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Abstract— Sensing, processing and communication must be jointly opti-
mized for efficient operation of resource-limited wireless sensor networks.
We propose a novel source-channel matching approach for distributed
field estimation that naturally integrates these basic operations and
facilitates a unified analysis of the impact of key parameters (number of
nodes, power, field complexity) on estimation accuracy. At the heart of
our approach is a distributed source-channel communication architecture
that matches the spatial scale of field coherence with the spatial scale
of node synchronization for phase-coherent communication: the sensor
field is uniformly partitioned into multiple cells and the nodes in each
cell coherently communicate simple statistics of their measurements to
the destination via a dedicated noisy multiple access channel (MAC).
Essentially, the optimal field estimate in each cell is implicitly computed
at the destination via the coherent spatial averaging inherent in the
MAC, resulting in optimal power-distortion scaling with the number
of nodes. In general, smoother fields demand lower per-node power but
require node synchronization over larger scales for optimal estimation. In
particular, optimal mean-square distortion scaling can be achieved with
sub-linear power scaling. Our results also reveal a remarkable power-
density tradeoff inherent in our approach: increasing the sensor density
reduces the total power required to achieve a desired distortion. A direct
consequence is that consistent field estimation is possible, in principle,
even with vanishing total power in the limit of high sensor density.

I. INRODUCTION

Sensing, processing and communication are the basic operations
performed by wireless sensor networks. Due to the limited nature of
valuable resources (computation, power, bandwidth) it is generally
agreed that these operations should be jointly optimized in order
to deliver information of the highest accuracy for a given resource
allocation. This goal can be viewed as a generalization of rate-
distortion theory, wherein the transmission rate is replaced by a more
general set of resource constraints. In practice, however, it has been
difficult to find satisfactory approaches toward this goal. While much
of the research to date has focused on optimizing the basic sensor
network operations separately, recent results on distributed estimation
or detection of a single source indicate that joint optimization through
a form of source-channel matching, facilitated by limited local node
cooperation, can result in dramatic power savings [1], [2], [3], [4],
[5].

In this paper, we propose a distributed architecture for matched
source-channel communication for optimized sensing and estimation
of a homogeneous spatial field using a wireless network of sensors.
The architecture is illustrated in Fig. 1. A network with n nodes is
uniformly partitioned into m cells. Local sufficient statistics from
each cell are coherently communicated to a distant destination using
dedicated multiple access channels (MAC). Our approach unifies the
operations of sensing, processing and communication into a single
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Fig. 1. A distributed architecture for homogeneous field estimation with
wireless sensors. A network with n nodes is uniformly partitioned into m
cells, with k = n/m nodes in each cell. The size of each cell is matched to
the field smoothness, and the nodes in each cell communicate coherently to
the destination via a dedicated multiple access channel (MAC).

scheme that allows us to characterize the relationships and trade-
offs among these operations and reveals fundamental power-distortion
scaling laws that govern the quality of the field estimate delivered to
a remote destination. Three remarkable features of our scheme are:
1) processing and communications are combined into one operation;
2) it requires almost no collaboration among sensing nodes; and 3)
consistent field estimation is possible as node density increases even
if the total network power consumption tends to zero. Our approach
involves a novel combination of existing results from approximation
theory [6], statistics [7], and wireless communications [1], [2], [3],
[4], [5], [8]. The decay rate of the squared L2-distortion at the
destination depends on three quantities; n, the number of wireless
sensing nodes in the network, P , the communication power expended
by each node, and α > 0, a parameter that quantifies the smoothness
of the underlying field. Under our optimal design, the distortion obeys
the equation

D(n, P, α) ≤ C
�
(Pn)−2α/d + P � . (1)

where d is the dimension of the field and C > 0 is a constant
independent of n and P and dependent only on measurement and
communication channel noise levels and on the accuracy of Taylor
approximations to f . As functions of P , the first and second terms
in the expression above are strictly monotonically decreasing and
increasing, respectively. Thus, the minimum distortion is achieved
by the calibration P = n−2α/(2α+d). Note that in this case the
distortion and the power expended by each node decrease at the same
polynomial rate as the density of the network increases.

From an architectural and protocol viewpoint, our approach rep-
resents a departure from existing methodologies which emphasize
the networking aspects, such as multi-hop routing of information.
Our proposed wireless sensing system perhaps is more accurately



viewed as a sensor ensemble which is appropriately queried by an
information transponder (destination or fusion center) to elicit the
desired information about the signal field. The nodes in different
cells in Fig. 1 form coherent sub-ensembles in that they communi-
cate the local field information in a phase-coherent fashion to the
transponder. This locally coherent response from the sensor sub-
ensembles simultaneously reduces the impact of the two key sources
of error: measurement noise and communication noise. The resulting
optimal power-distortion scaling laws reveal a fundamental power-
density tradeoff : increasing the sensor density increases the cardinal-
ity of each coherent sub-ensemble thereby dramatically reducing the
network power required to attain a target distortion.

