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ABSTRACT

This paper explores algorithms for subspace clustering with missing
data. In many high-dimensional data analysis settings, data points lie
in or near a union of subspaces. Subspace clustering is the process of
estimating these subspaces and assigning each data point to one of
them. However, in many modern applications the data are severely
corrupted by missing values. This paper describes two novel meth-
ods for subspace clustering with missing data: (a) group-sparse sub-
space clustering (GSSC), which is based on group-sparsity and al-
ternating minimization, and (b) mixture subspace clustering (MSC),
which models each data point as a convex combination of its pro-
jections onto all subspaces in the union. Both of these algorithms
are shown to converge to a local minimum, and experimental results
show that they outperform the previous state-of-the-art, with GSSC
yielding the highest overall clustering accuracy.

Index Terms— Low-rank matrix completion, low-dimensional
models, lasso, sparsity, subspace clustering, missing data, alternating
optimization, compressed sensing.

1. INTRODUCTION

Subspace clustering is a powerful data analysis tool for modeling
high-dimensional data. One is given a data matrix X whose columns
lie in the union of several unknown low-dimensional subspaces of
Rd. The goal is to infer the underlying subspaces and cluster the
columns of X according to the subspaces [1]. This problem has
attracted increasing attention in recent years, producing theory and
methods to handle outliers [2–6], noisy measurements [7], privacy
concerns [8], and data constraints [9], among other issues. However,
subspace clustering with missing data (SCMD), where one aims at
the same goal but assumes that X is only partially observed, remains
a challenging task. This scenario arises in a wide variety of modern
applications, ranging from computer vision [10] to network estima-
tion [11, 12] and recommender systems [13, 14].

SCMD can equivalently be thought of as a generalization of low-
rank matrix completion [15] to the case where columns lie in several
subspaces, rather than just one. Hence some approaches to SCMD
use a combination of subspace clustering and matrix completion al-
gorithms. For example, if the data lies in a union of subspaces, but
remains low-rank, one option is to first complete the matrix and then
cluster the data according to their nearest subspaces. In practice,
though, the number and dimensions of the subspaces may be suffi-
ciently large such that the data matrix is full-rank, and hence low-
rank matrix completion methods are not applicable.

Other approaches to SCMD aim to generalize existing methods
of subspace clustering to the missing data case. For example, [16]
proposes to fill all missing entries with a sensible value (e.g., ze-
ros or means), and then use one of the most popular algorithms for

subspace clustering: sparse subspace clustering [17]. Unfortunately,
this method provides no guarantees and may require a large amount
of information, either in terms of number of columns or number of
observations per column. In contrast, [18] gives conditions to prov-
ably perform SCMD using local neighborhoods; this method may
also require a large amount of information. The main caveat of these
approaches is that they aim to cluster a few columns at a time, and
this requires many columns to be observed on the same rows, which
is highly unlikely for severely incomplete datasets.

Rather than clustering a few columns at a time, other approaches
aim to directly find a collection of subspaces that fits the entire
dataset. One way to do this is by modeling a union of subspaces as
a Gaussian mixture and to use an EM algorithm [19]. Unfortunately
many datasets do not follow the Gaussian assumption. Furthermore,
EM algorithms can only be guaranteed to converge to a local min-
imum. Another approach with similar drawbacks [20] generalizes
the well-known k-subspaces clustering method to handle missing
data. Hence there is interest in new SCMD algorithms that can avoid
these drawbacks.

The main contribution of this paper is a novel algorithm tailored
specifically for SCMD, based on group-sparsity and alternating min-
imization. We call this algorithm group-sparse subspace clustering
(GSSC). Additionally, we present a second algorithm, which we call
mixture subspace clustering (MSC). MSC is similar in principle and
performance to EM, but for general data (not just Gaussian). Our
main result shows that these algorithms will converge to a local min-
imum, and our experiments show how they outperform state of the
art methods.

Organization of the paper

In Section 2 we formally state the problem and our main results,
which we show in Section 3. In Section 4 we present experiments
that show the performance of our algorithms, and in Section 5 we
give a brief discussion of our methods.

2. MODEL AND MAIN RESULTS

Let U? := {S?k}Kk=1 denote a collection of K unknown r-
dimensional subspaces of Rd. Let X be a d×N data matrix whose
columns lie in the union of the subspaces in U?. Let Ω denote a
d×N matrix with binary entries, and let XΩ denote the incomplete
version of X, observed only in the nonzero entries of Ω. The goal is
to infer U? from XΩ and cluster the columns of XΩ accordingly.

