

T
` + W`,k x`x

T
k . If Wk,` = W`,k 6= 0, then the

correlations between the two features contribute to the ap-
proximation of the similarity matrix S. The complete sim-
ilarity representation can be expressed as

S ≈ XWXT =

p∑
k,`=1

Wk,` xkx
T
` .

The approximation problem can be posed as the least
squares optimization

min
W
‖S −XWXT ‖2F (1)

where the objective is the Frobenius norm of the difference
between the similarity matrix S and its approximation.
Classic studies of human-produced similarity judgments in
many domains of interest yield low rank matrices (McRae
et al., 2005; Shaver et al., 1987; Shepard, 1980) due to clus-
tering or other representational structure amongst the items
under consideration. Therefore, we suppose S is a real,

symmetric and approximately rank r matrix, then there ex-
ists a matrix Y ∈ Rn×r and diagonal matrix D ∈ Rr×r
which satisfies S ≈ Y DY T (e.g., obtained via eigende-
composition or Cholesky decomposition) where the diag-
onal entries of D correspond to the sign of the r largest
eigenvalues and the columns of Y are the corresponding
eigenvectors of S. We will assume that S is rank r in the
following discussion (if not, then we will use its best rank
r approximation instead). Thus, we may instead consider
the optimization

min
B
‖Y −XB‖2F (2)

For any coefficient matrixB the corresponding weight ma-
trix is given by W = BDBT . Both optimizations are
convex, but we will work with the latter since it automat-
ically enforces the low-rank assumption and can be easily
modified to include additional constraints or regularizers.
It is easily verified that every stationary point of (2) leads
to a stationary point of (1). Therefore, since both opti-
mizations are convex, B̂ = arg minB ‖Y −XB‖2F yields
Ŵ = B̂DB̂T , which is a minimizer of (1).

In many applications the weight matrix W and the coeffi-
cient matrixB are expected to exhibit sparsity. Indeed, our
hypothesis is that a small subset of the features encodes
the similarity representations, hence the sparsity. Thus, the
optimization above can be modified to obtain sparse and
low-rank solutions, as described next.

2. RSL via Group Lasso
Consider the group lasso optimization

min
B∈Rp×r

‖Y −XB‖2F + λ‖B‖1,2 . (3)

Note that the optimization variable B is a p × r matrix,
which guarantees a rank r (or less) solution, and thus
similarity representation XBDBTXT will be rank r at
most, which is a simple way to enforce the low-rank con-
straint. The parameter λ > 0 is an adjustable weight on the
sparsity-promoting regularizer ‖B‖1,2, which is defined as
follows. The rows of B are denoted by βi·, i = 1, . . . , p,
and the norm ‖B‖1,2 =

∑p
i=1 ‖βi·‖2. This encourages

solutions with only a few nonzero rows inB (Lounici et al.,
2009; 2011; Obozinski et al., 2011). We note that the op-
timization in (1) can also be modified directly to obtain
sparse and low-rank solutions. For instance, the nuclear
norm of W could be penalized to obtain a low-rank solu-
tion. However, the nuclear norm optimization tends to be
computationally expensive in practice.

We mention here that recently a similar approach to sparse
distance metric learning has been proposed in (Atzmon
et al., 2015). This method also solves a form of sparsity-
regularized optimization to obtain a sparse W matrix but
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with weak supervision in form of rankings over triplets of
items. Also, (Ying et al., 2009) have proposed and studied
another optimization for sparse metric learning where they
impose group sparsity directly onW .

The main technical innovation in this paper is a new ap-
proach to the group lasso that is designed to cope with
strongly correlated covariates (i.e., cases in which certain
columns of X may be close to, or even exactly, collinear).
This is a concern in fMRI, since certain voxels may have
very correlated activation patterns. This problem is illus-
trated in Figure 2, where we simulate a situation in which
columns 5 and 7 of the data matrix X are highly corre-
lated. Group lasso selects one of the corresponding rows in
B (row 5), whereas GrOWL correctly selects both rows 5
and 7. Note that the group lasso can select at most n fea-
tures (n being the number of items), since the number of
nonzero rows in the solution cannot exceed the number of
measurements. This can be severe limitation of the group
lasso in applications where the number of features far ex-
ceeds the number of items.