A. An Overview of the Proposed Scheme

Here we give a short introduction to the proposed method. In
the following sections we elaborate on the technical details of the
scheme. To begin, define the class Cα(B) to consist of all real-valued
functions f on [0, 1]d that possess continuous partial derivatives up
to order α and satisfy

∀ z, x ∈ [0, 1]d : |f(z) − Px(z)| ≤ B‖z − x‖α, (2)

where B, α > 0, and Px(·) denotes the Taylor polynomial of order
α − 1 for f at point x. Assume that the field being sensed is some
f ∈ Cα(B). The goal of our scheme is to deliver �f , a low-distortion
estimate of the field f , to a remote destination. The n sensor nodes
are at distinct and known locations, ξ1, . . . , ξn, that are roughly
uniformly distributed over [0, 1]d. For our purposes we will assume
that every square region S of volume V � 1/n contains nS � nV
sensors1 and that distance between sensors behaves like n−1/d. For
example, this condition is satisfied if the sensors are arranged on a
regular lattice, but less structured sensor layouts are admissible (e.g.,
small bounded perturbations of a regular lattice). The condition is
necessary to insure that the resulting system of estimation equations
is full rank.

Each node takes a noisy sample of the form

xi = f(ξi) + wi (3)

where the errors wi, i = 1, . . . , n, are independent, zero-mean
random variables with variance σ2

w . If the destination has direct
access to the measurements (noise-free communication), the well-
known (minimax) optimal estimation error is

inf�
f

sup
f

E{‖f − �f‖2
L2

} � n−2α/(2α+d)

in this case [9]. Moreover, a practical field estimator can be easily
constructed by partitioning [0, 1]d into m = nd/(2α+d) (square) cells
of volume 1/m and computing the least squares fit of an order p =
α − 1 polynomial to the noisy samples in each such cell [9]. This
results in a bias/variance trade-off

E{‖f − �f‖2
L2

} � m−2α/d + m/n (4)

where the first term is the squared bias and the second is the
variance. The minimum is attained by setting m = nd/(2α+d), which
produces the minimax rate above. Finally, note that in the absence
of measurement noise (σ2

w = 0) only the bias term appears and we
can write

‖f − �f‖2
L2

� m−2α/d.

1We write an � bn when an = O(bn) and an � bn if both an � bn

and bn � an.

There are precisely ` = � p+d
p � sufficient statistics per cell.

These statistics are simple linear combinations of the measurements.
Therefore, the estimate can be delivered to the destination (modulo
a simple linear reconstruction process to be carried out there) by
transmitting the m` sufficient statistics. A very important fact is that
the sufficient statistics for each least squares fit can be computed by
weighted averages of the samples, where the weighting factor applied
to each sample depends only on the location of the corresponding
sensor (see the Appendix for details). Thus, determination of the
weighting factors requires no collaboration between nodes.

The remaining issue is the communication protocol for trans-
porting the local sufficient statistics to a distant destination. One
possibility is to nominate a local clusterhead in each cell, which
receives weighted sample values from the other nodes in its cell and
then computes, encodes and transmits the sufficient statistics to the
receiver. Another, more promising, alternative is to exploit recent
results concerning uncoded coherent transmission schemes [1], [3],
[4]. The proposed distributed communication architecture, illustrated
in Fig. 1, is matched locally to the estimator partition: the nodes in
each cell coherently communicate to the destination via a dedicated
additive white Gaussian noise (AWGN) MAC connecting the n/m
nodes to the destination. This approach involves phase-coherent, low-
power, analog transmissions of weighted sample values directly from
the nodes in each cell to the destination. The destination receives
the coherent transmissions and the required averaging is implicitly
computed as a result of the spatial averaging in the MAC. Coherent
transmission from each cell provides an n

m
-fold power amplification:

the total received power at the destination ( Pn2

m
) is n

m
times the total

transmitted power (Pn). The resulting communication error scales
like m√

Pn
, resulting in a total squared L2 error at the destination

E{‖f − �f‖2
L2

} � m−2α/d +
m

n
+

m2

Pn2
,

where the last two terms are variances due to the measurement
and communication noises, respectively. These are both increasing
functions of m, so the overall minimum distortion is achieved when
they are of equal size; thus we have the calibration P = m/n giving
us the relation in (1) above in which optimal decay rate is achieved
with vanishing power per node. In the absence of measurement noise
the squared L2 error is

E{‖f − �f‖2
L2

} � m−2α/d +
m2

Pn2
,

and can decay at a faster optimal rate approaching n−2α/(α+d) if the
power per node P is non-vanishing.2

B. Relationship to Previous Work

First, let us comment on the field model used in our approach. We
assume that the field f is an unknown deterministic function with
α continuous derivatives. This can be relaxed to the less restrictive
assumption that f is Hölder-α smooth, for any α > 0. In such
cases, our estimator would be based on piecewise polynomial fits
of order dαe − 1. We assume our sensors take samples of the field
contaminated by noise. An alternative perspective, that is commonly
used in related work [10], [11], [12], [13], is that f is a realization
of a stationary (often bandlimited) random field with some known
correlation function. The decay characteristics of the correlation (e.g.,
the rate of decay) play a role analogous to that of α in our paper. Both
field models express a notion of smoothness in the field. The choice

2We are implicitly assuming that the total network power cannot scale faster
than linearly with the number of nodes.



between the deterministic or stochastic model is mostly a matter
of taste and mathematical convenience in the case of homogeneous
fields; fundamentally, both models embody the same smoothness
characteristics. However, the deterministic formulation can be more
readily generalized to include inhomogeneities, such as boundaries
[8].