2.1. Group-Sparse Subspace Clustering (GSSC)

We now present our main contribution: a novel SCMD algorithm
based on group-sparsity and alternating minimization.



Algorithm 1: Group-Sparse Subspace Clustering
Input: XΩ,K, r, λ.

Initialize Û ∈ Rd×Kr (e.g., using SSC-EWZF).
repeat

V̂ = arg min
V

‖Ω(X− ÛV)‖2F + λ

N,K∑
j,k=1

‖vjk‖2.

Û = arg min
U : ‖U‖F≤1

‖Ω(X−UV̂)‖F .

until convergence;
Output: Û, V̂.

Let {U?
k}Kk=1 denote bases of the subspaces in U? and let xj

denote the jth column of X. If xj lies in S?k , then we can write

xj = U?
kv

?
j , (1)

where v?j is a vector in Rr containing the coefficients of xj in the
basis U?

k. Next let V?
j be a vector in RKr formed by K blocks of

size r × 1. If xj ∈ S?k , let the kth block of V?
j be v?j , and the

remaining blocks be zero. For example, if xj ∈ S?1 , then

V?
j =



v?j

0

...

0


}r
}r

...

}r.

Letting U? := [U?
1 · · · U?

K ], we can rewrite (1) as xj = U?V?
j ,

and letting V? := [V?
1 · · · V?

N ], it follows that

X = U? V?.

Notice that V? is group-sparse, because if xj lies in S?k , then the jth

column of V? may only have nonzero entries in the kth block, that
is, in rows (k−1)r+1, . . . , kr. This way, the group-sparsity pattern
of V? encodes the information of the clustering of the columns of
X. On the other hand, U? determines U?. Hence the goal is to
estimate U? and V? from XΩ.

To this end, let U ∈ Rd×Kr and V ∈ RKr×N . Let Vj denote
the jth column of V. Then split Vj into k blocks of size r × 1, and
let vjk ∈ Rr denote the kth block, i.e.,

Vj =


vj1

...

vjK


}r
...

}r.

We would like to find matrices U and V that best explain the
observed entries of X, while encouraging the structure of V to re-
semble the group-sparse structure of V?. This can be done by adding
a group-lasso penalty (weighted by a parameter λ ≥ 0) to encourage
the columns of V to be group-sparse. Hence, ideally, we would like
to find solutions to the following optimization problem:

arg min
U,V:
‖U‖F≤1

‖Ω(X−UV)‖2F + λ

N,K∑
j,k=1

‖vjk‖2, (2)

where Ω(·) denotes the Hadamard product with Ω. Unfortunately,
(2) is non-convex, but with either variable U or V fixed, the function

Algorithm 2: Mixture Subspace Clustering
Input: XΩ,K, λ.

Initialize P̂ ∈ RKN×N (e.g., using SSC-EWZF).
repeat

Ŷ = arg min
Y

‖Ω(X−YP̂)‖2F + λ

K∑
k=1

‖Yk‖∗.

P̂ = arg min
P∈∆

‖Ω(X− ŶP)‖F .

until convergence;
Output: Ŷ, P̂.

is convex in the other. GSSC aims to find a solution to (2) through
alternating minimization. This is detailed in Algorithm 1.

Alternating minimization methods are generally not guaranteed
to converge to a critical point [21, 22]. The main result of this paper
is the following theorem. It states that the sequence generated by
Algorithm 1 will contain a subsequence that converges to a critical
point. The proof is given in Section 3.

Theorem 1. Let {Ût, V̂t}t≥0 be the sequence of estimates
generated by Algorithm 1. Then {Ût, V̂t}t≥0 has an ac-
cumulation point. Moreover, any accumulation point of
{Ût, V̂t}t≥0 is a critical point of problem (2).

2.2. Mixture Subspace Clustering (MSC)

Our second algorithm represents each column of X as a convex com-
bination of the projection of that column onto each of the K sub-
spaces. Hence we must estimate these projections and the weights
associated with the convex combination for each column.

