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Abstract— The nonparametric Poisson intensity and density
estimation methods studied in this paper offer near minimax con-
vergence rates for broad classes of densities and intensities with
arbitrary levels of smoothness. The methods and theory presented
here share many of the desirable features associated with wavelet-
based estimators: computational speed, spatial adaptivity, and
the capability of detecting discontinuities and singularities with
high resolution. Unlike traditional wavelet-based approaches,
which impose an upper bound on the degree of smoothness to
which they can adapt, the estimators studied here guarantee
non-negativity and do not require any a priori knowledge of
the underlying signal’s smoothness to guarantee near-optimal
performance. At the heart of these methods lie multiscale decom-
positions based on free-knot, free-degree piecewise-polynomial
functions and penalized likelihood estimation. The degrees as
well as the locations of the polynomial pieces can be adapted to
the observed data, resulting in near minimax optimal convergence
rates. For piecewise analytic signals, in particular, the error of
this estimator converges at nearly the parametric rate. These
methods can be further refined in two dimensions, and it is
demonstrated that platelet-based estimators in two dimensions
exhibit similar near-optimal error convergence rates for images
consisting of smooth surfaces separated by smooth boundaries.

Keywords: CART, complexity regularization, nonparamet-
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I. DENSITY AND POISSON INTENSITY ESTIMATION

Poisson intensity estimation is a vital task in a variety of

critical applications, including medical imaging, astrophysics,

and network traffic analysis. Several multiresolution methods

for estimating the time- or spatially-varying intensity of a

Poisson process in these and other applications have been

presented in the literature [1]–[3], generating wide interest [4]–

[6]. Experimental results suggest that these methods can pro-

duce state-of-the-art results, but until now there has not been

a thorough analysis of the theoretical underpinnings of these

methods. This paper addresses this gap by casting the Poisson

intensity estimation problem in a density estimation frame-

work. Not only does this allow us to theoretically characterize

multiscale methods for photon-limited imaging applications,

but it also leads to a general framework for univariate and

multivariate density estimation which both performs well in

practice and exhibits several important theoretical properties.

Accurate and efficient density estimation is often a fundamen-

tal first step in many applications, including source coding,

data compression, statistical learning, and signal processing.
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The primary contributions of this paper are two-fold: (1) a

theoretical characterization of photon-limited (Poisson) image

processing tools, and (2) a data-adaptive multiscale density

estimation method with several advantages over traditional

wavelet-based approaches. These theoretical results will be

supported with a number of experiments which demonstrate

that our techniques can frequently outperform the best known

wavelet-based techniques. The performance improvement is

due to two key factors: (1) the ability of our method to adapt

not only to singularities or discontinuities in the underlying

intensity but also to arbitrary degrees of smoothness, and (2)

the ability of our method to adapt to boundaries and edge

structures in image data.

The approach studied in this paper involves using penalized

likelihood estimation on recursive dyadic partitions in or-

der to produce near-optimal, piecewise polynomial estimates,

analogous to the methodologies in [7]–[9]. This results in a

multiscale method that provides spatial adaptivity similar to

wavelet-based techniques [10], [11], with a notable advan-

tage. Wavelet-based estimators can only adapt to a function’s

smoothness up to the wavelet’s number of vanishing moments;

thus, some a priori notion of the smoothness of the true

density or intensity is required in order to choose a suitable

wavelet basis and guarantee optimal rates. The partition-based

method, in contrast, automatically adapts to arbitrary degrees

of the function’s smoothness without any user input or a

priori information. (Although the Meyer wavelet basis has

infinitely many vanishing moments, its applications to density

and intensity estimation on compact sets is unclear because

the wavelets are defined in the frequency domain and have

infinite time domain support.) Like wavelet-based estimators,

the partition-based method admits fast estimation algorithms

and exhibits near minimax optimal rates of convergence in

many function spaces. The partition-based method has several

additional advantages: estimates are guaranteed to be posi-

tive and the method exhibits rates of convergence within a

logarithmic factor of the parametric rate for certain classes

of densities and intensities. (While some methods (e.g. [12])

produce guaranteed positive density estimates by estimating

the log-density, these methods are akin to fitting piecewise

exponential functions to the density and hence are optimal for

different classes of densities.) We elaborate on these points

below.

While we focus on a particular class of problems in this

paper, the ideas presented here are very general and simple to

extend to other frameworks. For example, the partition-based

technique could easily be used to find a piecewise polynomial

estimate of the log of the density or intensity to form piecewise

exponential estimates. The work in [13] extended the results
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presented here and described in a technical report [14] to

show that nonparametric estimation using generalized linear

models in conjunction with the techniques described in this

paper also results in nearly optimal rates of convergence for

certain classes of functions.

A. Problem Formulation

The basic set-up considered in this paper is as follows.

Assume a series of n independent and identically distributed

observations, xi, i = 1, . . . , n are made of a random variable,

X , with density f∗. Let x ≡ {xi}ni=1. In this paper we

consider penalized likelihood estimation, in which the density

estimate is

f̂ = arg min
f∈Γn

L(f)

where Γn is a finite collection of candidate estimates,

L(f) ≡ − loge pf (x) + pen(f), (1)

and

pf (x) =
n∏
i=1

f(xi)

denotes the likelihood of observing x if X had density f and

where pen(f) is the penalty associated with a density f .

The methods presented in this paper are also applicable

to estimating the temporally- or spatially-varying intensity

of a Poisson process: both problems are concerned with

estimating the distribution of events over some domain. The

critical distinction between the two problems is that in density

estimation, the density f∗ is known to integrate to one, while

in the Poisson case, there is no such constraint on the integral

of the intensity. The number of observed events is random,

with a mean equal to the integral of the intensity, and the

mean must be estimated along with the distribution of events.

In general, intensity estimation can be broken into two distinct

subproblems: (1) estimation of the distribution of events,

and (2) estimation of the integral of the intensity. The first

subproblem is exactly the density estimation problem, and

so everything said about density estimation above extends

to Poisson intensity estimation. In the context of univariate

Poisson intensity estimation, we let x = {xi}ni=1 be a series

of n events, and let xi ∈ [0, 1] be the time or location of the

ith event. The underlying intensity is denoted by f∗, and the

total intensity is denoted If∗ ≡
∫
f∗(x)dx.

Because of the close ties between Poisson intensity and

density estimation and for simplicity of exposition, we focus

on density estimation for most of this paper, and then explain

the connections to and differences from Poisson intensity

estimation in Section III-B.

B. Relation to Classical and Wavelet Density and Intensity

Estimators

Classical nonparametric estimation techniques, e.g. kernel

or histogram methods, have been thoroughly explored in the

density estimation literature [15]–[21]. Most of the theoretical

analysis associated with these methods pertains to linear

estimators, which are known to be sub-optimal (in the sense of

rates of convergence) for many classes of densities, e.g., Besov

spaces [22]–[25]. In fact, is has been demonstrated that the L1

error of non-negative, fixed-bandwidth kernel density estima-

tors cannot exceed the rate of n−2/5 (where n is the number

of observations) for any density [16], [26]. Because linear

estimators do not adapt to spatial changes in the structure

of the data, their density estimates are in practice frequently

oversmoothed where the density is changing rapidly or under-

smoothed where the density is changing more slowly. Such

estimators do not preserve singularities or sharp changes in

the underlying density. Similar issues arise when using a single

(not piecewise) polynomial for density estimation. Barron and

Sheu [27] use Legendre polynomials to approximate the log

of a density, resulting in a near minimax optimal exponential

estimate when the log of the density is in a Sobolev space.

The much larger class of densities in Besov spaces cannot

be optimally estimated with their method due to its lack of

spatial adaptivity. Spatially adaptive kernel methods [28]–[30],

and wavelet-based density estimation techniques [22], [23]

have been proposed to overcome such limitations; however,

these methods generally require wavelets or kernels with more

vanishing moments than degrees of density smoothness (e.g.

the Besov smoothness parameter α in (7); this is explained

in detail below); this limits the ability of these estimators to

adapt to arbitrary degrees of smoothness. Histograms on data-

dependent partitions also produce tractable, spatially adaptive

density estimators, but while such estimators exhibit strong L1

and L2 consistency [31], [32], they can only achieve minimax

rates of convergence for limited degrees of smoothness [33].

Wavelet-based techniques overcome this lack of spatial

adaptivity because wavelets are well localized in both time

and frequency and hence can provide good local estimates

of the density. The estimation scheme presented by Donoho,

Johnstone, Kerkyacharian, and Picard [23], is representative

of many wavelet-based density estimators and summarized

here in order to highlight its similarities to and differences

from the partition-based in this paper. Any piecewise smooth

density, f(·), such as one in a Besov space [24], [25], can be

represented in terms of scaling and wavelet coefficients:

f(t) =
∑
k

cj0,kφj0,k(t) +
∞∑
j=j0

∑
k

dj,kψj,k(t), (2)

where φj,k is a scaling function and ψj,k is a wavelet function,

dilated to scale j and shifted by k units, and j0 is the coars-

est scale considered. In an orthogonal system, each wavelet

coefficient is the inner product of the density and the wavelet

function at a particular scale and shift, so if X is a random

variable with density f , then we can express each coefficient

as:

dj,k =
∫
f(x)ψj,k(x)dx = E [ψj,k(X)] .