Secondly, field estimation using wireless sensor networks generally
requires a combination of in-network communications to compute
local sufficient statistics and out-of-network communications to trans-
port the sufficient statistics to a usually distant destination. Most
previous works in this area have focused on multihop communication
schemes and in-network data processing and compression [8], [10],
[11], [13]. This requires a significant level of network infrastructure,
and the theoretical approaches in the works above generally assume
this infrastructure as given. However, in practice the operation and
maintenance of the network is often the most challenging issue
and imposes a significant burden on network resources. Our new
approach, in contrast to previous methods, eliminates the need for
in-network communications and processing and instead requires local
phase synchronization among nodes (which imposes a relatively small
burden on network resources). Furthermore, coherent communication
of local sufficient statistics to the destination results in dramatic power
savings in out-of-network communications. For instance, if multi-
hop communication protocols are used for in-network processing,
as in our previous related work [8], then local sufficient statistics
are transported to a cluster head in the network and subsequently
transmitted to a remote destination. The final transmission out of the
network requires a significant amount of power. In fact, the total
power required to achieve a target distortion level at the destination
would far exceed the power required by our new approach (see
Section III). In our case, coherent communication from each cell
requires a monotonically decreasing P with n in order to attain
the same distortion scaling. As a result, the out-of-network power
savings due to our approach grow unbounded with the sensor density
(number of nodes). Thus, we conclude that our new approach results
in very significant power savings compared to existing methods
by eliminating the need for in-network communications and by
employing locally phase-coherent transmissions for out-of-network
communications.

Finally, the notion of distributed source-channel matching can be
thought of as a form of joint source-channel coding in sensor net-
works. The importance of source-channel matching for estimation of
multiple sources has also been noted in [3]. An important implication
of the proposed matched source-channel communication architecture
is that joint source-channel coding is inherently local: the size of each
cell, n/m, defines the optimal scale of local phase synchronization
across nodes.

II. OPTIMAL ESTIMATION IN A CENTRALIZED SYSTEM

We first consider the structure of the optimal centralized estimator
in which the sensor measurements are available at the destination,
with no added cost or noise due to communications. The distortion
scaling of the centralized estimator serves as a benchmark for
assessing the performance of the distributed estimation algorithms.
For homogenously smooth signal fields, optimal asymptotic distortion
scaling can be achieved by partitioning the signal field into m uniform
cells, Q1, . . . , Qm, each with k = n/m nodes. For a Cα(B) field,
the optimal signal field estimate, �f , is a piecewise polynomial fit to
the data in each cell.

To illustrate the idea, let us consider the situation when α = 1, in
which case the field estimator is constant on each cell of the partition.

The value in cell j is obtained by averaging the measurements in that
cell:

ŝj =
1

k �
i:ξi∈Qj

xi =
1

k �
i:ξi∈Qj

si +
1

k

k�
i=1

wi (5)

where si = f(ξi) and the sum is over the k measurements in cell
Qj . The resulting field estimate is given by�f(ξ) =

m�
j=1

ŝj1ξ∈Qj
(6)

where 1ξ∈Qj
is 1 if ξ is in Qj and zero otherwise. The squared bias

of �f is

‖f − E{ �f}‖2
L2

= � (f − E{ �f})2
= � (f − f̄)2 ≤ Bm−2/d

where f̄ is the piecewise constant field obtained by averaging f on
each cell of the partition and the inequality itself follows from a
simple Taylor series argument. The variance of �f is proportional to
the ratio of the number of its degrees of freedom, m, to the number
of samples, n. Thus, we have the following upper bound on the
distortion achievable with a centralized approach:

Dcen ≡ E{‖f − �f‖2
L2

} � m−2/d + m/n .

In the general case, the squared bias behaves like m−2α/d (which
follows from a higher order Taylor series remainder) and the variance
remains proportional to m/n, leading to expression (4); see the
Appendix for details on the construction of the estimator. While
the expressions above ignore constant factors, and are helpful for
studying scaling behaviors, the SNR is an important constant to bear
in mind in practice. The measurement SNR is ρmeas = σ2

s/σ2
w , where

σs is the field signal strength (average amplitude) and σw is the
standard deviation of the measurement noise.

