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Abstract

One of the predominant schools of thought in networking today is that monitoring and control of large scale networks
is only practical at the edge. With intelligent and adaptive elements at the edge of the network, core devices can function
as simple, robust routers. However, the effectiveness of edge-based control can be significantly enhanced by information
about the internal network state. A fundamental component of the state is the loss rates of internal links in the network.
The task of estimating these loss rates solely from host-to-host measurements is an example of “network tomography”.
This paper investigates a new network tomography procedure based on unicast packet-pair measurement, in contrast
to previously proposed multicast probing strategies. We develop a likelihood formulation for unicast loss rate network
tomography and devise an EM algorithm for computing the MLE. We conduct a theoretical analysis of the algorithm
and report the results of simulations and network testbed experiments designed to explore performance under realistic

conditions.

I. INTRODUCTION
A. Background and Motivation

Network tomography involves estimating network performance parameters such as packet loss rates or
traffic intensities from traffic measurements at a limited set of measurement locations. Y. Vardi was one of

the first to rigorously study this sort of problem and coined the term network tomography [31] due to the
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similarity between network inference and medical tomography. Two forms of network tomography have been
addressed in the recent literature: (i) link-level parameter estimation based on end-to-end, path-level traffic
measurements [5,12,13,18,19,21,24,25,27,33] and (ii) sender-receiver path-level traffic intensity estimation
based on link-level traffic measurements [7,8,28,30,31]. This paper is concerned with the former problem,
and more specifically it deals with a new technique for inferring packet loss rates on internal network links
based solely on end-to-end measurements [5,12,18,19]. Direct measurement of such properties is impractical
in many cases because of the necessary hardware/software overhead or non-cooperative internal routers, and
thus end-to-end measurement and inference methodologies are of great practical interest.

This paper investigates the use of back-to-back (closely time-spaced) unicast packets for network to-
mography. Network probing using back-to-back packets has been proposed in a number of measurement
schemes [1,4,9,23,26]. The basic idea behind our estimation procedure is quite straightforward. Suppose two
closely back-to-back packets are sent to two different receivers. The paths to these receivers share a common
set of links from the sender but later diverge. If one of the packets is dropped and the other successfully
received, then (assuming the packets experience the same fates on shared links) one can infer that the packet
must have been dropped on one of the unshared links. This enables the resolution of losses and delay on
individual links. We first proposed the basic elements of our approach in [12].

The methodology and analysis presented in this paper are important extensions of the work presented in [12],
but the basic idea of exploiting correlations of closely-spaced packets remains the same. The technique we
propose is unique in that it accounts for potential imperfections in the correlations. We develop a probabilistic
model to describe packet losses and devise a maximum likelihood estimator (MLE) for the internal loss rate
parameters. The maximization cannot be solved analytical, and we propose a novel Expectation-Maximization
(EM) algorithm to compute the MLE. The EM algorithm presented in this paper differs in key respects from
the method we proposed in earlier work [12], resulting in a much more computationally efficient procedure.

We also study the convergence behavior of the EM algorithm, proving that it converges to the set of global
maxima. We characterize this set and show that in certain cases it contains a single, global maximum. We
also provide a theoretical analysis of the correlation between losses of packet-pairs under an M/M/1/K queue
model. This analysis demonstrates that the correlations are generally quite strong under this theoretical
model, corroborating experimental observations in real networks [18,23] and ns experiments. We further
assess the performance of our approach through ns simulation experiments and more realistic experiments in
a network testbed comprised of eight freeBSD routers.

We emphasize that the main contributions in this paper are a likelihood criterion for unicast network
tomography, an EM algorithm for computing the result, and theoretical analysis of the algorithm. We do not
discuss the validity of the assumptions underlying the likelihood criterion in great detail. Many of the issues

surrounding our modeling assumptions are investigated elsewhere [5,11]. Suffice it to say, there is compelling



theoretical and experimental evidence to suggest that the key assumptions are reasonable approximations in

many pratical situations.

B. Related Work

The problem of estimating internal loss rates was first considered in the MINC (Multicast Inference of
Network Characteristics) [21] Project. An interesting strategy was proposed for estimating loss rates based
on multicast packet probes [5]. The technique exploits the correlation between the losses/delays observed
by multicast receivers. The performance of these algorithms is impressive [6], but there are two serious
deficiencies in the methodology. Firstly, multicast protocols are not supported by significant portions of the
Internet. Secondly, the internal performance measured by active multicast probes often differs significantly
from that encountered by unicast packets, which comprise by far the most substantial component of Internet
traffic [18].

Related tomography schemes have been developed or proposed independently by other researchers. Harfoush
et al. developed a similar unicast tomography technique in [19], building on earlier work by Rubenstein et
al. who devised a technique for detecting shared congestion in traffic flows [26]. The estimation procedure
in [19] is based on the assumption of perfect correlations between losses of packet pairs on shared links.
The authors in [18] proposed an alternative strategy based on sending multiple-packet probes to improve
the observed correlations (compared to the correlations of packet-pairs), and then applied the multicast-based
algorithms of the MINC project for loss estimation (thus also assuming perfect correlation). Our framework is
distinct from these other methods in that we do not assume perfect correlations, since that assumption (when
erroneous) produces biased estimates. Moreover, our framework procedure allows us to assess the severity of

imperfect correlations and the impact this has on the accuracy of the loss rate estimates.

C. Organization

The paper is organized as follows. In Section 2, we review the basic unicast network tomography problem
and describe the loss modeling and measurement framework. In Section 3, we pose the MLE problem and
develop the EM algorithm. In Section 4, we study the convergence behavior of the EM algorithm. In Section
5, we investigate the correlations between back-to-back packet losses under an M/M/1/K queuing model.
In Section 6, we report on ns simulations and network testbed experiments that explore the efficacy of our
estimation procedures. In Section 7, we discuss possible alternatives to MLEs, describe extensions of the

proposed framework to delay distribution estimation, and make concluding remarks.