Thus a Monte Carlo estimate of each wavelet coefficient can

be computed as

d̂j,k =
1
n

n∑
i=1

ψj,k(xi),
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where xi is the ith realization of X . Assuming that there

are enough observations falling in the support of ψj,k, the

central limit theorem can be invoked and d̂j,k can be assumed

to be approximately Gaussian distributed with mean dj,k and

some variance. In wavelet-based density estimation, the means

of these empirical coefficients are improved using a hard or

soft thresholding scheme based on the Gaussianity of the

coefficients, and then the thresholded coefficients are used

to synthesize the final density estimate. To guarantee that

(on average) a sufficient number of samples fall within the

support of each wavelet basis function to justify the Gaussian

approximation, wavelet-based density estimates are restricted

to scales no finer than j = log2(n/ log2 n).

Similar problems arise with classical and wavelet-based

estimators in the context of Poisson intensity estimation.

Statistical methods which account for the unique properties of

the Poisson distribution can be effective [34]–[39], but are not

well-suited for the detection of discontinuities or singularities.

Wavelet-based techniques [40]–[47], designed for effective

approximation of singularities are difficult to analyze in the

presence of Poisson noise. Gaussian approximations are usu-

ally only appropriate when the number of events per interval

or pixel is suitably large. This constraint is typically satisfied

by binning observations until each interval or pixel contains a

fairly large number of events; this process immediately limits

the ultimate resolution the system can attain and any method’s

ability to reconstruct some fine scale structures.

C. Multiscale Partition-Based Estimators

Wavelet-based techniques are advantageous for both their

near minimax convergence rates and the computational sim-

plicity of filter-bank implementations. Near optimal conver-

gence rates are possible as long as a priori knowledge of the

density or intensity smoothness can be used to select a wavelet

function ψ which is smooth enough (i.e., with a sufficient

number of vanishing moments). The method introduced in

this paper also admits a computationally efficient analysis

and spatial adaptivity, but it exhibits the same convergence

rates as wavelet-based techniques without any a priori upper

bounds on smoothness. The partition-based method has two

key additional benefits. First, the estimator always results in

bona fide estimates (i.e. non-negative estimates which integrate

to one). Second, we demonstrate that for piecewise analytic

densities and intensities, the proposed free-knot, free-degree

estimator results in near-parametric rates of convergence.

In our partition-based method, polynomials are fitted to a

recursive dyadic partition (RDP) of the support of the density

or the Poisson intensity. Our approach, based on complexity-

regularization, is similar in spirit to the seminal work of Barron

and Cover [48]. This work expands upon previous results

(see, e.g., [49], [50], and [51]) by introducing an adaptivity

to spatially varying degrees of smoothness. Barron et al [49]

consider estimation of log densities and show that maximum

penalized likelihood estimation using piecewise polynomials

on regular partitions can result in a near minimax optimal

estimator when the log density is in a Hölder smoothness class

(a much more restrictive assumption than the Besov space con-

sidered in this paper [24]). Furthermore, the authors assume

that the estimator uses polynomials with degree no less than

the smoothness of the density. Castellan [50] and Reynaud-

Bouret [51] independently addresses a problem similar to the

one studied in this paper, but, like [49], only consider uniform

partitions of the domain of the density; such partitions are not

spatially adaptive and so cannot achieve optimal convergence

rates for densities or log densities in Besov spaces. Nonuni-

form partitions are mentioned as a viable alternative in [50],

but Castellan does not prove bounds associated with these

partitions and does not propose a computationally tractable

method for choosing the optimal nonuniform partition. This

paper addresses these theoretical and practical challenges.

The RDP framework studied here leads to a model selection

problem that can be solved by a tree pruning process. Appro-

priate pruning of this tree results in a penalized likelihood

estimate of the signal as described in Section II. The main

convergence results are summarized in Section III. Upper

bounds on the estimation error (expected squared Hellinger

distance) are established using several recent information-

theoretic results, most notably the Li-Barron bound [52], [53]

and a generalization of this bound [8]. We focus on multi-

variate density and Poisson intensity estimation in Section IV.

A computationally efficient algorithm for computing piecewise

polynomial estimates is presented and computational complex-

ity is analyzed in Section V, and experimental results demon-

strate the advantages of the partition-based approach compared

to traditional wavelet-based estimators in Section VI. Section

VII discusses some of the implications of our results and

directions for future work.

II. MULTISCALE DENSITY ESTIMATION IN ONE

DIMENSION

The multiscale method presented here finds the optimal free-

knot, free-degree piecewise polynomial density estimate using

penalized likelihood estimation. The partition-based method

determines the optimal partition of the interval [0, 1] and

optimal polynomial degree for each interval in the partition

based on the observations; maximum likelihood polynomials

of the optimal degree are then fit to the data on each interval.

The optimal partition and polynomial degrees are selected

using a simple framework of penalized likelihood estimation,

wherein the penalization is based on the complexity of the

underlying partition and the number of degrees of freedom in

each polynomial.

The minimization is performed over a nested hierarchy of

partitions defined through a recursive dyadic partition (RDP)

of the unit interval, and the optimal partition is selected by

optimally pruning a tree representation of the initial RDP

of the data range. The effect of polynomial estimation on

dyadic intervals is essentially an estimator with the same

approximation capabilities as a wavelet-based estimator (for

a wavelet with sufficiently many vanishing moments); this is

established using approximation theoretic bounds in [25]. Thus

there no disadvantage (in an approximation-theoretic sense) in

using a piecewise polynomial basis instead of a wavelet basis.

As mentioned above, the piecewise polynomial multiscale

analysis presented here is performed on recursive dyadic
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partitions (RDPs) of the unit interval. The set of all intervals

formed by recursively splitting the unit interval into equally

sized regions until there are 2dlog2(n/ log2 n)e regions with

width no greater than log2 n/n is referred to as the complete

RDP (C-RDP). Any RDP can be represented with a binary

tree structure. In general, the RDP framework can be used

to perform model selection via a tree pruning process. Each

of the terminal intervals in the pruned RDP corresponds to a

region of homogeneous or smoothly varying density. Such a

partition can be obtained by merging neighboring intervals of

(i.e. pruning) a C-RDP to form a data-adaptive RDP P and

fitting polynomials to the density on the terminal intervals of

P . Let θ be a vector of polynomial coefficients for all of the

intervals in P . Note that some intervals of P may contain

higher degree polynomials than others, so that the length of θ
may not be an integer multiple of the number of intervals in P .

Then any candidate density estimate is completely described

by P and θ; i.e. f = f(P,θ).

We penalize the piecewise polynomial estimates according

to a codelength required to uniquely describe each such

model (i.e., codes which satisfy the Kraft inequality). These

codelengths will lead to near-minimax optimal estimators, as

discussed in the next section. Because the proposed code-

lengths are proportional to the partition size and the number

of polynomial coefficients associated with each model, penal-

ization leads to estimates that favor fewer degrees of freedom.

In particular, the penalty assigned to f(P,θ) is

pen(f(P,θ)) ≡ (2|P|+ |θ| − 1) loge 2 +
|θ|
2

loge n, (3)

where |P| is the size of the RDP P (i.e. the number of

terminal intervals) and |θ| ≡ ‖θ‖`0 is the total number of

polynomial coefficients in the vector θ. A detailed derivation

of this penalty is in Appendix I. The penalty can be interpreted

as a negative log-prior on the space of estimators. It is designed

to give good guaranteed performance by balancing between

fidelity to the data (likelihood) and the estimate’s complexity

(penalty), which effectively controls the bias-variance trade-

off. Since the penalty is proportional to |θ|, it facilitates esti-

mation of the optimal polynomial degree on each interval of

P , leading to a “free-degree” piecewise polynomial estimate.

The solution of

(P̂, θ̂) ≡ arg min
(P,θ):f(P,θ)∈Γn

L(f(P,θ)) (4)

f̂ ≡ f(P̂, θ̂) (5)

is called a penalized likelihood estimator (PLE). The collection

of candidate estimates, Γn, is described in detail in Appendix I;

it consists of all piecewise polynomial estimates, where the

different polynomials are defined on the intervals of a RDP

(P), the polynomial coefficients (θ) have been quantized to

one of
√
n levels, and the resulting piecewise polynomial is

non-negative and integrates to one. Section III demonstrates

that this form of penalization results in near minimax optimal

density estimates. Solving (4) involves adaptively pruning the

C-RDP based on the data, which can be performed optimally

and very efficiently. The pruning process is akin to a “keep

or kill” wavelet thresholding rule. The PLE provides higher

resolution and detail in areas of the density where there are

dominant discontinuities or singularities with higher density.

The partition underlying the PLE is pruned to a coarser scale

(lower resolution) in areas with lower density and where the

data suggest that the density is fairly smooth.

III. ERROR ANALYSIS

In this section, we establish statistical risk bounds for free-

degree piecewise polynomial estimation, as described above,

and the resulting bound is used to establish the near-optimality

of the partition-based estimation method. We then describe

how these theoretical results can be applied to Poisson inten-

sity estimation.