Dcen � 1

m2α/d
+

1

ρmeas

m

n
. (7)

For optimal distortion scaling, the bias and variance should be
reduced at the same rate

1

m2α/d
=

1

ρmeas

m

n
⇐⇒ mopt = ρ

d
2α+d
meas n

d
2α+d (8)

Thus, for optimal distortion scaling, m � n
d

2α+d and the constant is
proportional to the measurement SNR. The resulting distortion scales
as

sup
f∈Cα(B)

E{‖f − �f‖2
L2

} � n− 2α
2α+d (9)

since our upper bound matches the minimax lower bound.

III. DISTRIBUTED ESTIMATION VIA NOISY COMMUNICATIONS

We now analyze the distortion when the local sufficient statistics
from each cell are communicated to the destination over a noisy
channel. Our goal is to characterize the power-distortion scaling laws
that relate the final distortion to the transmit power as a function of
the number of nodes. We again illustrate the key ideas for α = 1
for which a constant signal estimate suffices in each cell. Details on
the general case are provided in the Appendix. The MAC connecting
each cell to the destination in Fig. 1 forms the basic building block
of the overall architecture; we assume that the MACs for different
cells are non-interfering, which may be achieved via time-division or
frequency-division multiplexing over the available bandwidth. The



sensor measurements in cell j are given by xi,j = si,j +wi,j , i =
1, · · · , k. We will focus our attention on an arbitrary cell for the
moment, and thus we suppress the subscript j in the following
analysis. Each node communicates an amplified version of its local
measurement to the destination

yi =
√

Pxi (10)

where P = Po/(σ2
s + σ2

w) and Po is the transmit power per node.3

The signal received at the destination is given by

r =

k�
i=1

yi + z =
√

P

k�
i=1

xi + z

=
√

P
k�

i=1

si +
√

P
k�

i=1

wi + z (11)

where z ∼ N(0, σ2
z) is the AWGN in the MAC. Strictly speaking,

the received signal from each node, yi, in (11) should be scaled
with an attenuation constant, ai ∈ (0, 1), that depends on the
distance between the node and destination and the path loss exponent.
However, for simplicity we are assuming that the destination is far
enough so that all the distances, and hence the ai’s, are nearly the
same. We ignore this uniform attenuation since it will uniformly
increase the required power per node by a constant factor to attain
a desired distortion. When the attenuations for different nodes are
significantly different, it would require non-uniform power allocation
across nodes, and a detailed discussion of this issue will be reported
elsewhere.

Inspired by the structure of the centralized estimator in (5), the
estimate at the destination is formed from the received signal r as

ŝdes =
1

k
√

P
r = ŝcen +

z√
Pk

(12)

where ŝcen denotes the centralized estimate in (5), and the corre-
sponding distortion is given by

Ddes =Dcen +
σ2

z

Pk2
= Dcen + Dcom (13)

� 1

m2/d
+

1

ρmeask
+

1

ρcomPk2

where ρcom = σ2
s/σ2

z is the communication4 SNR, the first two
terms correspond to Dcen and the last term corresponds to Dcom,
the distortion introduced due to noisy MAC communication. If we
consider the general Cα(B) setting, then only the bias term is
effected in the expression above, resulting in

Ddes � 1

m2α/d
+

1

ρmeask
+

1

ρcomPk2

The above relation governs the interplay between D, P , n and α.
The 1/k2 factor in Dcom is due to phase-coherent transmission from
each node in the cell (coherent beamforming) that results in a k-fold
power amplification: the total received power Pk2 is k times the total
transmit power Pk.

Measurement-Limited Regime. For fastest distortion reduction
with n, all three terms in (13) must scale at the same rate. When
there is significant measurement noise, the distortion scaling rate is

3For simplicity of notation, we treat P as the per-node power, ignoring the
scaling factor since it does not impact the scaling behavior.

4The communication SNR is measured relative to the strength of the sensed
signal. For each cell, the actual transmit communication SNR is ρcomPk and
the received communication SNR is ρcomPk2.

limited by the variance term in Dcen. Thus, for optimal distortion
scaling P must scale as

Popt ∝ 1

k
=

n

m
, (14)

resulting in Popt � Ddes � n− 2α
2α+d , when k = n/m is selected to

balance the estimation bias and variance terms. By equating the three
terms in (13), with the first two calibrated for optimal centralized
scaling via (8), the optimal power scaling should behave as

Popt =
ρ

2α+2d
2α+d

meas

ρcom
n− 2α

2α+d . (15)

The constant monotonically increases in ρmeas and decreases in ρcom

which makes intuitive sense: high SNR measurements offer higher
accuracy and it requires more power to deliver this accuracy, and
lower communication SNR requires more power allocation. Thus, in
the measurement limited case, optimal distortion is achieved when the
total network power, nPopt, scales sub-linearly with n; Popt ↓ 0 as
n ↑ ∞. Essentially, the k-fold coherent beamforming gain cannot be
fully exploited due to measurement noise and, thus, optimal distortion
scaling is achieved with vanishing power per node.