Figure 2. A comparison of group lasso (middle) and grOWL
(right) optimization solutions with correlated columns in X
showing that GrOWL selects relevant features (row 5 and 7) even
if they happen to be strongly correlated and automatically cluster
them by setting the corresponding coefficient rows to be equal (or
nearly equal).

In the standard (single-task) regression problem, this issue
has been tackled using many techniques, including elas-
tic net (Zou & Hastie, 2005), OSCAR (Bondell & Reich,
2008), OWL (Figueiredo & Nowak, 2016), and others. We
propose a generalization of the OWL approach to the multi-
task setting, and thus call our new approach Group OWL
(GrOWL). We show that GrOWL shares many of the de-
sirable features of the OWL method, namely it automati-
cally clusters and averages regression coefficients associ-
ated with strongly correlated columns of X . This has two
desirable effects, in terms of both model selection and pre-
diction. First, GrOWL can select all of the relevant features
in X , unlike standard group lasso which may not select
relevant features if they happen to be strongly correlated
with others. Second, GrOWL encourages the coefficients

associated with strongly correlated features to be near or
exactly equal. In effect, this averages strongly correlated
columns which can help to denoise features and improve
predictions. This property of GrOWL could also be useful
in other applications of multi-task regression with corre-
lated features.

3. GrOWL
Here we discuss modifications of the group lasso in order to
deal with strongly correlated columns in X . Our approach
is motivated by the recently proposed OWL (Figueiredo
& Nowak, 2016), a special case of which is the so-called
OSCAR (Bondell & Reich, 2008). These methods are
designed to automatically cluster and effectively average
highly correlated columns in the data matrix, and have been
shown to outperform conventional lasso in many applica-
tions, particularly in cases of strong correlations. Both
OWL and OSCAR deal only with the single regression set-
ting. The main innovation here is the development of new
norms, in the spirit of OWL, that allow us to deal with cor-
related columns in the multiple regression / multitask set-
ting. We define the GrOWL (Group OWL) norm, and show
that it automatically groups and averages highly correlated
columns inX in the multiple regression setting.

In this section, we consider the general optimization

min
B∈Rp×r

L(B) + G(B) (4)

where typical loss functions considered here are absolute
error, L(B) = ‖Y −XB‖1, or squared Frobenius error,
L(B) = ‖Y − XB‖2F , and G(B) is the GrOWL norm
defined later in the section. We give proof sketches for the
main theorems and leave the proof details to the supple-
mentary material.

3.1. GrOWL penalty

Let B ∈ Rp×r and let βi· and β·j denote the ith row and
jth column ofB. Define the GrOWL penalty

G(B) =

p∑
i=1

wi‖β[i]·‖2, (5)

where β[i]· is the row ofB with the i-th largest 2-norm and
w is a vector of non-negative and non-increasing weights.
Before we analyze the GrOWL regularization, we state
a generalization of Lemma 2.1 in (Figueiredo & Nowak,
2016) which will be useful later in the section.

Lemma 1. Consider a vector β ∈ Rp+ and any two of its
components βj and βk, such that βj > βk. Let v ∈ Rp+
be obtained by applying a transfer of size ε, ε′ to β such
that ε ∈ (0, (βj − βk)/2] and −βk ≤ ε′ ≤ ε, that is:
vj = βj − ε, vk = βk + ε′, and vi = βi, for i 6= j, k. Let
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w be a vector of non-increasing non-negative real values,
w1 ≥ w2 ≥ · · · ≥ wp ≥ 0, and ∆ be the minimum gap
between two consecutive components of vector w, that is,
∆ = min{wi−wi+1, i = 1, · · · , p−1}. Ωw(·) is the OWL
norm with weight vector w, then

Ωw(β)− Ωw(v) ≥ ∆ε.

Proof sketch. The proof is similar to that of Lemma 2.1 in
(Figueiredo & Nowak, 2016) with different sizes ε, ε′. The
result follows since we assume that increase in k-th com-
ponent is less than decrease in j-th component i.e., ε′ ≤ ε.