Fig. 1. Tree-structured graph representing a single-source, multiple-receiver network. Vertex 0 is the source, vertices 1-4

internal routers, and vertices 5-11 receivers. Beside each edge we indicate the capacity in megabits per second.

II. PROBLEM STATEMENT, L0SS MODELS, AND MEASUREMENT FRAMEWORK
A. Problem Setup

In this paper we focus on networks in which a sender transmits packets to multiple receivers. The network
tomography problem and methodology are can be extended to the multiple sender cases. Figure 1 depicts
an example of this form of topology; the network appears to the sender as a tree. The vertices of the tree
correspond to the sender (vertex 0), internal routers (vertices 1-4) and receivers (vertices 5—-11). We define
a edge as the connection between any two adjacent vertices in the tree, deem the set of edges connecting a
sender and any receiver a path, and a subset of connected edges in a path is referred to as a subpath. We
enumerate the edges by associating each edge with the vertex it connects to below; e.g., the edge connecting
vertices 1 and 3 is called edge 3. The tree of Figure 1 does not necessarily depict all routers encountered
by packets travelling from the sender to receivers. It is possible that a number of routers are passed as a
packet travels along each edge; e.g., from between vertices 1 and 3. In the context of our framework, each
vertex simply corresponds to a junction (or branching point) in the paths of different receivers. The routing
is assumed to be known and constant throughout the measurement period. Although the routing tables in
the Internet are periodically updated, these changes occur at intervals of several minutes. Qur measurement
periods are typically of much shorter durations.

The network tomography problem we consider in this paper deals with the estimation of loss rate on
each edge in the network based on end-to-end (sender-to-receiver) measurements of packet losses. That
is, we can observe whether or not each sent packet is received or not at the end receiver, but no other

measurements are available. Such information is readily available through the TCP (Transmission Control



Protocol) acknowledgement system, for example.

B. Loss Models

Two types of packet measurements are utilized in our network tomography methodology:
(1) end-to-end losses of individual packets
(2) end-to-end losses of closely time-spaced (back-to-back) packet pairs
In both cases we assume that the packet measurements are well separated in time (i.e., the time periods
between successive single packet or packet pair measurments is much larger than the spacing between back-
to-back pairs).
We model loss/success of an individual packet with a Bernoulli distribution. The success probability of an

individual measurement packet on edge i (the edge into vertex 7) is defined as
pig = Pr(packet successfully transmitted from p(i) to i),

where p(i) denotes the index of the parent vertex of vertex i (the vertex above i-th vertex in the tree; e.g.,
referring to Figure 1, p(1) = 0). A packet is successfully sent from p(i) to ¢ with probability p; ; and is dropped
with probability 1 — p; .

If a back-to-back packet pair is sent from vertex p(i) to vertex i, then we define the conditional success
probabilities:

pip = Pr(1st packet p(i) — i |2nd packet p(i) — i ),

where 1st and 2nd refer to the temporal order of the two packets as they exit p(i), and p(i) — i is shorthand
notation denoting the successful transmission of a packet from p(i) to i.

Although the loss models are merely simple approximations to the behavior of real networks, our ns simula-
tions and network testbed experiments in Section VI demonstrate that these models appear to be reasonable
for tomography purposes. Specifically, above models produce loss rate estimates that agree quite well with

direct counts of actual packet losses.

C. Measurement Framework

Each edge in the tree has two (unknown) probabilities associated with it, the unconditional and conditional
success probabilities, p; 1 and p; o, respectively. These probabilities are related to the the single packet and
back-to-back packet measurements that we will make, as described below. The measured data can be collected
in a number of possible ways. For example, UDP (User Datagram Protocol) can be used for active probing
or existing TCP connections may be passively sampled, in which case back-to-back events are selected from

the TCP traffic flows.



Single Packet Measurement: Suppose that n, packets are sent to receiver a and that of these a number
mg,1 are actually received (ng—myg,1 are dropped). The likelihood of mg 1 given n, is binomial (since Bernoulli
losses are assumed) and is given by
N Ma,1 Ng—Ma,1
Z(ma,l |na, qa) = qa (1 - qa) "y
Mg,1
where g, = Hz’eP(O, o) Pil and P(0,a) denotes the sequence of vertices in the path from the sender 0 to receiver

a.

Back-to-Back Packet Pair Measurement: Suppose that the sender transmits a large number of back-to-
back packet pairs in which the first packet is destined for receiver a and the second for receiver b. We assume
that the timing between pairs of packets is considerably larger than the timing between two packets in each
pair. Let nyj, denote the number of pairs for which the second packet is successfully received at vertex b,
and let m,p 1 denote the number of pairs for which both the first and second packets are received at their
destinations. Furthermore, let s,; denote the vertex at which the paths P(0,a) and P(0,b) diverge, so that
P(0,54,4) is their shared subpath. With this notation, the likelihood of m, 1 given ngp is binomial and is
given by

s | P dap) = ( b ) G (1~ g p)ies s, W)

Mab,1

where

dp= ] Pz J[ pur (2)

iE'P(O,Su,b) iEP(sa,b,a)

D. Plausibility of Modeling Assumptions

Here we attempt to shed some light on the physical plausibility of our loss models. The following assumptions
regarding network behavior, partially support the loss models described above.

Al. The routing matrix is assumed to be known and constant throughout the measurement period. Although
the routing tables in the Internet are periodically updated, these changes occur at intervals of several minutes.
Our measurement periods are typically of much shorter durations.