Let Yk ∈ Rd×N denote the approximation of X in the kth

subspace, and let Y := [Y1 · · · YK ] ∈ Rd×KN . Let pjk ∈
[0, 1] denote the weight assigned to the subspace-k approximation
of the jth column of X; we require

∑
k pjk = 1. Let Pk ∈ RN×N

be a diagonal matrix with diagonal elements equal to p1k, . . . , pNk.
Finally, let P := [P1 · · · PK ]> ∈ RKN×N , and let ∆ denote the
space of K stacked N × N diagonal matrices whose columns sum
to 1 and whose entries are non-negative (i.e., matrices with the same
form as P).

Our mixture subspace clustering (MSC) algorithm estimates P
and Y by solving the following optimization problem:

arg min
Y,P:
P∈∆

‖Ω(X−YP)‖2F + λ

K∑
k=1

‖Yk‖∗. (3)

The alternating minimization procedure we use is detailed in Algo-
rithm 2.

Similar to Theorem 1, we can show that the sequence generated
by Algorithm 2 will contain a subsequence that converges to a criti-
cal point. The proof is analogous to that given in Section 3.



Theorem 2. Let {Ŷt, P̂t}t≥0 be the sequence of estimates
generated by Algorithm 2. Then {Ŷt, P̂t}t≥0 has an ac-
cumulation point. Moreover, any accumulation point of
{Ŷt, P̂t}t≥0 is a critical point of problem (3).

3. PROOF

In this section we give the proof of Theorem 1. The proof of Theo-
rem 2 follows by similar arguments. Recall that vjk denotes the kth

block of size r × 1 of the jth column of V. It follows that N,K∑
j,k=1

‖vjk‖2

2

≥
N,K∑
j,k=1

‖vjk‖22 = ‖V‖2F .

Next define

Φ(U,V) := ‖Ω(X−UV)‖2F + λ

N,K∑
j,k=1

‖vjk‖2,

and observe that if ‖V‖F > 1
λ

Φ(0, 0) = 1
λ
‖Ω(X)‖2F , then

Φ(U,V) ≥ λ
∑N,K
j,k=1 ‖vjk‖2 ≥ λ‖V‖F > Φ(0, 0), which

implies V is not a minimizer of (2). It follows that the solution to
(2) is the same as the solution to

arg min
U,V:
‖U‖F≤1

Φ(U,V) s.t. ‖V‖F ≤
1

λ
‖Ω(X)‖2F , (4)

and that V̂ in Algorithm 1 satisfies ‖V̂‖F ≤ 1
λ
‖Ω(X)‖2F . Thus, the

sequence {Ût, V̂t}t≥0 generated by Algorithm 1 will be bounded.
By the Bolzano-Weierstrass theorem, this sequence will contain a
convergent subsequence. The limit of this subsequence will be an
accumulation point of {Ût, V̂t}t≥0. Next, we demonstrate that any
accumulation point will be a critical point. To this end, we will show
that the conditions of Lemma 3.2 in [23] are satisfied for (4). Let

f(U,V) = ‖Ω(X−UV)‖2F ,

g1(V) =

N,K∑
j,k=1

‖vjk‖2, g2(U) = 0.

Next notice that

(a) The function g1 is closed, because g1 is a continuous func-
tion with closed domain (see Sec. A.3.3 in [24]). In addi-
tion, g1 is proper convex because g1 is a norm (see [25]) and
norms are convex and nonnegative. Also, g1 is sub differen-
tiable because it is differentiable everywhere except when-
ever vjk = 0, and because at vjk = 0, there exists a
W ∈ RdKr×N such that for every Z ∈ dom g1,

g1(Z) =

N,K∑
j,k=1

‖zjk‖2

≥
N,K∑
j,k=1

‖vjk‖2 +

N,K∑
j,k=1

wT
jk(zjk − vjk),

where wjk and zjk denote the blocks in W and Z corre-
sponding to vjk. Specifically, wjk = 0 if vjk = 0 and

wjk = vjk/‖vjk‖2 otherwise. Finally, the function g2 is
also closed, proper convex, and sub differentiable because it
is a constant.

(b) f is continuously differentiable because f is a polynomial (of
degree 4).

(c) ∇Uf is Lipschitz continuous with respect to U, with Lip-
schitz constant c = ( 1

λ
‖Ω(X)‖2F )2, because for any A ∈

Rd×Kr:

‖∇Uf(U + A,V)−∇Uf(U,V)‖F
= ‖Ω(X− (U + A)V)VT −Ω(X−UV)VT‖F
= ‖ −Ω(AV)VT‖F ≤ ‖Ω(AV)‖F ‖V‖F
≤ ‖AV‖F ‖V‖F ≤ ‖A‖F ‖V‖2F ≤ c‖A‖F .