In this paper risk is defined to be proportional to the

expected squared Hellinger distance between the true and

estimated densities as in [48], [53]; that is,

E
[
H2(f∗, f̂)

]
≡ E

[∫ (√
f̂ −

√
f∗
)2
]
, (6)

where the expectation is taken with respect to the observations.

The squared Hellinger distance is an appropriate error metric

here for several reasons. First, it is a general non-parametric

measure appropriate for any density. In addition, the Hellinger

distance provides an upper and lower bound on the L1 error

because of the relation H2(f1, f2) ≤
∫
|f1−f2| ≤ 2H(f1, f2)

for all distributions f1 and f2 [16]. The L1 metric is particu-

larly useful for density estimation because of Scheffé’s identity

[16], which states that if B is the class of all Borel sets of [0, 1],
then

sup
B∈B

∣∣∣∣∫
B

f1 −
∫
B

f2

∣∣∣∣ =
1
2

∫
|f1 − f2| .

Scheffé’s identity shows that a bound on the L1 error provides

a bound on difference between the true probability measure

and the density estimator’s measure on every event of interest.

Lower bounds on the minimax risk decay rate have been

established in [23]; specifically, consider densities in the Besov

space

Bαq (Lp([0, 1])) �
{
f : ‖cj0,k‖`p+ ∞∑

j=j0

(
2αjp

∑
k

|dj,k|p
)q/p1/q

<∞

 (7)

for α > 1/p ≥ 1, and 0 < q ≤ ∞, where {cj0,k} and {dj,k}
are the scaling and wavelet coefficients in the wavelet expan-

sion (2). Besov spaces are described in detail in [24], [25],

and are useful for characterizing the performance of the pro-

posed method because they include piecewise smooth densities

which would be difficult to estimate optimally with classical,

non-adaptive density estimation methods. The parameter α
is the degree of smoothness (e.g. number of derivatives) of

the functions in the space, p refers to the Lp space in which

smoothness is measured, and q gives a more subtle measure
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of smoothness for a given (α, p) pair. For these densities,

infbf sup
f∗∈Bαq (Lp([0,1]))

E
[
H2(f∗, f̂)

]
≥ infbf sup

f∗∈Bαq (Lp([0,1]))

E
[

1
4
‖f̂ − f∗‖2L1

]
≥ cn

−2α
2α+1

for some c > 0 [23]. Likewise, the L1 error is lower-bounded

by c′n
−α

2α+1 for some c′ > 0. We establish that the risk of the

solution of (4) decays at a rate within a logarithmic factor of

this lower bound on the rate.

A. Upper Bounds on Estimation Performance

Using the squared Hellinger distance allows us to take

advantage of a key information-theoretic inequality derived by

Li and Barron [52], [53] to prove the following main theorem:

Theorem 1 Assume n samples are drawn from a density, f∗,
which is a member of the Besov space Bαq (Lp([0, 1])) where

α > 0, 1/p = α + 1/2, and 0 < q ≤ p. Further assume that

0 < C` ≤ f ≤ Cu < ∞. Let f̂ be the free-degree penalized

likelihood estimator satisfying (4) using the penalty in (3).

Then

E
[
H2(f∗, f̂)

]
≤ C

(
log2

2 n

n

) 2α
2α+1

(8)

for n sufficiently large and for some constant C that does not

depend on n.

Theorem 1 is proved in Appendix I.

Remark 1 While the above theorem considers densities in a

Besov space, it may be more appropriate in some contexts to

assume that the density is in an exponential family and that

the log of the density is in a Besov space (for examples, see

[49], [50]). If desired, it is straightforward to adapt the method

and analysis described in this paper to near optimal estimation

of the log density.

Remark 2 The space of densities considered in the above

theorem is quite general, and includes many densities for

which optimal rates would not be achievable using nonadap-

tive kernel-based methods, such as a piecewise smooth (e.g.

piecewise Hölder [24]) density with a finite number of discon-

tinuities. Besov embedding theorems and other discussions on

this class of densities can be found in [25] and [23].

Remark 3 The penalization structure employed here mini-

mizes the upper bound on the risk. Furthermore, this upper

bound is within a logarithmic factor of the lower bound on

the minimax risk, demonstrating the near-optimality of the

partition-based method, even when α or an upper bound on

α is unknown.

Remark 4 The constant C in the above theorem and the

proceeding theorems and corollaries is independent of n but

still is a function of the “smoothness” of the class of densities

under consideration. For example, in Theorem 1 it is related to

the radius of the Besov ball in which f resides, in Example 1

below it is related to the number of pieces in a piecewise

analytic function, and in Theorem 3 it is related to the

Hölder exponents α and β. For ease of presentation, we state

the bounds with constants, with the understanding that these

constants depend on the function class under consideration,

but we do not explicitly state this in each case.

The upper bound derived here is also within a logarithmic

factor of the lower bound on the L1 minimax error, as stated

in the following corollary:

Corollary 1 Let f∗ and f̂ be defined as in Theorem 1. Then

E
[
‖f̂ − f∗‖L1

]
≤ C

(
log2

2 n

n

) α
2α+1

for n sufficiently large and for some constant C that does not

depend on n.

Corollary 1 is proved in Appendix II.

These results demonstrate the near-optimality of the penal-

ization structure in (3) for free-degree piecewise polynomial

estimation. In fact, as the smoothness of the density, α,

approaches infinity, the asymptotic decay rate for this non-

parametric method approaches the parametric rate of 1/n. This

can be made explicit for piecewise analytic densities, as in the

following example:

Example 1 Assume n samples are drawn from a piecewise

analytic density with a finite number of pieces, f∗, such that

0 < C` ≤ f∗(·) ≤ Cu < ∞. Let f̂ be the free-degree

penalized likelihood estimator satisfying (4) using the penalty

in (3). Then

E
[
H2(f∗, f̂)

]
≤ C log3

2 n

n
(9)

for n sufficiently large and some constant C.

For the piecewise analytic densities of the form in Exam-

ple 1, the L2 error of a free-knot, free-degree polynomial

approximation with a total of m coefficients decays like 2−m,

and the variance of the estimator would decay like m/n
because m coefficients must be estimated with n observations;

balancing the approximation error with the estimation error

leads to a total error decay of (log2 n)/n. The additional log

terms are due to the recursive dyadic partition underlying

the estimation method; a detailed derivation of the rate in

Example 1 is provided in Appendix III.

B. Poisson Intensity Estimation

Recall that in Poisson intensity estimation, we let x =
{xi}ni=1 be a series of n events, and let xi ∈ [0, 1] be the

time or location of the ith event. The underlying intensity is

denoted by f∗, and If∗ ≡
∫
f∗(x)dx. Using the above density

estimation framework, it is possible to estimate the distribution
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of events, f̃ , such that
∫
f̃(x)dx = 1 and the maximum

penalized likelihood intensity estimate is then f̂ ≡ nf̃ ; then

E

[
H2

(
f̂

I bf ,
f∗

If∗

)]
≤ C

(
log2

2 n

n

) 2α
2α+1

.

Since E[n] = If∗ , this renormalization generates an intensity

estimate with overall intensity equal to the maximum likeli-

hood estimate of If∗ .

IV. MULTIDIMENSIONAL OBSERVATIONS

In this section, we explore extensions of the above method

to two-dimensional image estimation, particularly relevant in

the context of Poisson intensity estimation, and multivariate

estimation in higher dimensions.

A. Image Estimation

For the analysis in two dimensions, consider intensities

which are smooth apart from a Hölder smooth boundary over

[0, 1]2. Intensities of this form can be modeled by fusing two

(everywhere) smooth intensities f1 and f2 into one single

intensity according to

f(x, y) = f1(x, y) · I{y≥H(x)} +
f2(x, y) ·

(
1− I{y≥H(x)}

)
,

for all (x, y) ∈ [0, 1]2, where I{y≥H(x)} = 1 if y ≥ H(x)
and 0 otherwise, and the function H(x) describes a smooth

boundary between a piece of f1 and a piece of f2. This is a

generalization of the “Horizon” intensity model proposed in

[54], which consisted of two constant regions separated by a

smooth boundary. The boundary is described by y = H(x),

where

H ∈ Hölderα1 (Cα), α ∈ (1, 2], Cα > 0,

and Hölderα1 (Cα) for α ∈ (1, 2] is the set of functions

satisfying∣∣∣∣ ∂∂xH(x1)− ∂

∂x
H(x0)

∣∣∣∣ ≤ Cα|x1 − x0|α−1,

for all x0, x1 ∈ [0, 1]. For more information on Hölder spaces

see [24].

The smoothness of the intensities f1 and f2 is characterized

by a two-dimensional Hölder smoothness condition defined in

[55]

fi ∈ Hölder
β
2 (Cβ), β ∈ (1, 2], Cβ > 0, i = 1, 2,

where Hölder
β
2 (Cβ) is the set of functions f : [0, 1]2 → R1

with k = bβc = 1 continuous partial derivatives satisfying

|f(x1)− px0(x1)| ≤ Cβ ‖x1 − x0‖β2 ,

for all x0, x1 ∈ [0, 1]2, where px0(x1) is the Taylor polynomial

of order k for f(x1) at point x0.