A1. Packet losses (drops) are due to solely queue buffer overflow.

A2. The queuing behavior on all edges is stochastic and stationary over the observation period.

A3. Spatial Independence. The losses on each edge are assumed statistically independent of losses on all
other edges.

A4. Temporal Independence. All packet and packet-pair measurements are statistically independent of each
other (which is reasonable if the time separation between measurements is sufficiently large).

A5. The measurements do not effect that stationarity of the network. This assumption is reasonable if the



measurement packets are well separated in time, and if the total number of measurement packets is negligible
compared to the total traffic.

Although many of the simplifying assumptions do not strictly hold, our ns simulations and network testbed
experiments demonstrate that these approximations appear to be reasonable for tomography purposes. The
possibility of long-range temporal dependencies in network traffic due to common cross-traffic on different edges
could presumably lead to temporal and spatial correlations in the losses experience on those edges. However,
theoretical analysis of spatial and temporal dependencies in multicast trees shows that the dependencies may
not strongly affect the MLEs in the multicast setting. [5]. A similar analysis carries over to the unicast case
considered here and suggests that our MLE estimator (derived in Section III-A) can yield accurate results
in the presence of moderate levels of dependence. Practically speaking, network routers usually have many
inputs and many outputs; in many cases the proportion of shared traffic on edges is relatively small compared

to the total traffic, in which case the losses on different links should be at worst weakly dependent.

III. MLE AND EM ALGORITHM

We wish to estimate the network success rates p = {p;1,pi2}. Notice that p contains the single-packet,
unconditional success probabilities as well as the packet-pair, conditional success probabilities. Estimates
of the latter probabilities provide an accuracy measure for the unconditional success probabilities {p;;}, as
shown below. This is an important issue that does not arise in the multicast case, because the multicast
probes are perfectly correlated (in effect, the probabilities {p; 2} are all exactly one).

We will derive a maximum likelihood estimator of p given the entire set of single packet and back-to-back
packet measurements. For convenience, define my 0 = ng — mg,1 and mgp 0 = ngp — Mg p,1- Collecting all the
measurements, define

y = {mar} U{maepxr} 3)
where the index a alone runs over all receivers and the indices a,b run over all pairwise combinations of
receivers in the network. The index k is a binary variable that indicates failure (0) or success (1).
As before denote the collection of the unconditional and conditional edge success probabilities as p. The
joint likelihood of all measurements is given by
(ylp) o< [ [ 1U(ma0,ma1 [P) x [ [ 1ma,b0, map,1lp)- 4)
a a,b
Since y is known, we view I(y | p) as a function of the unknown probabilities p. We call I(y | p) the likelihood

function of p. The maximum likelihood estimate of p is defined as

p = arg max Iy | p)- (5)

Maximum likelihood estimation enjoys many desirable properties and is widely utilized in statistical inference

[2].



Computing the maximum likelihood estimates is a formidable task. Directly attempting the maximization
inherent in (5) leads to extremely computationally demanding algorithms that are not scalable to large net-
works. The basic problem is that the individual likelihood functions I(mg,0, 74,1 |, P) or {(1mgp0, Map1 | P) for
each type of measurement involve products of subsets of the p parameters. Consequently, it is difficult to
separate the effects of each individual success probability. As a result, numerical optimization strategies are
required.

Before describing such an optimization technique, let us comment on the identifiability of the success
probabilities. It is not hard to see that in general a unique maximum likelihood solution does not exist (e.g.,
consider even a simple two receiver network). However, if both packets in all back-to-back pairs experience
the same fate on each shared edge (either both are successful or both are dropped), then a unique maximum
likelihood solution exists. In such a setting, the conditional success probabilities {p; 2} are all equal to 1 and,
consequently, it is easy to verify that the unconditional success probabilities {p; 1} are identifiable. In practice
the conditional success probabilities are less than perfect, and the potential non-uniqueness of a maximum
likelihood solution can lead to biased estimates. It is possible, however, to quantify the potential severity of
this bias in terms of observable quantities.

If the conditional success probabilities {p;2} are all exactly one, then it can be shown that maximum
likelihood estimates of the unconditional losses {p;1} will tend to their true values as the number of packet
measurements increases. This can be understood by considering a single path from the source to receiver a.

The single packet measurements m, 1 and n, = mg g + Mg 1 provide an asymptotically consistent estimator of

":l“’l converges to g, as n, tends to infinity. Similarly, the

the product ¢, = Hiep(o,a) pi,1- Specifically, g, =

. ~ m,
estimators g, p = n“’bb’l, converge to
a,

Qab = H bip2 H bin,
1€P(0,54,5) 1EP(Sq,b,a)
as each ngp — oo (recall that the vertex s, defines the subpath common to both receivers). If p; o = 1 for all
i, then there exists a one-to-one mapping between path success probabilities {q,, gq5} and the edge success
probabilities {p; 1}.

If the p; o are close to but not exactly one, then the relationship between q = {qq4,¢ap} and p = {pi1,pi2}
is one-to-many (i.e., there may be more than one p corresponding to each value of q). However, the inverse
image of g in p-space is shown to be well-concentrated about the “true” p value so long as the {p;2} are
close to one (see Section IV-B). Thus, so long as the back-to-back success probabilities are sufficiently close
to one (as theory and experiments strongly suggest), any member of the inverse image set will provide a fairly

accurate result.