(d) ∇Vf is Lipschitz continuous with respect to V for similar
reasons as above, i.e., for any A ∈ RKr×N :

‖∇Vf(U,V + A)−∇Vf(U,V)‖F
≤ ‖UA‖F ‖U‖F ≤ ‖A‖F ‖U‖2F ≤ ‖A‖F ,

where the last equality follows because ‖U‖F ≤ 1.

(e) The function Φ(U,V) and the objective functions in the two
subproblems in Algorithm 1 are continuous with closed and
bounded domains. By the Extreme Value Theorem, Φ(U,V)
must attain a minimum, and therefore, they must have a min-
imizer.

Conditions (a)-(e) are the assumptions of Lemma 3.2 in [23].
Theorem 1 follows directly by this result. �

4. EXPERIMENTS

In this section we present a series of experiments to study the per-
formance of GSSC and MSC and compare them with the following
SCMD algorithms:

• EM. This algorithm models data in a union of subspaces as a
Gaussian mixture with low-rank covariance matrices, which
are estimated using an expectation maximization algorithm
[19].

• SSC-EWZF (sparse subspace clustering by entry-size zero
fill). This algorithm fills all missing entries with zeros and
then uses sparse subspace clustering (SSC) to cluster the filled
columns [16].

• MC+SSC (matrix completion plus sparse subspace cluster-
ing). This algorithm first completes the missing values using
low-rank matrix completion methods and then uses SSC to
cluster the completed columns [16].

We found that these methods, representative of the distinct ap-
proaches to SCMD, typically performed as well or better than several
other SCMD algorithms. We point out that GSSC, MSC, MC+SSC
and SSC-EWZF involve a penalty parameter λ, which was selected
by cross-validation.

In our experiments we compare the behavior of these algorithms
as a function of the ambient dimension d, the number of subspaces
K, the dimension of each subspace r, the number of observed entries
per column `, and the number of columns per subspace Nk.

In each trial, we generatedK subspaces, each spanned by r vec-
tors in Rd drawn i.i.d. from the standard Gaussian distribution. We
then generated Nk columns from each subspace, with coefficients



Fig. 1: Proportion of correctly classified points (average over 10 trials) of several SCMD algorithms as a function of the number of columns
Nk and the number of observations per column ` for different values of the ambient dimension d, the number of subspaces K, and the
dimension of each subspace r. White represents 100% accuracy, and the darkest pixel in each figure represents 1/K, which amounts to
random guessing. All pixels above the black point in each column have at least 95% accuracy. The curve is the best exponential fit to these
points, and we plot them all simultaneously in the rightmost plot. These curves represent the discriminant between 95% accuracy (above
curve) and less than 95% accuracy (below curve). The lower the curve the better.

also drawn i.i.d. from the standard Gaussian distribution. Next, we
observed only ` entries per column, selected uniformly at random
and independently across columns. Finally, we clustered the incom-
plete columns using the subspace clustering methods above.

Each cluster of columns defines an estimated subspace Ŝ. We
assign the columns corresponding to Ŝ to the subspace in U? that is
closest to Ŝ. To measure accuracy we count the number of columns
that were correctly assigned. The results are shown in Figure 1. In
the settings where X remained low-rank (d = 25, K = 2, r = 5),
we used the output of MC+SSC as input to the rest of the algorithms.
In the rest of the settings, we use the output of SSC-EWZF. One
can see that our methods consistently outperform the state of the art
methods SSC-EWZF and MC+SSC [16]. For all problem sizes, our
methods result in a better clustering accuracy for a lower number of
observed points `.

5. CONCLUSIONS

In this paper we study algorithms for subspace clustering with miss-
ing data. We propose two novel methods for this task with local
convergence guarantees: GSSC and MSC. Our experimental results
show that these methods outperform previous state-of-the-art. Each
of these methods has different advantages. For instance, MSC does
not require one to know r, the dimension of the subspaces, while
GSSC relies on this knowledge. On the other hand, GSSC encour-
ages the columns of X to be associated with a single subspace, while
MSC selects P on a collection of simplices, which precludes `1 spar-
sity regularization of the weights. We point out that for simplic-
ity of presentation we had each subspace have the same dimension.
Nonetheless, both MSC and GSSC admit a union of subspaces with
different dimensions.
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