Communication-Limited Regime. Now suppose that we have
noise-free measurements; σ2

w= 0. In this case, the variance term in
Dcen in (13) disappears and the distortion can be reduced at a faster
1/k2 rate with a constant, non-vanishing power per node P > 0.
The optimal calibration for m is

m = (ρcomP )
d

2α+2d n
d

α+d (16)

and the corresponding optimal distortion scaling is

Ddes ∝ 1/k2 � n− 2α
α+d . (17)

In this case, the distortion scaling is limited by the communication
noise, and a faster distortion scaling (1/k2 versus 1/k) can be
achieved compared to the measurement-limited case. The faster
distortion reduction is attained by fully exploiting the coherent MAC
power amplification and allowing the total network power to scale
linearly with n.

Bias-Limited Regime. The above distortion scaling in the
communication-limited regime is optimal under the constraint that the
power per node, P , cannot increase with n. If we place no constraints
on power and assume noise-free measurements, then choosing m = n
and P � n2α/d (super-linear network power scaling) results in the
optimal centralized bias-limited distortion scaling Ddes � n−2α/d.

A. Impact of Imperfect Phase Synchronization

The above analysis assumes perfect phase synchronization within
each cell. The impact of imperfect phase synchronization can be
incorporated by assuming a beamforming gain of kβ , β ∈ [0, 1],
where β = 0 corresponds to incoherent communication (no beam-
forming gain) and β = 1 corresponds to perfectly phase-coherent
communication (maximum beamforming gain of k). The correspond-
ing distortion due to communication noise scales as Dcom � 1

Pk1+β

and the power allocation required to achieve the optimal (centralized)
distortion scaling in the measurement-limited regime is

P =
ρ

2α+d(1+β)
2α+d

meas

ρcom
n− 2αβ

2α+d (18)

which, for β < 1, is higher than (15) corresponding to β = 1. In
particular, β = 0 corresponds to the situation in which a clusterhead
in each cell communicates the local sufficient statistics to the des-
tination using the total transmit power Pk available for each cell.



There is no beamforming gain in this case since only the clusterhead
transmits the local statistics from the cell rather than all nodes in
the cell transmitting it in a phase-coherent fashion. As a result, in

this case a constant non-vanishing power P = ρ
2α+d(1+β)

2α+d
meas /ρcom is

needed to achieve the optimal distortion scaling. Thus, the power
savings due to phase-coherent transmission in our approach grow
unbounded as compared to existing approaches based on in-network
processing in which a clusterhead communicates the local statistics
to the destination.

B. Feasible Power Scaling for Consistent Estimation

So far we have considered optimal power scaling that results in
minimum (centralized) distortion scaling in the final estimate. Even
if the available per-node power is less than the optimal, Ddes can
still be driven to zero, albeit at a slower, sub-optimal rate. We now
characterize the minimum power allocation that guarantees that Ddes

goes to zero in the limit of large number of nodes. In this case, the
partition scaling (growth rate of the number of cells) has to be adapted
to the power scaling to guarantee a consistent final estimate.

Consider the measurement-limited regime first. Let P (n) = 1/nγ

for γ ≥ γopt, where γopt = 2α/(2α+ d) denotes the optimal power
scaling, and let m = nδ for δ ∈ (0, 1). Ignoring constants, the
distortion at the destination scales as

Ddes � 1

n2αδ/d
+

1

n1−δ
+

1

n2(1−δ)−γ
. (19)

Note that choosing γ = γopt and δ = δopt = d/(2α + d) results
in γopt = (1 − δopt) and all three terms in (19) decay at the same
optimal rate. If the partition scaling is kept fixed at δ = δopt, then
it follows from (19) that as long as γ < 2(1 − δopt) = 2γopt the
distortion goes to zero at the rate

Ddes � Dcom � nγ−2γopt � nγ−4α/(2α+d) . (20)

On the other hand, for a given γ > γopt = 1 − δopt, the distortion
scaling will be limited by the last term, Dcom, in (19) and the
partition (i.e., choice of δ) can be adapted to guarantee that the
slower of the first two terms decays at least as fast as the last term:
min(2αδ/d, 1−δ) ≥ 2(1−δ)−γ. It is clear that the second (variance)
term always decays faster than the last term (when γ > γopt) so δ
should be chosen to match the first (bias) and third (com) terms:

δ =
(2 − γ)d

2(α + d)
. (21)

With such matching, as long as γ ∈ [γopt, 2), distortion goes to zero
at the rate

Ddes � Dcom � n−α(2−γ)/(α+d) (22)

in the measurement-limited regime. Note that any γ > γopt corre-
sponds to sub-optimal (less than optimal) power per node and the
resulting Ddes goes to zero at the above slower rate. In particular,
Ddes can be driven to zero asymptotically even if the per-node
power P (n) decays just a little slower than 1/n2 (γ = 2; cut-off
power allocation). This is remarkable since it shows that, in principle,
consistent field estimation is possible in the limit of a large number
of nodes even if the total network power Ptot = nP (n) goes to
zero! This is due to the fact that as γ → 2, δ → 0 in (21) and hence
k = n1−δ → n yielding the highest possible coherent beamforming
gain.