A. EM Algorithm

We overcome the difficulty in maximizing the joint likelihood function by using a common device in com-
putational statistics known as unobserved data or variables. Suppose it were possible to measure how many
packets successfully traversed each internal edge and how many were dropped. We will use z; 1,1 to denote the
number of single packets that successfully traversed edge ¢ and z; 1o to denote the number that were dropped.
Similarly, we use z; 91 to denote the number of packet-pairs that successfully traversed edge ¢ and z; 20 to
denote the number of times that the second packet in a pair was successful but the first packet was dropped.
Let 2z = {2ijk}j=1,25=0,1 and z = {z;}. These measurements are not observed, so z is called the unobserved
data. Define the complete data = = {y, z}.

Associated with the complete data is the complete data likelihood function. To simplify the notation in
this section, we let p; ;1 denote the success probability associated with z; ;1 (note that throughout the other
sections in the paper this probability is denoted p; ;). The probability of loss associated with z; ;¢ is denoted
by p; jo (this probability is simply 1 — p; ;). The key feature of the complete data likelihood function is that
it is a product of factors, each involving just a single success probability p; ;1 or loss probability p; ;0. We

can write

l(z|p) < [ pii (6)
i,k
Thus, the complete data likelihood function is a trivial multivariate function, and the effects of the individual
edge probabilities are easily separated.
The EM algorithm [20] uses the complete data likelihood function to perform the maximization in (5).
Beginning with an initial value for p, denoted p(®, the algorithm is iterative and alternates between two steps
until convergence. The Expectation (E) Step computes the conditional expected value of the unobserved data

given the observed data, under the probability law induced by the current estimates of p. At the r + 1-st

iteration of the EM algorithm the E-Step computes

Q(p,p™") = Epe [log l(z|p) | ], (7)

where p(") is the iterate from the previous iteration. The Maximization (M) Step maximizes this Q(p, p(")

with respect to p, thus updating the current estimate. That is,

p ) = arg max Q(p, p"). )

Evaluations of the original likelihood function at the iterates produced by the EM algorithm form a non-
decreasing sequence; i.e., l(y|p(0)) < l(y|p(1)) < l(y|p(2)) < ..., and thus the EM algorithm tends to increase
the original likelihood objective.
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Notice that the complete data log likelihood is linear in z:

logl(x|p) o< Y 2 j k108 pijk-
igk

Thus, in the E-Step we need only compute the expectation of z = {2; ;1 }. Consider the expectation of z; 11,
the parameter counting the success of individual packets traversing edge i. Let p{") denote the estimate of p
after the r-th iteration. For each successful measurement mg; such that the path P(0,a) involves edge i, we
know that the packet successfully traversed edge i. We can make a similar observation for all the packet-pair
measurements mqp1 such that ¢ € P(sqp,a). The case of the unsuccessful measurements m, o is somewhat
more complicated. For each of these measurements, the probability that edge ¢ was successfully traversed is
equal to the the probability that the drop occurred on some edge on the path from vertex ¢ to the receiver.

Based on these considerations, we can write the expectation of z; 11 as:

Ep(T) [Z'L:lle] = Z ma71 + maao H pg;"l),l Z p’EZ:?[,O H p’gr)’ 1’ 1 +
a:4€P(0,a) teP(0,1) u€P(i,a) vEP(i,0(u))
Z Map,1 + Ma,b0 H pt(:,TQ),l H p1(:)1,1 Z pgf,%,o H pz(;,)l,l 9)
(a,b) :1€P(54,5,a) teP(0,54,5) UEP(Sa,b,t) vEP(i,a) weP(4,p(v))

Similarly, we can determine the expectation of z; 2 1:

Ep(r) [zigaly] = Z Ma,b,1 + Mab,0 H pg,rz),l Z pg:)z,o H pq(:%J +
(a,b) :1€P(0,54,5) teP(0,2) UEP(4,8q,b) vEP(i,p(u))
Ma,b,0 H Pig,l Z ps::)l,o H Piﬂ,l (10)
tEP(O,Sa,b) uep(sa,baa) 'UEP(Sa’b,p(’U/))

The expectations of the failure counts (z;1,0 and 2;20) can be calculated directly from those of the success
counts.

With the expectation expressions in hand, the EM algorithm takes the following form.

The computational complexity of the EM algorithm is related to the number of edges L as follows. The
M-Step requires O(L) operations. In general, the E-Step poses the majority of the computational burden. In
the E-Step, we evaluate (9) and (10) for each internal vertex in the network. The computational complexity
of the calculation of all the necessary conditional expectations is dependent on the total number of edges and
the network topology. It ranges from O(L) to O(L?) operations, where L is the total number of edges in
the network. The two extreme cases are depicted in Figures 2. The computational complexity in the case of
a perfectly balanced binary tree (all subtrees have the same depth) is O(Llog, L). The Appendix contains
the complexity analysis leading to these results. Thus, the overall complexity of each iteration of the EM

algorithm lies between O(L) to O(L?) operations.
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EM Algorithm

Initialize: Initialize the estimates p(©)

E-Step (iteration 7):  Calculate the conditional expectation of z given p(™ and y
using (9) and (10). Label the vector z{") and plug z(") into
the expression for the complete data log likelihood to obtain

Q(p,p")

M-Step (iteration r): Computer p("*1) according to (8). This corresponds to eval-

uating
()
(r+1) 01,1
Pt =70 m
i,1,1 T %51,0
(r)
p(r+1) . ,2,1
62,1 7 (r) ()
Zis1t %30

(r+1)

and Digg are simply

The loss probability estimates p(rﬂ_ol)

i,

one minus the success probability estimates.