The model describes a intensity composed of two smooth

surfaces separated by a Hölder smooth boundary. This is

similar to the “grey-scale boundary fragments” class of images

defined in [55]. The boundary of the model is specified as a

function of one coordinate direction (hence the name “Hori-

zon”), but more complicated boundaries can be constructed

with compositions of two or more Horizon-type boundaries,

as in the following definition:

Definition 1 Let Iα,β denote the class of intensities f : Ω→
R for Ω ⊆ [0, 1]2 such that

f(x, y) = f1(x, y) · I{y≥H(x)} + f2(x, y) ·
(
1− I{y≥H(x)}

)
or

f(x, y) = f1(x, y) · I{x≥H(y)} + f2(x, y) ·
(
1− I{x≥H(y)}

)
for all (x, y) ∈ Ω where fi ∈ Hölder

β
2 (Cβ), i = 1, 2, and

H ∈ Hölder
α
1 (Cα) with α, β ∈ (1, 2]. The class of piecewise

(α, β)-smooth images is the set of all images which can be

written as a finite concatenation or superposition of f ∈ Iα,β .

In [1], we introduced an atomic decomposition called

“platelets”, which were designed to provide sparse approx-

imations for intensities in this class. Platelets are localized

functions at various scales, locations, and orientations that

produce piecewise linear two-dimensional intensity approxi-

mations. A wedgelet-decorated RDP, as introduced in [54],

is used to efficiently approximate the boundaries. Instead of

approximating the intensity on each cell of the partition by a

constant, however, as is done in a wedgelet analysis, platelets

approximate it with a planar surface. We define a platelet

fS(x, y) to be a function of the form

fS(x, y) = (ASx+BSy + CS) IS(x, y), (10)

where AS , BS , CS ∈ R, S is a dyadic square or wedge

associated with a terminal node of a wedgelet-decorated RDP,

and IS denotes the indicator function on S. Each platelet

requires three coefficients, compared with the one coefficient

for piecewise constant approximation. The dictionary is made

discrete by quantizing both the platelet coefficients and the

number of possible wedgelet orientations. A “resolution δ” ap-

proximation means that the spacing between possible wedgelet

endpoints on each side of a dyadic square in [0, 1]2 is δ; see

[54] for details.

The following theorem, which bounds the global squared

L2 approximation error of m-term platelet representations for

intensities of this form, was proved in [1]:

Theorem 2 Suppose that 2 ≤ m ≤ 2J , with J > 1. The

squared L2 error of an m-term, J-scale, resolution δ platelet

approximation to a piecewise (α, β)-smooth image is less than

or equal to Kα,βm
−min(α,β) +δ, where Kα,β depends on Cα

and Cβ .

Theorem 2 shows that for intensities consisting of smooth

regions (β ∈ (1, 2]) separated by smooth boundaries (α ∈
(1, 2]), m-term platelet approximations may significantly out-

perform Fourier, wavelet, or wedgelet approximations. For

example, if the derivatives in the smooth regions and along

the boundary are Lipschitz (α, β = 2, i.e., smooth derivatives),

then the m-term platelet approximation error behaves like

O(m−2)+δ, whereas the corresponding Fourier error behaves
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like O(m−1/2) and the wavelet and wedgelet errors behave

like O(m−1) at best. Wavelet and Fourier approximations do

not perform well on this class of intensities due to the bound-

ary. The reader is referred to [54], [56], [57] for the Fourier

and wavelet error rates. Wedgelets can handle boundaries of

this type, but produce piecewise constant approximations and

perform poorly in the smoother (but non-constant) regions

of intensities. Curvelets [56] offer another, in some ways

more elegant, approach to the issue of efficient approximation

of piecewise smooth images. However, while platelets and

curvelets have the same approximation capabilities, platelets

are much easier to apply in the context of Poisson imaging due

to the fact that they’re based on recursive dyadic partitions, just

as tree-based methods offer several advantages over wavelets

in the context of univariate intensity and density estimation.

As with the one-dimensional construction, we penalize the

platelet estimates according to the codelength required to

uniquely describe each model. The penalty assigned to f(P,θ)
is

pen(f(P,θ)) = (7/3)|P| loge 2 + (8/3)|P| loge n. (11)

The solution of (4), where P is a wedgelet-decorated RDP and

θ contains platelet coefficients is then the platelet penalized

likelihood estimator. This construction can now be used to

analyze platelet estimation error:

Theorem 3 Assume n samples are drawn from a intensity,

f∗, which is a piecewise (α, β)-smooth image. Further assume

that 0 < C` ≤ f∗ ≤ Cu <∞. Let f̂ be the platelet estimator

satisfying (4) using the penalty in (11). Then

E

[
H2

(
f̂

I bf ,
f∗

If∗

)]
≤ C

(
log2

2 n

n

) min(α,β)
min(α,β)+1

(12)

for n sufficiently large and for some constant C that does not

depend on n.

This is proved in Appendix IV. The denominators I bf and If∗

on the left hand side of the inequality normalize the intensities

f̂ and f∗, respectively, so they both integrate to one. This rate

is within a logarithmic factor of the minimax lower bound on

the rate, n−min(α,β)/(min(α,β)+1); see [54], [55] for details.

B. Multivariate Estimation

The partition-based approach can easily be extended to

multivariate estimation. We now assume that the true density

is in a Hölder smoothness space because the relevance of

singularities in multidimensional Besov spaces to practical

problems is unclear. Specifically, information-bearing singular-

ities in multiple dimensions, such as “ridges” or “sheets” have

a much richer structure than one-dimensional singularities.

Assume that the true density f : [0, 1]d −→ [C`, Cu] is at

least Hölderαd smooth everywhere. This condition means

|f(x1)− px0(x1)| ≤ Cα ‖x1 − x0‖α2
for all x0, x1 ∈ [0, 1]d, where px0(x1) is the kth-order Taylor

series polynomial expansion of f(x) about x0 evaluated at

x = x1, and where k = bαc. For this class of densities,

wavelet-based approaches can achieve an error decay rate

of O((log2 n/n)2α/(2α+d)) if a wavelet with more than α
vanishing moments is selected [55]. Similarly, the same rate is

achievable with a multivariate extension of the partition-based

method studied in this paper without any a priori knowledge

of the underlying smoothness.

From the Hölder condition, it is straightforward to verify

that an order-k piecewise polynomial would accurately ap-

proximate a function in this class. Next note that multivariate

tree pruning can be implemented in practice using 2d-ary trees

instead of binary trees to build a recursive dyadic partition. The

appropriate penalty is

pen(f(P,θ)) ≡
(

2d|P| − 1
2d − 1

+ |θ|
)

loge 2 +
|θ|
2

loge n;

to see this, follow the derivation of the one-dimensional

penalty in Appendix I and note that a 2d-ary tree with |P|
leafs would have a total of (2d|P| − 1)/(2d − 1) nodes. It

is straightforward to demonstrate, using arguments parallel to

the ones presented in the univariate case, that this leads to

an error decay rate of (log2
2 n/n)2α/(2α+d) without any prior

knowledge of α. This is within a logarithmic factor of the

minimax rate.

This is particularly significant when estimating very smooth

densities in multiple dimensions. For example, consider

a multivariate Gaussian, which is infinitely smooth. Any

wavelet-based approach will be unable to exceed the rate

(log2 n/n)2r/(2r+d), where r is the number of vanishing

moments of the wavelet; kernel-based methods will also have

a convergence rate limited by the bandwidth of the kernel.

In contrast, the partition-based method will approach the

parametric rate of 1/n. We are unaware of any alternative

nonparametric method with this property.

V. ALGORITHM AND COMPUTATIONAL COMPLEXITY

The previous sections established the near-optimality of the

partition-based method using information theoretic arguments

to bound the statistical risk. This section demonstrates that the

partition-based estimator can be computed nearly as computa-

tionally efficiently as a traditional wavelet-based estimator in

addition to having the theoretical advantages discussed in the

previous sections.

A. Algorithm

Observe that the structure of the penalized likelihood crite-

rion stated in (1) and the RDP framework allow an optimal

density estimate to be computed quickly using a fast algorithm

reminiscent of dynamic programming and the CART algo-

rithm [7], [9]. This reduces the large optimization problem

of computing the optimal free-degree, free-knot polynomial

f̂ to a series of smaller optimization problems over disjoint

intervals. The density f∗ is estimated according to (4) with an

algorithm which iterates from bottom to top through each level

of the C-RDP of the observations. At each level, a multiple

hypothesis test is conducted for each of the nodes at that level.

The hypotheses for the node associated with interval I are as

follows:
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• HqI (terminal node): Order qI (qI = 1, 2, . . . , nI ) poly-

nomially varying segment which integrates to 1 on I ,

where nI ≡
∑n
i=1 1{xi∈I} is the number of observations

falling in the interval I .

• HnI+1 (non-terminal node): Concatenate optimal esti-

mate of the left child, `(I), scaled by n`(I)/nI with

the optimal estimate of the right child, r(I), scaled by

nr(I)/nI .

(Note that if we were to restrict our attention to polynomials

of degree zero, the algorithm coincides with Haar analysis

with a hereditary constraint [8].) The algorithm begins one

scale above the leaf nodes in the binary tree and traverses

upwards, performing a tree-pruning operation at each stage.