Clearly, γ < γopt is wasteful in the measurement-limited regime
since in this case Dcom will decay faster than the dominating variance
term in (19). However, such higher power allocation is beneficial
in the communication-limited and bias-limited regimes in which the

variance (second) term disappears. In the absence of measurement
noise, for any γ ∈ [−2α/d, 2), δ can be chosen to match the bias and
communication terms as in (21) and the resulting distortion scales as
(22). In particular, γ = 0 corresponds to the optimal power allocation
in the communication-limited regime (linear network power scaling),
and γ = −2α/d corresponds to the optimal power allocation in the
bias-limited regime (super-linear network power scaling).

C. Optimality of the Power-Distortion Scaling Laws

We now compare the performance of the proposed coherent
uncoded communication scheme to that of an ideal coded com-
munication strategy to argue the power-distortion optimality of the
proposed distributed estimation architecture. By “optimal” we mean
that our scheme requires the least power allocation, as a function of
the number of nodes, to achieve the optimal centralized distortion
scaling (i.e., the distortion achievable when the destination has direct
access to the measurements). In the ideal coded strategy we assume
that the nodes can fully cooperate. In this case, each node in cell
j knows the optimal (centralized) estimate ŝj given by (5) for the
α = 1 case. More generally, ŝj is a (finite dimensional) vector
of the polynomial coefficients providing a least squares fit to the
measurements in cell j. For the sake of exposition, we discuss the
scalar case, since extensions to the vector case are straightforward.

First of all, note that the optimal power-distortion scaling achieved
under the assumption that the nodes can fully cooperate (as in the
ideal coded strategy) serves as a performance benchmark for any
strategy in which the nodes cannot exchange data (as in the uncoded
strategy). With full node cooperation, the classical source-channel
separation principle applies: each node in the cell identically encodes
the optimal estimate ŝj and coherently transmits the identically coded
bits over the MAC, effectively transforming the distributed MAC
into a classical point-to-point AWGN channel. The capacity of the
effective AWGN channel is

C(P, k) =
1

2
log � 1 +

Pk2

σ2
z 	 bits/channel use (23)

Note that the capacity of a point-to-point AWGN channel is a
monotonic function of the received SNR and coherent beamforming
maximizes the received SNR, and hence capacity, for a given transmit
power as in (23). The problem is now reduced to the classical
rate-distortion problem in which source coding and channel coding
can be done independently (in the absence of latency constraints).
If the common signal component in ŝj is modeled as zero-mean
i.i.d. Gaussian random process (over time) with variance σ2

s and the
measurement noise is assumed to be Gaussian then the lowest bit rate
needed to encode ŝj with a target distortion Dcoded < σ2

s + σ2
w/k

is given by the rate-distortion function [14]

Ro(Dcoded) =
1

2
log � σ2

s + σ2
w/k

Dcoded 	 bits/channel use, (24)

where we have implicitly assumed a single channel use for each tem-
poral field sample. It is well-known that for any source with the same
variance R(Dcoded) ≤ Ro(Dcoded). Thus, solving Ro(Dcoded) =
C(P, k) provides an upper bound on the achievable Dcoded for a
given power P . The final distortion at the destination is given by

Ddes,coded = Dcen + Dcoded

� σ2
s � 1

m2/d
+

1

ρmeask 	 +
σ2

s +
σ2

w

k

1 + Pk2

σ2
z

� m−2/d +
1

k
+

1

Pk2
+

1

Pk3
(25)



which has identical scaling behavior as the uncoded scheme (see
(13) and (14)) since the dominant term due to communication errors
is the 1/Pk2 term. Thus, the ideal coded strategy achieves the
optimal power-distortion scaling (25) under the assumption of full
node cooperation, while uncoded coherent beamforming achieves the
same optimal power-distortion scaling without data exchange between
the nodes. We refer the readers to [1] for a different argument for the
optimality of uncoded communication in the single-source problem
(the signal in each cell in our formulation can effectively be viewed
as a single source).

D. Power-Density Tradeoff

The power-distortion scaling laws achieved by our matched source-
channel communication strategy reveal a conservation relation

PDdes ∝ 1

k2
(26)

which follows from the fact that, in all regimes, the total distortion
scaling equals the scaling in Dcom. Recall the feasible power
allocations for consistent estimation discussed in Section III-B. The
total network power needed to achieve a given target distortion,
Ddes = Do, for a given partition scaling, m = nδ , satisfies

Ptot = nP ∝ n

Dok2
=

n2δ−1

Do
(27)

where n denotes the number of nodes needed to achieve Do for the
given δ. As discussed in Section III-B, a smaller δ (faster scaling
of k) requires a larger number of nodes n (higher sensor density) to
attain a target distortion, albeit with lower power per node P . The key
question is whether choosing a smaller δ also results in a lower total
power consumption Ptot? Let δ2 < δ1 denote two partition scalings
and let n2 > n1 denote the corresponding number of nodes needed
to attain the target distortion Do. It follows form (27) that the total
network powers consumed in the two cases are related by