IV. ANALYSIS OF EM ALGORITHM
A. Convergence

The EM algorithm proposed above is guaranteed to converge to a global maximum point of the likelihood
function. This is established by noting the following properties.
1. The EM algorithm generates a monotonic increasing sequence of likelihood values.
2. Q(p,p'")) defined in (7) is continuous in both arguments (in the interior of the parameter space [0, 1]2").
3. The log-likelihood is a concave function in log p.
The first and second properties are easy to verify for the problem at hand. The second property and results
of [32] guarantee that the EM algorithm converges to a stationary point of the likelihood function (assuming
all stationary points are in the interior of the parameter space, e.g., (0,1)?~. The third property (concavity)
guarantees that interior stationary points are points where the global maximum likelihood value is achieved.
The concavity property is established as follows. The likelihood function can be reparameterized in terms
of {log p;.1,logp;2}. Note that there is a one-to-one mapping between this and the original parameterization,
and the MLEs for {logp;,logpi2} are simply the logarithms of the MLEs for {p;1,p;2}. Hence, it suffices
to show that the log-likelihood is concave in {logp; 1,logp;2}.
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(a) (b)
Fig. 2. The two topologies that lead to the extremes of computational complexity for the EM algorithm. Topology (a)
leads to the worst case complexity of O(L?) operations, where L is the number of edges in the tree. Topology (b)

leads to the best case complexity of O(L) operations.

Recall that the conditional path success probability for a packet-pair measurement is given by

Qab = H Pi2 H P,

Z'E'P(O,sa,b) iEP(sa,b,a)

where the conditional edge success probabilities {p; 2} appear on shared edges and the unconditional edge
success probabilities {p; 1} appear on unshared edges. The likelihood function, in terms of the path success
probabilities, is a product of binomials parameterized by {g, 5} and hence concave in {gq}. The log conditional

path success probability is

loggap= Y logpia Y logpi,
Z'E,P(O,Sa’b) iEP(sa,b,a)

and it is easy to check that the log-likelihood function is also a concave function in {logg,p}. Single-packet
measurements have a similar form involving only unconditional edge success probabilities. Note that the log
path success probabilities are linear combinations of the log edge success probabilities.

Let q denote the collection of all path success probabilities (conditional and unconditional), and let £’ denote
the log-likelihood function for all the measurements (i.e., a sum of log binomial likelihood functions). It follows
from the discussion above that the log-likelihood function ¢'(logq) is concave in logq. Furthermore, the log
path success probabilities are linearly related to the log edge success probabilities: q = T logp, where T is
a matrix of 1’s and 0’s whose rows correspond to the combinations of log edge success probabilities required
for each path. This allows us to express the log-likelihood as a function of {logp} with the equivalence
(logq) = ¢'(T logp) = £(logp), where £ is parameterized in terms of the log edge success probabilities.

(From here it is easy to verify that £ is concave in logp. Let p; and p, be any two sets of edge success
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probabilities. Then for A € [0, 1]

{(Alogp; + (1 —A)logp,) = £ (ATlogp; + (1 —A)Tlogpy),
> M'(Tlogp;)+ (1 — A)¢'(Tlogp,),

= M(logp,) + (1 — X)(log p,),

where the inequality above follows from the concavity of #/. This establishes the concavity of £ in log p. We

summarize this result in the following theorem.

Theorem 1 The log of the likelihood function given by (4) is concave in log p. Furthermore, if all stationary

points are in the interior of [0,1]2L, then the EM algorithm converges to the set of global mazima.

It is also interesting to consider cases in which the conditional success probabilities are fixed (possibly
incorrectly) to be one for all edges. In this case, the likelihood function has the same form as before, except
that each product of conditional success probabilities in (2) is equal to one; e.g., Hiefp((),sa,b)piﬂ =1. As
pointed out earlier, in this case there is a one-to-one mapping between q, the path success probabilities, and
p = {pi1}, the unconditional success probabilities. Since the MLE of g is unique, it follows that the MLE
of p is also unique in this case. Thus, the likelihood has a single stationary point — the global maximum.
The convergence results above guarantee that the EM algorithm converges to the global maximum. Again,

we summarize the results with a theorem.

Theorem 2 If the conditional success probabilities are set to one (p;2 =1, Vi), then the log of the likelihood
function given by (4), with p = {pi1}, is concave in logp and the EM algorithm converges to the the global

maximum.

B. Characterizing the Set of Global Mazima

In the general case (p;2 not fixed to one), the EM algorithm converges to the set of global maxima. We
study the structure of this set as the number of measurements tend to infinity. We derive coordinate-wise
bounds on this limit set and show that it is highly concentrated about the “true” values if the conditional
success probabilities {p; 2} are close to one.

First consider single packet measurements on the path from the sender to receiver a. The measurements

mge,1 and n, provide an asymptotically consistent estimator of the product g, = HiE’P(O,a) pi,1- Specifically,

Qo = 72“’1 converges to ¢, as n, tends to infinity. Similarly, for packet-pair measurements, the estimators
o — Ma,b,1
Qap = ., converge to

Qa,p = H Di2 H Pj,15

iEP(O,Sa,b) jEP(sa,b,a)

as each ngp — oo (recall that the vertex s, ; defines the subpath common to both receivers).
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Now consider packet-pair measurements along the same path. Denote the sequence of vertices in the path
P(0,a) by {i1,42,...,ir}, where ir = a. Let r1,...,rr also denote a set of receiver vertices chosen so that
the shared subpath between P(0,7;) and P(0,a) is P(0,4;), t = 1,...,T (note that rr = i7 = a). Then we

have

~

9a — Di1,1Pis,1Pis,1 " Pip,l,

1

qa,r; Pi1,2Pia,1 Pig,1 - Pip,l,

qa,ro 7 Pi1,2Di2,2Dis, 1 Dip,1s

Qayrr 7 Pi1,2Pi,2Piz,2 """ Pir,2-

If gg,a = 7 < 1, then we can deduce that

t
v < []pue <1
k=1

for t =1...,T. This shows that the asymptotic value of g, ,,_; lies within the interval
T T
[’7 H Dig,1 5 H p’ik,1] )
E=T—t+1 k=T—t+1
for t =1,...,T — 1. From here it follows that for any global maximum point p the p;, ;-coordinate must lie

within the interval
1
|:7pit,1 ) ;pit,1:| ;
if not, then the vector p cannot map to the MLE q, contradicting the fact that it is one of the global maxima.