For each node (i.e. dyadic interval) at a particular scale, the

maximum likelihood parameter vector is optimally determined

for each hypothesis and the penalized log likelihoods for each

hypothesis are calculated.

In particular, the penalized log likelihood for the split

(HnI+1) is computed using the optimal penalized log like-

lihoods computed at the previous, finer scale for both of

the two children. To see the origin of the scaling factors

n`(I)/nI and nr(I)/nI , let f̂I be a density defined on I
which minimizes L(f(P,θ)) on the interval I , subject to

the constraints
∫
I
f̂I = 1 and f̂I > 0. Note that f̂I can

be computed independently of the observations which do

not intersect I . Due to the additive nature of the penalized

log likelihood function and the restriction of the estimator

to a recursive dyadic partition, f̂I must either be a single

polynomial defined on I or the concatenation of f̂`(I)a`(I)
and f̂r(I)ar(I) for some positive numbers a`(I) and ar(I) which

sum to one. A simple calculation reveals that a`(I) = n`(I)/nI
and ar(I) = nr(I)/n(I) minimize L(f(P,θ)) over I subject

to the given constraints.

The algorithm pseudocode is in Appendix V.

B. Computational Complexity

The partition-based method’s overall computational com-

plexity depends on the complexity of the polynomial fitting

operation on each interval in the recursive dyadic partition.

There is no closed-form solution to the MLE of the polynomial

coefficients with respect to the likelihood; however, they can

be computed numerically. The following lemma ensures that

the polynomial coefficients can be computed quickly:

Lemma 1 Assume a density, f , is a polynomial; that is, f =
Tθ, where θ is a vector containing the polynomial coefficients

and T is a known linear operator relating the polynomial

coefficients to the density. Denote the negative log likelihood

of observing x ≡ {xi}ni=1 as `x(θ) ≡ − loge pTθ(x). Let

Θ denote the set of all coefficient vectors θ which result in

a bona fide density. Then `x(θ) is a convex function on Θ,

which is a convex set.

Lemma 1 is proved in Appendix VI. Because `x(θ) is

twice continuously differentiable and convex in the polynomial

coefficients and the set of all admissible polynomial coef-

ficients is convex, a numerical optimization technique such

as Newton’s method or gradient descent can find the optimal

parameter values with quadratic or linear convergence rates,

respectively. The speed can be further improved by comput-

ing Monte Carlo estimates of the polynomial coefficients to

initialize the minimization routine. Specifically, if Tk is a kth-

order orthonormal polynomial basis function, then the optimal

polynomial coefficient is∫
Tk(x)f(x)dx = E[Tk],

which can be estimated as (1/n)
∑
i Tk(xi). In practice, we

have found that computing such estimates with (appropriately

weighted) Chebyshev polynomials is both very fast and highly

accurate, so that calls to a convex optimization routine are

often unnecessary in practice.

This lemma is a key component of the computational com-

plexity analysis of the partition-based method. The theorem

below is also proved in Appendix VI.

Theorem 4 A free-degree piecewise polynomial PLE in one

dimension can be computed in O(n log2 n) calls to a convex

minimization routine and O(n log2 n) comparisons of the re-

sulting (penalized) likelihood values. Only O(n) log likelihood

values and O(n) polynomial coefficients need to be available

in memory simultaneously. A platelet estimate of an image

with n pixels can be calculated in O(n4/3 log2 n) calls to a

convex minimization routine.

Note that the order of operations required to compute the

estimate can vary with the choice of optimization method.

Also, the computational complexity of the platelet estimator

is based on the exhaustive search algorithm described in this

paper, but recent work has demonstrated that more computa-

tionally efficient algorithms, which still achieve minimax rates

of convergence, are possible [58].

VI. SIMULATION RESULTS

The analysis of the previous sections demonstrates the

strong theoretical arguments for using optimal tree pruning for

multiscale density estimation. These findings are supported by

numerical experiments which consist of comparing the density

estimation techniques presented here with a wavelet-based

method for both univariate density estimation and bivariate

Poisson intensity estimation.

A. Univariate Estimation

Two test densities were used to help explore the efficacy

of the proposed method. The first is a smooth Beta density:

f(x) = β(x; 2, 5), displayed in Figure 1(a). The second is

a piecewise smooth mixture of beta and uniform densities

designed to highlight the our method’s ability to adapt to

varying levels of smoothness:

f(x) =
3
5

(
β[0, 35 ](x; 4, 4)

)
+

1
10

(
β[ 25 ,1](x; 4000, 4000)

)
+

1
40
(
Unif [0,1](x)

)
+

11
40

(
Unif [ 45 ,1](x)

)
,

where β[a,b] refers to a Beta distribution shifted and scaled to

have support on the interval [a, b] and integrate to one. This
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density is displayed in Figure 2(a). While the β distribution in

particular could be very accurately estimated with a variety

of methods designed for smooth densities, this experiment

demonstrates that very accurate estimates of smooth densities

are achievable by the proposed method without prior knowl-

edge of the density’s smoothness.

In each of one hundred experiments, an iid sample of

one thousand observations was drawn from each density. The

densities were estimated with the free-degree PLE method

described in this paper (using only Monte Carlo coefficient

estimates for speed), the wavelet hard- and soft-thresholding

methods described in [23], and the wavelet block thresholding

method described in [59]; Daubechies 8 wavelets were used

for the second two methods. Like the method described

in this paper, both of the wavelet-based approaches have

strong theoretical characteristics and admit computationally

fast implementations, although as described above, they have

some limitations. The hard and soft wavelet threshold levels

were chosen to minimize the average L1 estimation error over

the two distributions. (L1 errors were approximated using

discretized versions of the densities and estimates, where

the length of the discrete vector, 215, was much greater

than the number of observations, 1, 000.) A data-adaptive

thresholding rule was proposed in [11], but the computational

complexity of determining the threshold is combinatorial in

the number of observations, which is impractical for large

sets of observations. Furthermore, it entails either keeping or

killing all wavelet coefficients on a single scale. This lack

of spatial adaptivity could easily lead to poorer numerical

results than the “clairvoyant” threshold weights used for this

experiment. The clairvoyant thresholds used in this simulation

could not be obtained in practice; in fact, the optimal threshold

weights vary significantly with the number of observations.

However, here they provide an empirical lower bound on the

achievable MSE performance for any practical thresholding

scheme. The MSE of these estimates are displayed in Table I.

Clearly, even without the benefit of setting the penalization

factor clairvoyantly or data adaptively, the multiscale PLE

yields significantly lower errors than wavelet-based techniques

for both smooth and piecewise smooth densities. Notably,

unlike wavelet-based techniques, the polynomial technique

is guaranteed to result in a non-negative density estimate.

Density estimates can be viewed in Figures 1 and 2. Note

that both the partition-based method and the wavelet-based

methods result in artifacts for small numbers of observations.

Piecewise polynomial estimates may have breakpoints or dis-

continuities at locations closely aligned with the underlying

RDP. Wavelet-based estimates have negative segments and

either undersmooth or oversmooth some key features; artifacts

in all situations can be significantly reduced by cycle-spinning.

This method can also be used effectively for univariate Poisson

intensity estimations in applications such as network traffic

analysis or Gamma Ray Burst intensity estimation, as demon-

strated in [60].

B. Platelet estimation

In this section, we compare platelet-based Poisson intensity

estimation with wavelet denoising of the raw observations and

Method Beta Density,

Average L1

Error

Mixture Density,

Average L1 Er-

ror

Donoho et al, Hard Threshold,

Clairvoyant Threshold [23]

0.1171 0.2115

Donoho et al, Soft Threshold,

Clairvoyant Threshold [23]

0.1129 0.1968

Chicken and Cai, Hard Thresh-

old, Clairvoyant Threshold [59]

0.1803 0.2855

Chicken and Cai, Soft Threshold,

Clairvoyant Threshold [59]

0.1620 0.2638

Free Degree PLE, Theoretical

Penalty

0.0494 0.1255

TABLE I

DENSITY ESTIMATION L1 ERRORS.

wavelet denoising of the Anscombe transform [61] of the ob-

servations. For this simulation, we assumed that observations

could only be resolved to their locations on a 1024 × 1024
grid, as when measurements are collected by counting photons

hitting an array of photo-multiplier tubes. An average of 0.06
counts were observed per pixel. The true underlying intensity

is displayed in Figure 3(a), and the Poisson observations are

displayed in Figure 3(b).

For each of the intensity estimation techniques shown

here, we averaged over four shifts (no shift, 256/3 in the

vertical direction only, 256/3 in the horizontal direction only,

and 256/3 in both the horizontal and vertical directions) to

reduce the appearance of gridding artifacts typically associated

with multiscale methods. The wavelet denoised image in

Figure 3(c) was computed using a Daubechies 6 wavelet and a

threshold was chosen to minimize the L1 error. The artifacts in

this image are evident; their prevalence is intensity dependent

because the variance of Poisson observations is equal to the

intensity. The Anscombe transformed data (y = 2(x+3/8)1/2,

where x is a Poisson count statistic) was also denoised with

Daubechies 6 wavelets (Figure 3(d)), again with a threshold

chosen to minimize the L1 error. Here artifacts are no longer

intensity dependent, because the Anscombe transform is de-

signed to stabilize the variance of Poisson random variables.