The following theorem states that identical variables lead
to equal coefficient rows corresponding to those variables
in the solution given by the optimization using GrOWL.

Theorem 1 (Identical columns). Let B̂ denote the solution
to the optimization in (4) with L(B) = ‖Y −XB‖1 or
L(B) = ‖Y − XB‖2F . If columns x·j and x·k satisfy
x·j = x·k and the minimum gap, ∆ > 0, then β̂j· = β̂k·.

Proof sketch. The proof is divided into two steps. First,
we show ‖β̂j·‖ = ‖β̂k·‖ and then we further show that
the rows are equal. We proceed by contradiction. Assume
‖β̂j·‖ 6= ‖β̂k·‖ and, without loss of generality, suppose
‖β̂j·‖ > ‖β̂k·‖. We see that there exists a modification of
the solution with a smaller GrOWL norm using Lemma 1
and same data-fitting term, and thus smaller overall objec-
tive value which contradicts our assumption that B̂ is the
minimizer of L(B) +G(B).

The following theorems state that nearly identical variables
lead to equal norm coefficient rows, and further highly cor-
related coefficient rows, corresponding to those variables
in the solution given by the optimization using GrOWL.

Theorem 2 (Correlated columns 1). Let B̂ denote the so-
lution to the optimization in (4) with L(B) = ‖Y −XB‖1
or L(B) = ‖Y −XB‖2F . If x·j and x·k satisfy ‖x·j −
x·k‖1 ≤ ∆√

r
or ‖x·j − x·k‖2 ≤ ∆

‖Y ‖F respectively, then

‖β̂j·‖ = ‖β̂k·‖.

Proof sketch. The proof is similar to the identical columns
theorem. By contradiction and without loss of generality,
suppose ‖β̂j·‖ > ‖β̂k·‖. We show that there exists a trans-
formation of B̂ such that the increase in the data fitting
term is smaller than decrease in the GrOWL norm.

Theorem 3 (Correlated columns 2). Let B̂ denote the so-
lution to the optimization in (4) with L(B) = ‖Y −XB‖1
or L(B) = ‖Y −XB‖2F . If x·j and x·k satisfy ‖x·j −
x·k‖1 ≤ ∆

φ
√
r

or ‖x·j − x·k‖2 ≤ ∆
φ‖Y ‖F respectively, then

‖β̂j· − β̂k·‖ ≤ 8φ‖β̂k·‖
4φ2+1

which further implies that

1 ≥
β̂Tj·β̂k·

‖β̂j·‖‖β̂k·‖
≥ 1− 1

2

(
8φ

4φ2 + 1

)2(
≥ 1− 2

φ2

)

where φ ≥ 1.

Proof sketch. By contradiction, suppose ‖β̂j· − β̂k·‖ ≥
8φ‖β̂k·‖
4φ2+1 ≥ 2‖β̂k·‖

φ . We show that there exists a trans-

formation of B̂ such that the increase in the data fitting
term is smaller than the decrease in the GrOWL norm.
This contradicts our assumption that B̂ is the minimizer
of L(B) +G(B) and completes the proof.

So far, we have seen that the GrOWL penalty has desirable
clustering properties that lead to nearly identical coefficient
rows. We study two variants of GrOWL with different
weight sequences w. We study the GrOWL-Lin weights
with linear decay (equivalent to the OSCAR in single-task
regression), and the GrOWL-Spike weight sequence which
puts a big weight on the maximum magnitude while the rest
of the coefficients are weighted equally.

GrOWL-Lin: wi = λ+ λ1(p− i)/p for i = 1, . . . , p
GrOWL-Spike: w1 = λ+ λ1, wi = λ1 for i = 2, . . . , p

3.2. Proximal algorithms

We derive the proximal operator for the optimization using
the GrOWL norm here. The computational algorithms to
solve the GrOWL optimization based on the proximity op-
erators can be found in (Parikh & Boyd, 2013). The proxi-
mal operator of the GrOWL norm is given by

proxG(V ) = arg min
B

1

2
‖B − V ‖2F +G(B) (6)

In the following theorem, we solve for the proximity op-
erator of GrOWL in terms of the proximity of OWL. For
the exact formulation of proxΩw

, see (Bogdan et al., 2013),
(Zeng et al., 2014).