Ptot(n2)

Ptot(n1)
=

n2k
2(n1)

n1k2(n2)
=

n2n
2(1−δ1)
1

n1n
2(1−δ2)
2

∝ n1

n2
(28)

where we have used the fact that nδ1
1 ∝ nδ2

2 since the bias terms
(see (19)) should be of the same order in the two cases to yield
the same target distortion. The relation (28) shows that increasing
the sensor density n by a factor of N reduces the total required
network power by a factor of N to attain a given target distortion.
This reveals a remarkable power-density tradeoff inherent in our
approach: increasing the sensor density increases the cardinality of
coherent sub-ensembles and reduces the total network power required
to achieve a target distortion. A direct consequence is that consis-
tent estimation is possible, in principle, even with vanishing total
network power by increasing the sensor density. This is because the
beamforming gain k (the cardinality of the coherent sub-ensembles)
increases monotonically with n.

IV. DISCUSSION AND NUMERICAL RESULTS

The essence of our matched source-channel communication archi-
tecture is to match the spatial scale of signal field coherence to the
spatial scale of phase-coherent communication. The resulting distrib-
uted source-channel matching is effected locally and independently
in each cell of the network partition in Fig. 1. The network partition
is dictated by classical estimation-theoretic considerations that do not
depend on the decentralized nature of the problem. Furthermore,
the growth rate of the number of cells, m � nd/(2α+d), with
n determines the optimal bias-variance tradeoff in the estimation
process, Dcen � m/n � n−2α/(2α+d): the smoother the field

(larger α), the slower the growth rate of the number of cells and the
lower the achievable L2 distortion. From a purely communication
theoretic viewpoint, the number of nodes per cell, k = n/m �
n2α/(2α+d), is the key quantity: phase coherent transmission by the
nodes (in each cell) in the direction of destination results in a k fold
power amplification that directly impacts the distortion introduced by
the noisy MAC. The local matching coupled with uncoded analog
transmission naturally integrates computation and communication:
local sufficient statistics are directly available at the destination due
to spatial averaging inherent in the MAC. The spatial averaging
simultaneously reduces the impact of the two key sources of error:
measurement noise and communication noise. The optimal power-
distortion scaling laws are obtained by balancing the estimation
and communication components of the L2 distortion. The power-
distortion scaling laws are optimal in the sense that they determine
the minimum power scaling needed under noisy communications
to attain the optimal centralized distortion scaling (under noise-free
communications).

Our analysis identifies three distinct optimal power-distortion scal-
ing regimes: 1) measurement-limited, 2) communication-limited (no
measurement noise, but linear constraint on total network power
scaling) and 3) bias-limited (no measurement noise and no power
constraints). In the measurement-limited regime, optimal distortion
(Ddes � n−2α/(2α+d)) is achieved with sub-linear network power
scaling (P � n−2α/(2α+d) ↓ 0); in the communication-limited
regime, a faster distortion scaling (Ddes � n−2α/(α+d)) is achieved
with linear network power scaling (P > 0); and in the bias-
limited regime, the fastest distortion scaling (Ddes � n−2α/d) is
achieved with super-linear network power scaling (P � n2α/d ↑ ∞).
Furthermore, consistent estimation is achievable in the measurement-
limited regime (Ddes ↓ 0) as long as P goes to zero a little slower
than 1/n2 (cut-off power scaling). These power scaling regimes
are illustrated in Fig. 2 and the corresponding distortion scaling is
illustrated in Fig. 3 for α = 1 and d = 2. For the sake of illustration,
these plots assume that the constants of proportionality in the scaling
relations are unity; the actual constants depend on ρmeas and ρcom, as
calculated earlier.
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Figures 2 and 3 also illustrate the power-density tradeoff. For
example, suppose we want to attain a target distortion of 0.1. With
optimal distortion scaling in the measurement-limited regime (solid
curve in Fig. 3), the desired distortion can be attained with n = 100
nodes, consuming a total network power Ptot = nP = 100∗10−1 =
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10, as calculated from Fig. 2. On the other hand, if we operate at
a sub-optimal distortion scaling (the third dashed-dot feasible curve
in Fig. 3), we can attain the desired distortion with n = 1000 nodes
consuming a total network power Ptot = nP = 1000 ∗ 10−3 = 1.
Thus, as predicted by (28), increasing the sensor density by a factor
of 10 reduces the total network consumption by a factor of 10.

While the power pooling gain increases with k, the volume occu-
pied by the nodes in each cell, k/n, decreases monotonically with n.
Thus, local node synchronization for phase-coherent transmission is
required on smaller and smaller spatial scales as the sensor density
increases. On the other hand, the number of cells, m, represents the
degrees of freedom in the signal field at a given sampling density: a
finite number of parameters (sufficient statistics), determined by α,
need to be communicated from each cell to the destination. Under
our assumption of dedicated, non-interfering MACs from each cell to
the destination, m also represents the bandwidth or latency required
for communicating the sufficient statistics.