However, there are still distinct ringing artifacts near the high-

contrast edges in the image. Furthermore, the overall intensity

of the image is not automatically preserved when using the

Anscombe transform (
∫
f̂anscombe 6=

∑
i xi), and important

feature shared by the platelet- and wavelet-based methods.

We compared the above wavelet-based approaches with

two RDP-based estimators: one composed of linear fits on

the optimal rectangular partition (called the piecewise linear

estimator), and one composed of linear fits on the optimal

wedgelet partition (called the platelet estimator). Like the

wavelet estimators, the piecewise linear estimator is unable

to optimally adapt to image edges, as seen in Figure 3(e).

However, comparing the images, we see that the piecewise

linear estimator significantly outperforms the wavelet estima-

tors. The wedgelet partition underlying the platelet estimator

(Figure 3(f)), in contrast, is much better at recovering edges

in the image and provides a marked improvement over the

piecewise linear estimator. It is important to note that both the

piecewise linear and platelet estimates were computed using
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Fig. 1. Density estimation results for the Beta density. (a) True Beta density.

(b) Wavelet estimate [23] with clairvoyant hard threshold; L1 error = 0.0755.

(c) Wavelet estimate [23] with clairvoyant soft threshold; L1 error = 0.0870.

(d) Wavelet estimate [59] with clairvoyant hard block threshold; L1 error

= 0.1131. (e) Wavelet estimate [59] with clairvoyant soft block threshold;

L1 error = 0.0701. (f) Free-degree estimate (with theoretical penalty); L1

error = 0.0224

the theoretical penalties without the benefit of clairvoyant

penalty weightings given to the wavelet-based estimates. Of

course curvelets, mentioned in Section IV-A, also have the

ability to adapt to edges in images; however, we anticipate that

the platelet estimator would outperform the curvelet estimator

for intensity estimation just as the piecewise linear estimator

outperforms the wavelet-based estimates. Because of use of

curvelets for intensity and density estimation is beyond the

scope of this paper, we do not provide experimental curvelet

results here.

VII. CONCLUSIONS AND ONGOING WORK

This paper studies methods for density estimation and

Poisson intensity estimation based on free-degree piecewise

polynomial approximations of functions at multiple scales.

Like wavelet-based estimators, the partition-based method can

efficiently approximate piecewise smooth functions and can

outperform linear estimators because of its ability to isolate

discontinuities or singularities. In addition to these features,

the partition-based method results in non-negative density

estimates and does not require any a priori knowledge of the
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Fig. 2. Density estimation results for the mixture density. (a) True mixture

density. (b) Wavelet estimate [23] with clairvoyant hard threshold; L1 error

= 0.2806. (c) Wavelet estimate [23] with clairvoyant soft threshold; L1 error

= 0.2320. (d) Wavelet estimate [59] with clairvoyant hard block threshold;

L1 error = 0.2702. (e) Wavelet estimate [59] with clairvoyant soft block

threshold; L1 error = 0.2495. (f) Free-degree estimate (with theoretical

penalty); L1 error = 0.1048

density’s smoothness to guarantee near optimal performance

rates. Experimental results support this claim, and risk analysis

demonstrates the minimax near-optimality of the partition-

based method. In fact, the partition-based method exhibits

near optimal rates for any piecewise analytic density regardless

of the degree of smoothness; we are not aware of any other

density estimation technique with this property.

The methods analyzed in this paper demonstrates the power

of multiscale analysis in a more general framework than that of

traditional wavelet-based methods. Conventional wavelets are

effective primarily because of two key features: (1) adaptive

recursive partitioning of the data space to allow analysis at

multiple resolutions, and (2) wavelet basis functions that are

blind to polynomials according to their numbers of vanishing

moments. The alternative method presented here is designed to

exhibit these same properties without retaining other wavelet

properties which are significantly more difficult to analyze

in the case of non-Gaussian data. Furthermore, in contrast

to wavelet-based estimators, this method allows the data to

adaptively determine the smoothness of the underlying density

instead of forcing the user to select a polynomial order or
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(a) (b)

(c) (d)

(e) (f)

Fig. 3. Poisson intensity estimation. (a) True intensity. (b) Observed

counts (mean = 0.06). (c) Wavelet denoised image, using D6 wavelets and

a clairvoyant penalty to minimize the L1 error. Mean (per pixel) absolute

error = 8.28e− 3. (d) Wavelet denoised image after applying the Anscombe

transform, using D6 wavelets and a clairvoyant penalty to minimize the L1

error. Mean absolute error = 2.00e− 3. (e) Piecewise linear estimate, using

theoretical penalty. Mean absolute error = 4.47e − 3. (f) Platelet estimate,

using theoretical penalty described in analysis above. Mean absolute error =

3.09e− 3.

wavelet smoothness. Because of their ability to adapt to

smooth edges in images, platelet-based estimators also offer a

notable advantage over traditional wavelet-based techniques;

this is a critical feature for photon-limited imaging applica-

tions. These estimators have errors that converge nearly as

quickly as the parametric rate for piecewise analytic densities

and intensities.

As with wavelet-based and most other forms of multiscale

analysis, the estimates produced by the partition-based PLE

method commonly exhibit change-points on the boundaries of

the underlying recursive dyadic partition. Because we only

consider piecewise polynomials with first-order knots, and

not splines, density estimates produced by the partition-based

method often exhibit such discontinuities. Smoother estimates

with the same theoretical advantages can be obtained through

the use of Alpert bases [62] for moment interpolation as

described by Donoho [63]. Fast, translation-invariant tree-

pruning methods for first-order polynomials have been devel-

oped in [64]. Future work in multiscale density and intensity

estimation includes the investigation of translation invariant

methods for higher order polynomials.

Finally, note that in many practical applications, obser-

vations have been quantized by the measurement device,

sometimes to such an extent that one can only observe binned

counts of events. The effect of this binning or quantization is

to limit the accuracy achievable by this or any other method.

Nevertheless, the partition-based method studied in this paper

can easily handle binned data to produce accurate estimates

with near-optimal rates of convergence.

APPENDIX I

PROOF OF THE RISK BOUND THEOREM

Proof of Theorem 1 The proof of this theorem consists of

four steps. First, we will apply the Li-Barron theorem [53] to

show that, if we consider all density estimates in a class Γn
and if the penalties for each density in Γn satisfy the Kraft

inequality, then

E
[
H2
(
f̂ , f∗

)]
≤ min
g∈Γn

{
K(f∗, g) +

2
n

pen(g)
}
,

where

K(f∗, g) ≡
∫
f∗ loge

(
f∗

g

)
denotes the Kullback-Leibler (KL) divergence between f∗ and

g. Second, we will verify that the proposed penalties satisfy

the Kraft inequality. Third, we will upper bound the KL term,

and finally, we will apply approximation-theoretic results to

bound the risk.

The first step closely follows Kolaczyk and Nowak’s gener-

alization of the Li-Barron theorem [8], [53], but exhibits some

technical differences because we consider continuous time (not

discrete) densities.

Theorem 5 Let Γn be a finite collection of estimators g for

f∗, and pen(·) a function on Γn satisfying the condition∑
g∈Γn

e−pen(g) ≤ 1 . (13)

Let f̂ be a penalized likelihood estimator given by

f̂(x) ≡ arg min
g∈Γn

{− loge pg(x) + 2pen (g)} . (14)

Then

E
[
H2
(
f̂ , f∗

)]
≤ min
g∈Γn

{
K(f∗, g) +

2
n

pen(g)
}

. (15)

Remark 5 Minimizing over a finite collection of estimators,

Γn, in (14) is equivalent to minimization over the finite collec-

tion of recursive partitions, P , and coefficients, θ, described

in (4) in Section II.

Remark 6 The first term in (15) represents the approximation

error, or squared bias; that is, it is an upper bound on how
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well the true density can be approximated by a density in

the class Γn. The second term represents the estimation error,

or variance associated with choosing an estimate from Γn
given n observations. Both of these terms contribute to the

overall performance of the estimator, and it is only by careful

selection of Γn and the penalty function that we can ensure

that the estimator achieves the target, near minimax optimal

error decay rate.

Proof of Theorem 5 Following Li [52], define the affinity

between two densities as

A(f, g) ≡
∫

(fg)1/2.

Also, given a random variable X with density f : [0, 1] −→
[C`, Cu], let pf : [0, 1]n −→ [Cn` , C

n
u ] denote the probability

density function associated with drawing the n observations

x from X . Then

E
[
H2(f∗, f̂)

]
= E

[
2
(

1−A(f∗, f̂)
)]

≤ E
[
−2 logeA(f∗, f̂)

]
= E

[
− 2
n

logeA(p bf , pf∗)
]
.

From here it is straightforward to follow the proof of Theo-

rem 7 in [8] to show

E
[
H2(f∗, f̂)

]
≤ min

g∈Γn

{
1
n
K(pf∗ , pg) +

1
n

pen(g)
}

= min
g∈Γn

{
K(f∗, g) +

1
n

pen(g)
}
.