We summarize our conclusions with the following theorem.

Theorem 3 Suppose that the number of all measurements tends to infinity (n, — oo and ngp — oo for all
receivers a,b). Define

_ . Ma,a,1
v =  max lim ——=.
a : i€P(0,a) Ma,a—00 MNggq

The p;.1-coordinates of the limit set of global mazima of the likelihood function lie within the interval
1 .
YiPig s —Pin |, Vi,
Vi
where p; 1 is the true unconditional success probability.
Theorem 3 shows that the p; ;-coordinates of the EM iterates p") tend to values very close to their corre-
sponding “true” values, if the conditional success probabilities are close to one; the closer to one they are, the

tighter the limit set is about the true unconditional success probabilities. Note that the values ; can be ob-

tained directly from the observable measurements, giving one a computable estimate of the “accuracy” of the
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MLE of p; 1. A queuing-theoretic argument in the next section shows that the conditional success probabilities
{pi,2} are indeed very close to unity. This conclusion is supported by our experimental results. Also note that
the estimate obtained by setting the {p;2} to one generally leads to an underestimation of the unconditional
success probabilities {p;1}; i.e., in that case the MLE attributes losses due to imperfect conditional success
probabilities to the unconditional losses. The joint MLE of both types of success probabilities can mitigate

this deficiency.

V. M/M/1/K QUEUING BEHAVIOR OF BACK-TO-BACK PACKET PAIRS

If both packets in a back-to-back pair share the same fate on each edge (either both are successful or both are
dropped), then the unicast tomography problem is somewhat similar to the multicast tomography problem in
that, like multicast probes, the losses of packet pairs are perfectly correlated. In such a setting, the conditional
success probabilities {p; 2} are all equal to one and, consequently, it is easy to check that the unconditional
success probabilities {p; 1} are identifiable. In practice the conditional success probabilities are less than
perfect, and it is again easy to verify that the collection of success probabilities {p; 1,pi2} is not identifiable
from the measurements described in the previous section. There is reason to believe that the conditional
success probabilities may be very close to 1, in which case the success probabilities are “almost” identifiable.
We will examine the issue of identifiability in more detail in Section IV-A. Internet measurements [4,18,23]
have shown that the conditional success probabilities {p; 2} are typically very close to one, but to the best of
our knowledge there are no previous theoretical studies that corroborate these findings.

To investigate this phenomenom further, here we explore the queuing behavior of back-to-back packets under
the classical M/M/1/K queue model. We then examine the results of ns simulations of scenarios that closely
mirror the traffic arrival patterns measured at queues in the Internet and demonstrate a close correspondence
to our theoretical results.

Consider an M/M/1/K queue with arrival rate A\, and service rate As. The queue is obeys a K + 1-
state Markov chain with transition probabilities p, and p,, corresponding to moves up or down the chain,
respectively. Let {g; }ﬁo denote the stationary queue distribution.

Suppose that two closely time-spaced packets reach the queue at nearly the same time. Specifically, assume
that there are r intervening events (arrivals and services) between the arrivals of the two packets. We are
interested in the probability that the first packet makes it into the queue, conditioned on the event that the
second packet also successfully enters the queue. In other words, we will examine the probability that the
queue is not full when the first packet arrives, conditional on the fact that it is not full when the second packet
arrives.

There are four possible outcomes for the two packets: {0,0},{0,1},{1,0}, and {1,1}, where a 0 or 1 in the

first position indicates the loss and success, respectively, of the first packet, and the second position denotes
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the outcome of the second packet. The probability we are interested in is given by

. Pr({1,1})
P = pr1,1)) + Pr({0, 1))’

the joint probability that both packets successfully enter the queue divided by the marginal probability of
success for the second packet alone.

First, consider the probability Pr({1,1}). We can write this probability as

{1 1} Z qiPj+1,

where p; denotes the probability that the queue is not full after » steps of the chain beginning at vertex
j (the dependence on r is suppressed for notational convenience). Explicit expressions for the probabilities
{p;} can be obtained, but it is not necessary for the purposes of our analysis. The expression above can be
interpreted as follows. In order that the first packet is successful, the queue must not be full when it arrives
(corresponding to ¢; in the above expression). The second packet will only make it into the queue if, after r
intervening events, the queue is again not full (corresponding to the p; in the above expression).

Second, consider the probability Pr({0,1}). We can write this probability simply as

PI‘({O, 1}) = 4KPK,

since the queue must be full when the first packet arrives and not full when the second arrives. Combining

the expressions for Pr({1,1}) and Pr({0,1}) we obtain an expression for the desired conditional probability

K—2
_— Yico 9iPj+1 +aK-1PK
P = SKk—2
> j=0 4iPj+1+ 9K -1PK + IKPK
= l—gx PK

S g + (qr-1 + ax)pK
Note that the unconditional probability that the first packet successfully enters the queue is simply 1 — gx.
Thus, from the above expression, we see that the conditional success probability will be greater than or equal
to the unconditional success probability if the following condition holds:

PK
K-2
Z]—:o qjpj+1 + (g1 + 9K)pK

The following argument shows that in fact the condition is true. Invert the inequality above to obtain an

equivalent condition
K-

l\?