Theorem 4. Let ṽi = ‖vi·‖ for i = 1, · · · , p. Then
proxG(V ) = V̂ , where i-th row of V̂ is

v̂i· = (proxΩw
(ṽ))i

vi·
‖vi·‖

(7)

Proof Sketch: The proof proceeds by finding a lower bound
for the objective function in (6) and then we show that the
proposed solution achieves this lower bound.

Efficient O(p log p) algorithms to compute proxΩw
have

been proposed by Bodgan et al (Bogdan et al., 2013; 2014).
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4. RSL from fMRI Data
Network-based approaches to cognitive neuroscience typ-
ically assume that mental representations are encoded as
distributed patterns of activation over large neural popula-
tions, with different populations encoding different kinds
of representational structure and communicating this struc-
ture to other network components. Extensive research over
past several years has focused on testing such hypotheses
using data from functional brain imaging techniques such
as fMRI. The best-known approach in this vein has been
RSA (Kriegeskorte et al., 2008). RSA is typically applied
either to a specific brain region of interest (ROI) or to many
localized regions throughout the brain in a process called
searchlight analysis (Kriegeskorte et al., 2006). For a given
region, RSA computes the cosine distances between the
evoked responses for all stimulus pairs. The resulting dis-
similarity matrix is correlated with a target matrix of known
psychophysical distances amongst stimuli. If these correla-
tions are reliably non-zero, this suggests the corresponding
region may encode the similarity information.

A drawback of ROI and searchlight RSA is that these meth-
ods place strong assumptions on the anatomical structure
of the regions thought to encode the similarities of inter-
est (predefined ROIs or spherical clusters). We propose a
new approach called Network RSA (NRSA) that can dis-
cover arbitrarily structured brain networks (possibly widely
distributed and non-local) that encode similarity informa-
tion. The key insight behind our method is that RSA can
be posed as a multi-task regression problem which, in con-
junction with sparsity regularization methods, can automat-
ically detect networks of voxels that appear to jointly en-
code similarity information.

Network RSA is summarized as follows. Consider a set
of n items and suppose we are given an n × n similar-
ity matrix S, where the ij-th element Sij is the known
psychophysical similarity (Tversky & Gati, 1982) between
item i and item j. For example, these may come from hu-
man judgments of perceptual similarity between pairs of
stimuli. RSA is based on the hypothesis that there exists a
set of voxels whose correlations across stimuli encode the
similarities in S, as depicted in Figure 1. In RSA, the fea-
tures are X ∈ Rn×p, a matrix of voxel activations. Each
row corresponds to activations in all p voxels in response to
a stimulus, and each column corresponds to the activations
in specific voxel to the n stimuli. Our generalized notion of
RSA, which encompasses conventional ROI (Kriegeskorte
et al., 2008) and searchlight (Kriegeskorte et al., 2006) ap-
proaches, involves finding a sparse and symmetric matrix
W ∈ Rp×p such that S ≈ XWXT . The locations of the
nonzero elements indicate which voxels are included in the
similarity-encoding brain network, and the weights in W
indicate the strength of the edges in the network.

4.1. Network RSA application: Simulated Data

Before applying our framework to real fMRI data, we con-
sider a simulation study that allows us to compare results
against a known ground-truth. We compare group lasso
and GrOWL by analyzing synthetic data generated from a
deep neural network model trained to generate distributed
representations of a word’s sound (phonology) and mean-
ing (semantics) from its spelling (orthography; Figure 3 top
left). The network structure is motivated by the influential
“triangle” model of the human reading system (Plaut et al.,
1996). Specifically, phonological outputs receive contribu-
tions from two separate pathways: a direct route mediated
by a single hidden layer, and an “indirect” route composed
of three hidden layers, which must first compute mappings
from orthography to semantics, then project onward to con-
tribute to the phonological outputs. This architecture is
interesting because different kinds of similarity structure
emerge through learning in different network components.
The central idea is that orthographic and phonological sim-
ilarities are highly systematic: items that are similar in
spelling are likely (though not guaranteed) to be similar
in pronunciation. In contrast, orthographic and semantic
similarity structures are unsystematic: similarity of word
spelling does not necessarily predict similarity of meaning
and vice versa. In learning to map from orthography to se-
mantics and on to phonology, the indirect path thus comes
to encode quite different similarity relations amongst the
words than does the direct path (Harm & Seidenberg, 2004;
Plaut et al., 1996).