We now define Γn as follows. First consider the collection

of all free-knot, free-degree piecewise-polynomial functions

which map [0, 1] to [C`, Cu] and which integrate to one. (Note

that the knots in these densities will not normally lie on

endpoints of intervals in the C-RDP, but rather within one of

these intervals.) For each of these densities, shift each knot to

the nearest dyadic interval endpoint, quantize the polynomial

coefficients, clip the resulting function to be positive, and

normalize it to integrate to one. This collection of densities

constitutes Γn. We quantize the coefficients of an orthogonal

polynomial basis expansion of each polynomial segment to one

of
√
n levels; this will be discussed in detail later in the proof.

This definition of Γn allows us to prove the Kraft inequality

when the penalty is defined as in (3):

Lemma 2 Let g ∈ Γn, and let P denote the partition on

which g is defined, and θ be the vector of quantized polynomial

coefficients defining g (prior to clipping and renormalization).

If pen(g(P,θ)) ≡ (2|P|+ |θ| − 1) loge 2 + |θ|
2 loge n, then∑

g∈Γn

e−pen(g) ≤ 1. (16)

Proof of Lemma 2 Note that any g ∈ Γn can be described

by the associated quantized density (denoted gq) prior to

the deterministic processes of clipping and renormalization.

Consider constructing a unique code for every gq . If gq consists

of free-degree polynomials on each of |P| dyadic intervals,

then both the locations of the |P| intervals and all the |θ| < n
coefficients need to be encoded. The |P| intervals can be

encoded using 2|P| − 1 bits. To see this, note that dyadic

intervals can be represented as leaf nodes of a binary tree,

and a binary tree with |P| leaf nodes has a total of 2|P| − 1
nodes. Thus each node could be represented by one bit–a zero

for an internal node and a one for a leaf node. This can easily

be verified with an inductive argument.

The ith of these |P| intervals, Ii, contains nIi observations,

and the density on this interval is a polynomial of order ri,
i = 1, . . . , |P|, where ri ∈ {1, . . . , nIi} and

∑
i ri = |θ|.

For the ith interval, ri
2 log2 n bits are needed to encode each

quantized coefficient. These coefficients can be prefix encoded

by following each encoded quantized coefficient with a single

bit indicating whether all ri coefficients have been encoded

yet. A total of |θ| of these indicator bits will be required.

Thus the total number of bits needed to uniquely represent

each g ∈ Γn is 2|P| − 1 +
∑|P|
i=1

(
ri
2 log2 n+ ri

)
= 2|P| +

|θ| − 1 + |θ|
2 log2 n.

We know that the existence of this uniquely decodable

scheme guarantees that∑
g∈Γn

2−(2|P|+|θ|−1+
|θ|
2 log2 n) ≤ 1.

Therefore, if pen(g) = (2|P| + |θ| − 1) loge 2 + |θ|
2 loge n,

then∑
g∈Γn

e−pen(g) =
∑
g∈Γn

2− log2(e)((2|P|+|θ|−1) loge 2+
|θ|
2 loge n)

=
∑
g∈Γn

2−(2|P|+|θ|−1+
|θ|
2 log2 n)

≤ 1,

as desired.

The next step in bounding the risk is to bound the KL

divergence in (15).

Lemma 3 For all densities f : [0, 1] −→ [C`, Cu] and all

g ∈ Γn,

K(f, g) ≤ 1
C`
‖f − g‖2L2

.

Proof of Lemma 3

K(f, g) =
∫ 1

0

f loge

(
f

g

)
≤

∫ 1

0

f

(
f

g
− 1
)

+ g − f

=
∫ 1

0

(
1
g

)(
g2 − 2gf + f2

)
≤ 1

C`
‖f − g‖2L2

(17)

where first inequality follows from loge(z) ≤ z − 1 and the

second inequality follows from g ≥ 1/C`.
The above construction of Γn can be used to bound the

approximation error ‖f − g‖2L2
:
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Lemma 4 Let f ∈ Bαq (Lp([0, 1])), where α > 0, 1/p = α+
1/2, and 0 < q ≤ p, be a density, let g ∈ Γn be the best

m-piece approximation to f , and let d denote the number of

polynomial coefficients in this approximation. Then

‖f − g‖2L2
≤ C

(
m−α +

m1/2

n1/2
+

d

n1/2

)2

(18)

for n sufficiently large and for some constant C that does not

depend on n.

Proof of Lemma 4 Using the construction of g outlined

above and the triangle inequality, we have

‖f − g‖L2 ≤ ‖f − gp‖L2 + ‖gp − gs‖L2 + ‖gs − g‖L2 , (19)

where gp is the best free-knot, free-degree piecewise polyno-

mial approximation of f , gs is gp after its knots have been

shifted to the nearest dyadic interval endpoint, and g is gs
after the polynomial coefficients have been quantized, and

the resulting function has been clipped and renormalized to

produce a bona fide density.

These three terms can each be bounded as follows:

• ‖f − gp‖L2 : The L2 approximation error for either a

m-piece free-degree piecewise polynomial approximation

decays faster than Cam
−α for some constant Ca which

does not depend on m when f ∈ Bαq (Lp([0, 1])) [25].

• ‖gp−gs‖L2 : Because f ≤ Cu and f has compact support,

we know gp < ∞ and gs < ∞. By construction, gp has

m−1 breakpoints, so for all but m−1 of the n intervals

in the C-RDP, gp = gs. For the remaining m−1 intervals,

each of length 1/n, the L∞ error is bounded by constant

independent of m, leading to the bound

‖gp − gs‖L2 ≤ Cb
(
m− 1
n

)1/2

(20)

where Cb is a constant independent of m and n.

• ‖gs − g‖L2 : Quantization of each of the d polynomial

coefficients produces the final error term. The poly-

nomials can be expressed in terms of an orthogonal

polynomial basis (e.g. the shifted Legendre polynomials),

which allows the magnitudes of the coefficients to be

bounded and hence quantized. Let T kI denote the kth-

order polynomial basis function on the interval I , so that

〈T `I , T kI 〉 = 1k=`. Let θi,k = 〈gs, T kIi〉. By the Cauchy-

Schwarz inequality,

|θi,k| ≤ ‖gs‖L2(Ii)‖T
k
Ii‖L2(Ii).

Let Cs = supx gs(x) < ∞; then it is pos-

sible to quantize θi,k to one of n1/2 levels in[
−Cs‖T kIi‖L2(Ii), Cs‖T kIi‖L2(Ii)

]
. Let the quantized ver-

sion of coefficient θi,k be denoted [θi,k]. This quantization

results in the function gq and induces the following error:

‖gs − gq‖L2 =
m∑
i=1

‖gs − gq‖L2(Ii)

=
m∑
i=1

[
ri∑
k=1

(θi,k − [θi,k])2‖T kIi‖

]1/2

≤
m∑
i=1

(
ri∑
k=1

Cq
n

)1/2

≤
m∑
i=1

ri

(
Cq
n

)1/2

= Ccd/n
1/2

for some constants Cq and Cc independent of gs and gq .
Next, let g denote gq after imposing the constraints that∫
g = 1 and g ≥ 0 by clipping and normalizing gq . These

operations do not increase the approximation error decay

rate. For any density f and any function g,
∫
|f − g| ≥∫

|f −max(g, 0)|. In addition, for any density f and any

non-negative function gq ≥ 0 such that
∫
|f−gq| < ε for

some ε < 1/2,
∫
|f− gqR

gq
| ≤ 8ε/3 [31]. Set ε = Cam

−α;

then ε < 1/2 for m sufficiently large. Thus ‖gs−g‖L2 ≤
‖gs − gq‖L2 .

Finally, note that estimating densities on recursive dyadic

partitions typically requires a larger number of polynomial

pieces than free-knot approximation would require. The term

‖f − g‖2L2
was bounded assuming polynomial approximation

was conducted on m (not necessarily dyadic) intervals. In

practice, however, the binary tree pruning nature of the esti-

mator would necessitate that any of the polynomial segments

represented by g that do not lie on a dyadic partition be

repartitioned a maximum of log2 n times. This means that

the best approximation to the density with m pieces and

d coefficients must be penalized like a density with |P| =
m log2 n pieces and |θ| = d log2 n coefficients.

This, combined with the bounds in (15), (17), and (18),

yield the bound

E
[
H2(f∗, f̂)

]
≤ min

g∈Γn

{
1
C`
‖f∗ − g‖2L2

+
2
n

pen(g)
}

≤ min
m,d


1
C`

(
Cam

−α + Cb
m1/2

n1/2 + Cc
d

n1/2

)2

+
2
n [(2m log2 n+ d log n− 1) loge 2+
d log2 n

2 loge n
]

 .

Recalling that m ≤ d, this expression is minimized for d ∼(
log2

2 n
n

) −1
2α+1

. Substitution then yields that E
[
H2(f∗, f̂)

]
is

bounded above by C
(

log2
2 n
n

) 2α
2α+1

for some constant C.