Dj+1
a4, — k-1t a2 1
Jj=0
This inequality holds since % >1,45=0,...,K—2, and Z —09j = 1. The condition px < pji1 is a

consequence of the fact that every sequence of r steps that leads to the full state K starting from state j also
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leads to a full state starting from state K. However, the converse is not necessarily true. A sequence of r
steps that leads to state K starting from K may not lead to state K starting from j.

Note that if » = 0, then px = 0 and we have p* = 1 (i.e., if there are no intervening events, then the
conditional success probability is perfect). Also, observe that as r — oo the effect of the initial state of the
queue diminishes and p; - 1 — gk, j =0,..., K. Thus, as r — oo the conditional probability p* — 1 — ¢k,

the unconditional success probability. The results are summarized in the next theorem.

Theorem 4 Under an M/M/1/K queue model, the conditional success probability p* is greater than or equal
to the unconditional success probability. Moreover, if r denotes the number of intervening events between the

two packets, then p*(0) = 1 and lim,_,o p*(r) =1 —qk, the unconditional success probability.

This theorem describes the behavior of the conditional success probability as a function of intervening
queueing events under the unrealistic model of an M/M/1/K queue. Figure 3(a) plots the conditional success
probabilities as functions of the number of intervening events r for several values of unconditional success
probability. To examine the behavior in a more realistic environment, we simulated a network using the ns-2
simulation environment. Competing traffic was generated at a queue by multiple TCP and UDP connections
from 40 different links entering the queue. We calculated the conditional success rate by sending several
thousand packet pairs into the queue. The experiment was repeated as the spacing between the probe packets
within a pair was varied. Figure 3(b) shows the variation in conditional probability as the spacing between the
probe packets changes. We observe a similar behavior as in the theoretical M/M/1/K result: the conditional
probability is very close to one for very small packet spacing and decays to the unconditional probability as

the spacing is increased.

VI. Ns SIMULATIONS AND TESTBED EXPERIMENTS
A. ns Simulation

Using the 12-vertex network topology of Figure 1, we evaluated the performance of the EM loss inference
algorithm in the ns-2 simulation environment [22]. The topology is intended to reflect the heterogeneous
nature of many networks — a slower entry edge from the source, a faster internal backbone, and then slower
exit edges to the receivers. This chosen topology gives us the flexibility to explore the effects of having receivers
at different distances from the source (number of edges in path), and to examine the effect of varying fan-outs.
We fix the queue size at each router to be 35 packets, and drops (losses) occur when a queue overflows.

Our experiments investigated a variety of network traffic conditions, comprised of TCP connections from
the source to receivers as well as background cross-traffic flows. Single packet and packet pair statistics were
collected by monitoring the TCP connections. Within these connections, we identify two packets as a “pair”

if the time-spacing between them is less than 2 msec. Details of the scheme for packet pair identification
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Fig. 3. (a) The conditional success probability (M/M/1/K queue) as a function of the number of queueing events
intervening between the arrivals of the two probe packets comprising a packet pair. The behaviors for queues with
three different unconditional success probabilities are displayed. The horizontal lines indicate the unconditional
success probabilities (dashed 0.9395, solid 0.961, dotted 0.9785). The decaying lines are the corresponding conditional
success probabilities. (b) The results of ns-2 experiments simulating a queue with competing traffic generated from
multiple TCP and UDP connections. The horizontal line shows the unconditional success probability of probes
entering the queue with a spacing of 100 ms. The decaying line displays the conditional success probability observed

as the spacing between the probes in a packet-pair is increased from 0.05 ms to 75 ms.

appear in [29].

In this paper, we report the results from measurements collected over a 300 second interval in three different
traffic scenarios. The first two scenarios investigate cases in which traffic and losses are heaviest on two edges.
The scenarios test the ability of the algorithm to resolve cascaded losses (edges 2 and 5, Scenario (a) in
Figure 3) or identify isolated lossy edges in the network (edges 2 and 8, Scenario (b) in Figure 3). In the third
scenario, more evenly distributed traffic introduces medium losses at several edges, exploring performance in
more benign conditions (Scenario (c) in Figure 3).

In each case, we conducted ten independent simulations. Figure 3 displays the results. The top panel
illustrates an example of the estimated and true success rate for each edge, chosen arbitarily from the ten
realizations. We see that the estimated success rates are in good agreement with the true TCP success rates.
The bottom panel shows the mean absolute error for each edge over the 10 trials. In all three scenarios, we

see that the worst-case mean absolute error is roughly 2%.

B. Testbed Experiment

We have constructed a testing framework on a testbed network of prototype freeBSD v3.2 routers, with
topology as depicted in Figure 3. Maximum edge speeds are 10 Mb/s for routers and 100 Mb/s for hosts, as
manually configured by multiport Ethernet cards. The buffer size of the routers is 250 packets. Competing

traffic is generated at all hosts and routers according to a Pareto on/off model. We apply the lost estimation
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Fig. 4. Simulation Results. True and estimated edge-level success rates of TCP flows from source to receivers for several
traffic scenarios: (a) Heavy losses on edges 2 and 5, (b) Heavy losses on edges 2 and 8, and (c¢) Traffic mixture -
medium losses. In each subfigure, the two panels display for each edge 1-11 (horizontal axis): (top) an example of
true and estimated success rates and (bottom) mean absolute error between estimated and true success rates over

10 trials for each edge.
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Fig. 5. Testbed experimental results. (a) Network testbed architecture. Heavy cross-traffic was generated on links 2
and 4. (b) The results of a typical experiment. Circles show true loss rates on links 1-7. Solid line shows estimated

loss rates. (¢) The absolute error for each link loss rate estimate, averaged over ten experiments.

algorithm at the source vertex, using measurements collected by sending packet-pair probes to the receivers.
There was 75 ms spacing between probes, and the experiment was conducted for 2 minutes, generating 1600
measurements. UDP probing and measurement on individual edges was employed to obtain “true” uncondi-
tional loss probabilities. Our experiments show a general agreement between the tomographic estimates of
the edge loss probabilities derived from packet pair measurements and the direct “true” estimates obtained

by UDP probing along individual edges.