To capture these properties we generated model “ortho-
graphic” representations as patterns sampled from 6 over-
lapping clusters of binary input features, roughly corre-
sponding to different orthographic neighborhoods. For
every word a “phonological” pattern was generated by
flipping each orthographic feature with probability 0.1.
Thus phonological patterns were distorted variants of or-
thographic patterns, creating high systematicity between
these. We also created a “semantic” pattern for each word
from a set of binary features also organized into clus-
ters. Across items, these vectors expressed a hierarchi-
cal similarity structure with two broad superordinate clus-
ters each composed of three tighter clusters. Importantly,
the similarity structure expressed by the semantic vectors
was independent of the structure expressed in the ortho-
graphic/phonological patterns. The left bottom panel in
Figure 3 shows the cosine distances encoded amongst the
30 “words” in each layer of one trained model. Layers
in the direct path each encode roughly the same distances
amongst items, while the semantic layer encodes a quite
different set of distances that is weakly reflected in two
of the three hidden layers in the indirect path. Thus the
different components of this simple word-reading network
contribute differentially to the encoding of semantic versus
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ortho-phonological similarity structure.

We trained 100 models with different initial weights, cor-
responding to 100 model subjects, and presented each with
30 orthographic inputs. Each input generated a vector of
activations over the 100 model units. To ensure high re-
dundancy amongst units this vector was concatenated 5
times and perturbed with independent noise, yielding 500
measurements per model subjects. These were treated as
analogs of the estimated BOLD response at each of 500
model voxels in a brain imaging study. We then applied
group lasso and GrOWL to find the voxel subsets that en-
code either the semantic or phonological distances (derived
from target values for the output layers of the network).
We fit models by searching a grid of parameters (λ, λ1),
including λ1 = 0 as the special case of GrOWL that is
group lasso. For each grid point we counted a voxel as “se-
lected” if it received a non-zero weight, and assessed how
accurately the model selected the voxels encoding phono-
logical structure (all those along the direct pathway) or se-
mantic structure (the semantic layer hidden layers 2 and 3
in the indirect path) by computing hit rates and false alarm
rates). All three models showed low and equivalent cross-
validation error; however GrOWL achieved this error rate
while selecting considerably more voxels. The ROC plots
in Figure 4 further show that GrOWL did not select addi-
tional voxels at random: it outperformed group lasso con-
siderably in discriminating signal-carrying from non-signal
carrying voxels. The right panel of Figure 3 shows the fre-
quency with which each model unit is selected for the best-
performing solution of each method and structure type. The
strong sparsity enforced by group lasso is clearly appar-
ent: target units are selected less consistently than with
GrOWL, which consistently discovers more of the signal.

Finally, we considered the ability of GrOWL to reveal the
network structure encoding each kind of similarity, treating
the weights in the matrixW as direct estimates of the joint
participation of pairs of units in expressing the target sim-
ilarity. The rightmost plots of Figure 3 show the estimated
connectivity, thresholded to show the 25% of the non-zero
weights with the largest magnitudes. The detected edges
clearly express the network representational substructure:
units in the direct pathway are shown as highly intercon-
nected with one another and weakly or disconnected from
those in the indirect pathway, and vice versa. Thus the
search for different kinds of similarity reveals different
functional subnetworks in the model.