APPENDIX II

PROOF OF THE L1 ERROR BOUND

Proof of Corollary 1 The risk bound of Theorem 1 can be
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translated into an upper bound on the L1 error between f∗

and f̂ as follows. First note that H2(f∗, f̂) ≤
∫
|f∗ − f̂ | ≤

2H(f∗, f̂) [16]. By Jensen’s inequality, we have

E
[
‖f∗ − f̂‖L1

]
≤ 2E

[
H(f∗, f̂)

]
≤ 2

(
E
[
H2(f∗, f̂)

])1/2

≤ C

(
log2

2 n

n

) α
2α+1

.

APPENDIX III

PROOF OF THE NEAR-PARAMETRIC RATES

Discussion of Example 1

The derivation of this rate closely follows the analysis of

Theorem 1. Assume that f∗ is composed of 1 ≤ m < ∞
analytic pieces, and the best free-knot, free-degree polynomial

has a total of d coefficients. Then

‖f∗ − gp‖L2 ≤ Ca2−d/m.

This is a result of Jackson’s Theorem V(iii) in [65]:

Theorem 6 Let f∗ ∈ C[−1, 1] and

Ed(f∗) ≡ inf
a0,...,ad−1

sup
−1≤x≤1

∣∣∣∣∣f∗(x)−
d−1∑
i=0

aix
i

∣∣∣∣∣ .
If f∗(k) ∈ C[−1, 1] and d ≥ k, then

Ed(f∗) ≤ (π/2)k‖f∗(k)‖ (d− k + 1)!
(d+ 1)!

.

Applying Stirling’s inequality and assuming d = k ≥ 8, we

have

Ed(f∗) ≤ C ′a‖f∗
(k)‖2−d.

For f∗ with m analytic pieces, the minimax error in ap-

proximating f with piecewise polynomials with a total of d
coefficients must decay at least as fast as C ′′a2−d/m. (Faster

rates may be possible via a non-uniform distribution of the

d coefficients over the m analytic pieces.) This results in the

risk bound

E
[
H2(f∗, f̂)

]
≤ min

g∈Γn

{
log2(n)‖f∗ − g‖2L2

+
2
n

pen(g)
}

≤ min
m,d

 1
C`

(
Ca2−d/m + Cb

m1/2

n1/2 + Cc
d

n1/2

)2

+
2
n

[
(2m log2 n− 1) loge 2 + d log2 n

2 loge n
]
 .

Recalling that m ≤ d, this expression is minimized for d =
log2 n. Substitution then yields that E

[
H2(f∗, f̂)

]
is bounded

above by C
log3

2 n
n for some constant C.

APPENDIX IV

PROOF OF PLATELET ESTIMATION RISK BOUNDS

Proof of Theorem 3 This proof is highly analogous to the

proof of Theorem 1 above, and so we simply highlight some

of the most significant differences here.

First, a platelet estimate may be uniquely encoded with a

prefix code (satisfying the Kraft inequality) as follows: for

each (square- or wedgelet-decorated) leaf in the RDP, 7/3 bits

are needed to uniquely encode its location. To see this, let s
denote the number of square-shaped leafs, and note that s =
3k+1 for some k ≥ 0, where k is the number of interior nodes

in the quad-tree representation of the RDP. This structure has

a total of 4k + 1 nodes, and can be encoded using 4k + 1
bits. Next, each of the s square-shaped leafs may or may not

be split into two wedgelet-shaped cells; these decisions can

be encoded with a single bit, for a total of s additional bits.

Thus, ignoring wedgelet orientations, the entire tree structure

can be encoded using a total of 7k + 2 < 7s/3 bits. Let m
denote the total number of square- or wedgelet-decorated leafs

in the RDP; s < m, and so at most 7m/3 bits can be used to

encode the structure.

For each of the m cells in the partition, 8/3 log2 n bits

must be used to encode its intensity: 2/3 log2 n bits for

each of the three platelet coefficients, and 2/3 log2 n bits to

encode part of the wedgelet orientation. These numbers can be

derived by noting that the best quantized m-term squared L2

platelet approximation error behaves like O(m−min(α,β) +δ+
m2/n2q), where nq is the number of possible levels to which

a platelet coefficient may be quantized and δ is the spacing

between possible wedgelet endpoints. In order to guarantee

that the risk converges at nearly the minimax rate of n−2/3,

δ must be set to n−2/3 and q must be 2/3. Then for any

dyadic square contained in [0, 1]2, the total number of possible

wedgelet orientations is no greater than (1/δ)2 = n4/3. A

single orientation can then be described using 4/3 log2 n bits;

each of the two wedgelets in a square-shaped region of the

RDP is allotted half of these bits.

With this encoding scheme in mind, we set

pen(f(P,θ)) = (8/3)|P| loge n+ (7/3)|P| loge 2.

This, combined with the bounds in (15), (17), and Theorem 2,

yield the bound

E
[
H2(f∗, f̂)

]
≤ min

g∈Γn

{
1
C`
‖f∗ − g‖2L2

+
2
n

pen(g)
}

≤ min
P,θ


1
C`

(
Cam

−min(α,β)+

Cbn
−2/3 + Cc

m2

n4/3

)
+

2
n [(8/3)(m log2 n) loge n+

(7/3)(m log2 n) loge 2]

 .

This expression is minimized for m ∼
(

log2
2 n
n

) −1
min(α,β)+1

.

Substitution then yields that E
[
H2(f∗, f̂)

]
is bounded above

by C
(

log2
2 n
n

) min(α,β)
min(α,β)+1

for some constant C.
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Loop: for j = J downto 1, where J is the maximum depth of the

C-RDP binary tree

Loop: for each dyadic interval I at level j
If nI == 0:

θmin(I) = 0
Else:

Loop: for q = 1 to nI

θHq = arg min
θ:|θ|=q

L(f(I, θ))

Goto loop: next q

q∗ = arg min
1≤q≤nI

L(f(I, θHq ))

If I ∈ T (C− RDP):

Pmin(I) = I
θmin(I) = θHq∗

Else:

Pno prune(I) = concat(Pmin(`(I)),Pmin(r(I)))
θno prune(I) = concat(θmin(`(I)), θmin(r(I)))
If L(f(Pno prune(I), θno prune(I))) <
L(f(I, θHq∗ )):

Pmin(I) = Pno prune(I)
θmin(I) = θno prune(I)

Else:

Pmin(I) = I
θmin(I) = θHq∗

End if

End if

End if

Goto loop: next node I at level j
Goto loop: next depth j

Estimate: bf = f(Pmin([0, 1]), θmin([0, 1]))
TABLE II

FREE-DEGREE PIECEWISE POLYNOMIAL ESTIMATION ALGORITHM

PSEUDOCODE

APPENDIX V

ALGORITHM

Table II contains the algorithm pseudocode. In the pseu-

docode, L(f(I,θHr
)) denotes the penalized log likelihood

term for segment I under hypothesis Hq , θ(I) denotes

the polynomial coefficients associated with interval I , and

T (C− RDP) is the set of all intervals in the C-RDP cor-

responding to a terminal node (leaf) in the binary tree repre-

sentation.

APPENDIX VI

PROOF OF COMPUTATIONAL COMPLEXITY LEMMA AND

THEOREM

Proof of Lemma 1 If θ is a vector of polynomial coeffi-

cients and x consists of n observations, then

`x(θ) = −
n∑
i=1

loge

|θ|−1∑
k=0

θkx
k
i

 .

Let θa and θb be two |θ|-dimensional vectors in Θ, and let θa,k
and θb,k denote the kth elements of θa and θb, respectively.

Using the convexity of the negative log function, we have for

all 0 ≤ λ ≤ 1,

−
n∑
i=1

loge

|θ|−1∑
k=0

λθa,kx
k
i + (1− λ)θb,kxki

 ≤
−λ

n∑
i=1

loge

|θ|−1∑
k=0

θa,kx
k
i


−(1− λ)

n∑
i=1

loge

|θ|−1∑
k=0

θb,kx
k
i


and hence `x(θ) is a convex function of θ.

To see that Θ is a convex set, consider two admissible

coefficient vectors θa and θb defining two bona fide densities

fa and fb, respectively. Then for any λ < 1 the density

fc = λfa + (1 − λ)fb is also a bona fide density, and can

be described by the coefficient vector θc = λθa + (1 − λ)θb
is also admissible. As a result, the set is convex.

Proof of Theorem 4 Recall that we start with

2dlog2(n/ log2 n)e = O(n) terminal intervals in the C-RDP. Let

nI denote the number of observations in interval I . The tree-

pruning algorithm begins at the leafs of the tree and progresses

upwards. At the deepest level, the algorithm examines n pairs

of intervals; for each interval I at this level, all of the kth-

order polynomial fits for k = 1, . . . , nI are computed. This

means that, at this level, a total of n polynomial fits must

be calculated and compared. At the next coarser level, the

algorithm examines n/2 intervals, and for each interval I at

this level, all of the kth-order polynomial fits for k = 1, . . . , nI
are computed, for a total of n polynomial fits which must

be computed and compared. This continues for all levels of

the tree, which means a total of O(n log2 n) polynomial fits

must be computed and compared. Further note that, at each

level, only the optimal polynomial fit must be stored for each

interval. Since there is a total of n intervals considered in

the algorithm, only O(n) likelihood values and polynomial

coefficients must be stored in memory.
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