VII. EXTENSIONS AND CONCLUSIONS

This paper developed a maximum likelihood estimation approach to the problem of unicast network to-
mography. We jointly estimate the unicast success probability and the conditional (back-to-back packet pair)
success probability on each edge of the network graph. This allows us to account for imperfect conditional

success probabilities (less than one) and can help to avoid underestimation of the unicast success rates. We
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devised a fast, EM algorithm for computing MLEs. We also examined the convergence behavior of the EM
algorithm, proving that it converges to the set of global maxima. A theoretical analysis of the correlation
between successes of closely spaced packet-pairs under an M/M/1/K queue model demonstrated that the cor-
relations are generally quite strong (implying that the conditional success probabilities tend to be very close
to one), corroborating experimental observations in real networks [18,23] and our ns and network testbed ex-
periments. We assessed the performance of our unicast network tomography algorithm through ns simulation
experiments and more realistic experiments in a network testbed comprised of eight freeBSD routers.

The ideas in this paper can be extended in several directions. First, because our approach is likelihood-based
Bayesian estimation methods can easily be developed. We proposed a Bayesian approach that incorporates
the prior assumption that the conditional success probabilities are greater than or equal to the unconditional
success probabilities in earlier work [12]. Other types of prior information or regularization can be easily
applied within our EM algorithm by simply modifying the M-Step. A second extension is to the maximum
likelihood estimation of queuing delays. This can also be formulated as a maximum likelihood estimation
problem and solved using an EM algorithm related to the one derived in this paper. We developed and
investigated an MLE/EM approach to the unicast network delay tomography problem in other papers [13,14].

There are also several related issues that we are currently investigating. The network tomography problem
studied in this paper and others mentioned above assume knowledge of the network topology. While this
information may be readily available in many situations, in others it is not. Several researchers, including us,
have investigated measurement-based techniques for estimating the network topology [3,10,15-17,25]. We
were the first to propose a MLE approach to the topology identification problem [10]. This perspective on
the problem demonstrates the enormous computational challenge associated with topology identification (the
only way we know to compute the exact MLE topology estimate is by testing every possible tree topology
connecting the sender to the receivers). Finding compuational efficient, optimal or near-optimal methods for
topology identification is an important open problem. Another key issue is the possibility of non-negligible
temporal and spatial dependencies, which could arise due to long-range temporal dependencies in network
traffic and the common cross-traffic flows. Assessing the impact of such dependencies on network tomography
algorithms and developing new algorithms that mitigate their effects or even new measurement methods

immune to such dependencies are important directions for future work.
APPENDIX

I. EM ALGORITHM COMPUTATIONAL COMPLEXITY

In this appendix, we examine the computational complexity of the EM algorithm, leading to the results
stated in Section ITI-A. The E-step involves almost all the computation in the algorithm; it involves the

calculation of the conditional expectations of the unobserved data according to (9) and (10). Both of these
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equations involve the summation of terms, each term being a product of success/loss probabilities and a
measurement count.

We begin by analysing the total number of multiplications necessary to construct all these terms. A term
in the conditional expectation calculation is the product of a specific combination of the conditional and
unconditional success probabilities associated with a certain subpath of the tree (one probability term being
chosen from each edge in the subpath). Each subpath starts from the sender and ends at a vertex lower
in the tree. The nature of the packet pair measurement process places a restriction on the way in which
conditional and unconditional probabilities can be grouped within each term. Specifically, the sequence of
edge probabilities, ordered in the traversal order from sender to end vertex, cannot involve an unconditional
edge success probability followed by a conditional edge success probability; such a sequence would correspond
to a measurement not possible in our framework. This restriction limits the number of unique product terms
that can be formed and must be computed in the E-step calcultation. We can relate the number of distinct
subpath probabilities to the number of edges (or vertices) in a tree. For each vertex i, there are [(i) + 1
subpaths to that vertex, where /(i) is the number of edges in the path P(0,7). If the tree has L edges in total,
let us enumerate the vertices 0, ..., L and assume that there is a single edge emerging from the source. Then
the number of subpaths is equal to L + 25:1 1(3).

The number of terms that must be calculated is therefore equal to L(I + 1), where | = %ZiLzo [(¢) is the
average depth of the tree. If the tree is binary and complete, the average depth grows as log, L. If the tree is
complete and has constant fanout equal to f, then the average depth grows as logyL. When the fanout is set
to its maximum possible value, L — 1 (see Figure 2(b)), the average depth grows as log L/log(L — 1). This
approaches one as L grows large (clearly the average depth approaches 2 for a tree of the form in Figure 2(b)).
The worst-case tree is depicted in Figure 2(a). In this case, the average depth grows proportionally to L. We
can now state that the growth of number of unique terms in all the summations relative to the number of
edges L lies between O(L) and O(L?). Because of the repetition of the combinations of probabilistic weights
in the each term, the formation of all terms requires less than two multiplications per term.

We now briefly consider the number of additions involved in the evaluation of the conditional expectations.
The expressions (9) and (10) involve a summation of measurements, but this need only be performed once for
the entire algorithm, so can be disregarded when determining the computational requirements per iteration.
For each subpath terminating at vertex ¢, there are (i) + 1 terms to sum. Once these summations have been
performed, the resulting I terms must be summed. The total number of summations is then L —1+ ZiL:1 1(3).
The growth of the number of summations required as a function of the number of edges is therefore the same

as the growth of the number of multiplications.
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