4.2. Network RSA application: Real Data

We next consider the application of group lasso and
GrOWL to the discovery of similarity structure in neural
responses measured by fMRI across the whole brain while
participants perform a cognitive task. As with the well-

known searchlight RSA (Kriegeskorte et al., 2008), we be-
gin with a measurement of the n × n similarities existing
amongst a set of n items in some cognitive domain. Us-
ing fMRI, we measure the neural responses evoked by each
item at the scale of single voxels (3mm cubes), and treat
these p voxels as features of the n items. We then com-
pute a rank-r approximation of the target similarity ma-
trix S = Y Y T , and use this as the target Y ∈ Rn×r
matrix for a sparse-regression analysis of the n × p ma-
trix of fMRI responses,X , evoked by each item across the
whole cortex. The model is then fit to optimize the objec-
tive functions specified in (3) for group lasso and (4) with
squared Frobenius loss for GrOWL. The best regulariza-
tion parameter is selected through cross-validation, and a
final model is fit with that parameter and used to predict
the similarities existing amongst a set of items in an in-
dependent hold-out set. Model predictions are compared
to results expected from a null hypothesis that no features
encode the target similarity structure. If predictions are
more accurate than expected from random data, this pro-
vides evidence that the model has discovered voxel subsets
that jointly encode some of the target similarity structure.
Moreover, because the model is constrained to be sparse,
most voxels will receive coefficients of zero, and the pres-
ence of non-zero coefficients can be taken as evidence that
the corresponding voxel encodes information important to
representing the target similarity structure.

The current experiment aims to answer three questions. (1)
Does either approach learn a model from whole-brain fMRI
that can accurately predict the pairwise similarities among
stimuli? (2) Does group lasso or GrOWL learn a more
accurate model? (3) Do the fitted models identify voxels
in areas that are consistent with known neural representa-
tions? To answer these questions, we applied the approach
to discover voxels that work to encode the visual similar-
ities existing amongst a set of line drawings of common
objects. We chose this task and dataset because (a) there
exist well-understood methods for objectively measuring
the degree of visual similarity amongst such items (Antani
et al., 2002) and (b) it is well known that visual similarity
is encoded by neural responses in occipital and posterior
temporal cortices (Kriegeskorte & Kievit, 2013).

fMRI dataset. The data were collected as part of a larger
study from 23 participants at the University of Manchester
who were compensated for their time. Each participant
viewed a series of line drawings depicting common objects
while their brains were scanned with fMRI. The line draw-
ings included 37 items, each repeated 4 times for a total
of 148 unique stimulus events. At each trial participants
pressed a button to indicate whether the item could fit in a
trash can. Scans were collected in a sparse event-related de-
sign and underwent standard pre-processing to align func-
tional images to the anatomy and to remove movement and
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Figure 3. Left panel: Network architecture (top) and the similarity structure expressed in each layer (bottom). Red background shows
the direct pathway and blue the indirect pathway from orthography to phonology. Layers in the two pathways encode different similarity
structures. The target similarity matrices for the analysis express either the semantic structure (top layer) or the phonological structure
(bottom right layer). Arrows indicate feed-forward connectivity. Right panel: Units selected by group LASSO (right) and GrOWL
(middle) when decoding semantic (top) or phonological (bottom) structure. Colors show the proportion of times across subjects and unit
concatenations that the unit received a non-zero weight, with red indicating 1 and gray 0. The rightmost plots show the largest weights
in the associated matrix W for each GrOWL model, which pick out two subnetworks in the model.

Figure 4. Trade-off curves for FPR ≤ 0.1 generated by sweeping through (λ, λ1) values (for λ = 0, all units are selected and as λ is
increased fewer units are given non-zero weight). Each point corresponds to a combination of λ and λ1 that gives the best trade-off
(where setting λ1 = 0 results in the group lasso). The pareto-frontier for group lasso (red), GrOWL-Lin (black), GrOWL-Spike (blue)
is averaged across 100 participants for each method, considering both similarity structures, Semantics (left panel) and Phonology (right
panel). Note for any λ > 0, the group lasso solution will include at most n = 30 voxels, since the number of selected voxels will not
exceed the number of measurements. If λ = 0, then the group lasso will select all voxels. Thus, group lasso curve beyond n = 30
selections (around 0.01 FPR) is shown as a dashed line, which extends linearly to the point (FPR, TPR) = (1, 1).

scanner artifact and temporal drift. Responses to each stim-
ulus event were estimated at each voxel using a deconvo-
lution procedure with a standard HRF kernel. For each
participant a cortical surface mask was generated based on
T1-weighted anatomical images, and functional data were
filtered to exclude non-cortical voxels. Voxels with esti-
mated responses more than 5 standard deviations from the
mean response across voxels were excluded from the analy-

sis. 10k-15k voxels were selected for each participant, and
neural responses across all voxels for each of 148 stimulus
events were entered into the analysis. The mean response
across the 4 repeated observations of each item were taken
to give 37 item responses for each participant. Each column
corresponding to a voxel was normalized to be of standard
deviation equal to one and a column of ones was added for
bias correction.