V. CONCLUSIONS AND FUTURE WORK

This paper develops a new approach to field estimation using wire-
less sensor networks that combines the operations of processing and
communication in a power efficient manner. Our approach is based on
a distributed source-channel communication architecture that matches
the spatial scale of field coherence with the spatial scale of node
synchronization for coherent communication. The averaging required
in the optimal field estimator is implicitly computed at the destination
via the coherent spatial averaging inherent in the MAC, resulting
in optimal power-distortion scaling with the number of nodes. In
particular, optimal mean-square distortion scaling can be achieved
with sub-linear network power scaling. Our results also reveal a
remarkable power-density tradeoff due to coherent communication:
increasing the sensor density reduces the total network power required
to achieve a desired distortion. A direct consequence is that consistent
field estimation is possible, in principle, even with vanishing total
network power in the limit of high sensor density. Our future work
includes extensions to inhomogeneous fields.

APPENDIX

It follows from the definition of Cα(B) in (2) that the remainder
of an order α−1 Taylor approximation to a function f ∈ Cα(B) on
a cell of sidelength m−1/d is O(m−α/d). Now consider the form of

the Taylor polynomial, which can be re-written as

fp(ξ) =

p�
j=0

�

qk=j

aq1,...,qd

d�
k=1

(ξ(k) − ν(k))qk

where the second sum ranges over all non-negative integers
(q1, . . . , qd) such that � k qk = j and the coefficients aq1,...,qd

are determined by the partial derivatives of f . Note that the Taylor
polynomial is a linear function in the coefficients. Our estimator must
determine the least squares fit of the coefficients to the sensor data
in each cell. Consider an arbitrary cell Q. Without loss of generality,
we may assume that one corner is the point ν = (0, . . . , 0). The least
squares fit is given by the coefficients that minimize

nQ�
i=1


�
xi −

p�
j=0

�

qk=j

aq1,...,qd

d�
k=1

ξ
qk
i (k) �� 2

where nQ is the number of sensors in the cell, xi is the sample at
sensor i, and ξi(k) is the k-th location coordinate of sensor i. Thus,
the sufficient statistics for the least squares fit are given by sums of
the form

θ =

nQ�
i=1 � xi

d�
k=1

ξ
qk
i (k) �

Note that in the special case of α = 1, the order of the Taylor
polynomial is zero (consequently qk = 0) and the single sufficient
statistic is the sum of the observations. If α = 2 and d = 2, then
there are three sufficient statistics in each cell: θ1 = � nQ

i=1 xi, θ2 =� nQ

i=1 xiξi(1), and θ3 = � nQ

i=1 xiξi(2). In general, the “weight” on
the xi term, � d

k=1 ξqk
i (k), is a function of the location of sensor i,

and hence no cooperation is required to compute the weights.
At the destination, a linear operation (depending on the locations

of sensors in each cell) transforms the sufficient statistics into Taylor
polynomial coefficients. For example, in the α = 2, d = 2 case there
is a 3 × 3 matrix T that maps (θ1, θ2, θ3) 7→ (a1, a2, a3) and the
resulting field estimate has the form�f(ξ) =

m�
j=1

[a1,j + a2,jξ(1) + a3,jξ(2)] 1ξ∈Qj

where the additional subscript j appearing on each coefficient in-
dicates the set of coefficients associated with each cell. The largest
eigenvalue of T upper bounds the amplification of errors (estimation
and communication) in the reconstruction process; at most the
variance is increased by a constant factor. Specifically, consider the
field reconstruction in one cell. Let Θo denote the three dimensional
vector of sufficient statistics in the absence of measurement noise.
The estimate of Θo at the destination takes the form

Θ̂des = Θo + w̃ +
z√

PnQ

where w̃ is a linear transformation of measurement noise and z is
the communication noise for three channel uses. The reconstructed
signal at the destination is�f(ξ) = 〈t1 + ξ(1)t2 + ξ(2)t3, Θ̂des〉

where 〈·, ·〉 denotes the inner product and ti is the i-th row of T .
We can also consider the reconstruction at the locations of the nodes
in the network ŝdes,i = �f(ξi) and evaluate the per-node distortion
instead of the L2 distortion. Both distortions are of the same order,



but the per-node distortion calculation explicitly reveals the role of
nQ, the number of sensors in a cell:

Ddes =
1

nQ

nQ�
i=1

E[(si − ŝdes,i)
2]

= Dcen +
1

Pn3
Q

nQ�
i=1

E[〈vi, z〉2]

� 1

m2α/d
+

1

nQ
+

1

Pn2
Q

where vi = t1+ξi(1)t2+ξi(2)t3 and the second term in the second
equality represents Dcom. If the largest eigenvalue of T is bounded,
the variance term in Dcen � 1/nQ and � nQ

i=1 E[〈vi, z〉2] � nQ,
resulting in the last relation which exhibits same scaling as in (13).
Similarly, this argument can be extended to general Cα(B) fields to
show similar scaling behavior.
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