Representational Similarity Learning
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Figure 5. Panel (a) shows surface maps corresponding to group lasso (left), GrOWL-Lin (middle) and GrOWL-Spike (right) showing the
voxels selected for the tuning parameters with smallest prediction error on the hold-out data for at least five and all nine cross-validations
in the top and bottom rows respectively. The heat map shows the number of subjects for which those voxels were picked. Blue is the
least (1 subject) and red is the most (10 or more subjects). Panel (b) is a network plot showing the top edges from the W matrix for
the best-performing parameterization of group LASSO (top) and GrOWL-Spike (bottom) in one subject. The thickness of the edges is
proportional to the edge weights.

Target similarities. Each stimulus was a bitmap of a
black-and-white line drawing. We took pairwise Cham-
fer distance (Borgefors, 1988) as a proxy for inter-item vi-
sual dissimilarities. r = 3 is the smallest value to attain
‖S − Y Y T ‖F /‖S‖F ≤ 0.15. This 37× 3 matrix Y was
used as the target matrix for the analysis.

Model fitting. For each participant, training data were di-
vided into 9 subsets containing 4-5 stimulus events each.
One subset was selected as a final hold-out set. Models
were then fit at each of 10 increasing values of each λ and
λ1 parameter (grid points) using 8-fold cross validation. At
each fold we assessed the model using the Frobenius norm
of the difference between the target Y entries and the pre-
dicted Ŷ = XB̂ entries for hold-out items (henceforth the
model error). We selected the λ with the lowest mean er-
ror for each subject, then fit a full model for each subject
at this value and assessed it against the final hold-out set,
considering the model error on hold-out items. We repeat
this with 9 different final hold-out sets.

Results. The table below shows performance on the final
hold-out sets (H) for each participant and each method,
considering error between predicted (Ŷ ) and actual dissim-
ilarities (Y ) where MSE = ‖YH − ŶH‖F /‖YH‖F . Both
approaches show significantly non-random prediction. As
in our simulations, all methods show comparable predic-
tion error on hold-out sets. We also note that, as in the
simulations, GrOWL selected almost double the number
of voxels in each participant. Our assertion that both
approaches show significantly non-random predictions is
based on a permutation-based paired t-test, where chance
would have been zero difference. By this measure, for ex-

ample, GrOWL-Spike’s performance is significantly better
than chance (t-value=8.59, p<0.0001).

Method MSE (p-value)
Group Lasso 0.5266 (1.045e-07)
GrOWL-Lin 0.5271 (6.456e-08)

GrOWL-Spike 0.5213 (1.774e-08)

Figure 5(a) shows the locations of selected voxels (i.e.,
those with non-zero coefficients) across all 23 participants
for the tuning parameters with smallest mean prediction er-
ror on hold-out data, mapped into a common anatomical
space with 4mm full-width-half-max spatial smoothing and
projected onto a model of the cortical surface. To look into
the stability of selection across different training sets, the
top row shows the voxels selected for at least five (out of
nine) cross-validation runs while the bottom row shows the
voxels selected for all the nine cross-validation runs. As
seen in the maps, both methods pick voxels prominently in
the occipital and posterior temporal cortices and GrOWL
picks consistently more voxels than group lasso.

Figure 5(b) shows the largest magnitude edges in the W
matrix for the best-performing parameterization of group
LASSO (top) and GrOWL-Spike (bottom) in one subject.
Two observations are of note. First, both methods uncover
a similar network structure, with many interconnections in
visual cortical regions and some edges connecting to ante-
rior regions in frontal and temporal cortex. Second, as in
the simulations, GrOWL reveals a much denser network.
The results suggest the possibility that subregions of frontal
and temporal cortex may, together with occipito-temporal
cortex, participate in networks that serve to encode visual
similarity structure.
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