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Abstract—This paper studies a generalization of the
classic binary search problem of locating a desired value
within a sorted list. The classic problem can be viewed
as determining the correct one-dimensional, binary-valued
threshold function from a finite class of such functions
based on queries taking the form of point samples of the
function. The classic problem is also equivalent to a simple
binary encoding of the threshold location. This paper
extends binary search to learning more general binary-
valued functions. Specifically, if the set of target functions
and queries satisfy certain geometrical relationships, then
an algorithm, based on selecting a query that is maximally
discriminating at each step, will determine the correct
function in a number of steps that is logarithmic in
the number of functions under consideration. Examples
of classes satisfying the geometrical relationships include
linear separators in multiple dimensions. Extensions to
handle noise are also discussed. Possible applications
include machine learning, channel coding, and sequential
experimental design.

I. PROBLEM SPECIFICATION

Binary search can be viewed as a simple guessing
game in which one is given an ordered list and asked to
determine an unknown target value by making queries
of the form “Is the target value greater than x?” For
example, consider the integer guessing game in which
the list is the set of integers from 1 to 100. The optimal
strategy, which is familiar to most people, is to first ask
if the number is larger than 50, and then ask similar
“bisecting” questions of the intervals that result from this
and subsequent queries. At each step of this process, the
uncertainty about the location of the unknown target is
halved, and thus after j steps the number of remaining
possibilities is no larger than 100 · 2−(j+1).

The binary search problem can also be cast as learning
a one-dimensional threshold function from queries in the
form of point samples. Consider the threshold function
f(x) = 1{x≤t} on the interval [0, 1], where t ∈ [0, 1)
is the threshold location and 1{x≤t} is 1 if x ≤ t
and 0 otherwise. Suppose that t belongs to the set
{0, 1

n , . . . , n−1
n }. The location of t can then determined

from O(log n) point samples using a bisection procedure
analogous to the process above. In fact, if n = 2m for

some integer m, then each point sample provides one bit
in the m-bit binary expansion of t.

Very similar strategies can be employed even if the
answers to the queries are unreliable [1], [2], [3], the
so-called noisy binary search problem. The first result
that we are aware of here was due to [1], based on
maintaining a probability distribution on the target value
(initially uniform), querying/sampling at the median of
the distribution at each step, and then adjusting the
distribution based on the response/observation according
to a quasi-Bayes update. The method is based on a
binary symmetric channel coding scheme that employs
noiseless feedback [4]. Alternative approaches to the
noisy binary search problem are essentially based on
repeating each query in the classic binary search several
times in order to be confident about the “correct” answer
[2], [3].

This paper considers a generalized form of binary
search based on the notion of maximally discriminative
queries. We consider an abstract setting in which
queries are selected from a set X . The correct response
to a query x ∈ X is either ‘yes’ (+1) or ‘no’ (-1),
and is revealed by an oracle only after the query is
selected. The queries are also put to a finite collection
of hypotheses H with cardinality |H|. Each hypothesis
h ∈ H is a mapping from X to {−1, 1}. We assume
that H contains the unknown oracle (i.e., the correct
hypothesis) and that no two hypotheses agree on all
possible queries (i.e., the hypotheses are unique with
respect to X ). The goal is to find the correct hypothesis
as quickly as possible through a sequence of carefully
chosen queries. In particular, we study the following
algorithm, which selects the maximally discriminating
query at each step.

Generalized Binary Search (GBS)
initialize: i = 1, H1 = H.
while |Hi| > 1
1) Select xi = arg minx∈X |

∑
h∈Hi

h(x)|.
2) Query oracle with xi to obtain response yi.
3) Set Hi+1 = {h ∈ Hi : h(xi) = yi}, i = i+1.



The query selection criterion picks a query that
is maximally discriminative at each step (e.g., if
minx∈X |

∑
h∈Hi

h(x)| = 0 then there exists a query for
which half of the hypotheses predict +1 and the other
half predict −1). There may be more than one query that
achieves the minimum, and in that case any minimizer is
acceptable. Since the hypotheses are unique with respect
to X , it is clear that the algorithm above terminates in
at most |H| queries (since it is always possible to find
query that eliminates at least one hypothesis at each
step). Note that exhaustive linear search also requires
O(|H|) queries.

However, if it is possible to select queries such that
at each step a fixed fraction of the remaining viable
hypotheses are eliminated, then the correct hypothesis
will be found in O(log |H|) steps. The main result
of this paper shows that GBS exhibits this property,
provided that X and H satisfy certain geometrical re-
lationships. Extensions to noisy GBS are also discussed.
The emphasis in this paper is on determining the correct
hypothesis with the fewest number of queries, and not on
the computational complexity of selecting the queries.
The motivation for this is that in many applications
computational resources might be relatively inexpensive
whereas obtaining the correct responses to queries may
be very costly.

Sequential strategies similar to GBS are quite common
in the machine learning literature. For example, [5]
considered a very similar problem, and showed that
the expected number of queries required by a similar
search algorithm is never too much larger than any other
strategy. However, general conditions under which such
strategies yield exponential speed-ups over exhaustive
linear search were not determined. We mention also
the work in [6], which draws parallels between binary
search and source coding. That work, however, assumes
the possibility of making arbitrary queries (rather than
queries restricted to a certain set) and so in the present
context the problem considered there essentially reduces
to encoding each hypothesis with log |H| bits. Here we
are interested in the interplay between a specific query
space X and the hypothesis space H. Classic binary
search is an instance in which X and H are matched so
that search and source coding are essentially the same
problem, as pointed out above. We identify geometrical
conditions on the the pair (X ,H) that guarantee that
GBS determines the correct hypothesis in O(log |H|)
queries.

II. COMBINATORIAL CONDITIONS FOR GBS

First consider an arbitrary sequential search procedure.
Let i = 1, 2, . . . index the sequential process, xi denote
the query at step i, and yi denote the correct response
revealed by an oracle after the query is selected. If
Hi denotes the set of viable hypotheses at step i (i.e.,
all hypotheses consistent with the queries up to that
step), then ideally a query xi ∈ X is selected such
that the resulting viable hypothesis space Hi+1 satisfies
|Hi+1| ≤ ai |Hi|, for 0 < ai < 1, where |Hi| denotes
the cardinality of Hi. This condition is met if and only
if ∣∣∣∣∣∣

∑
h∈Hi

h(xi)

∣∣∣∣∣∣ ≤ ci |Hi| (1)

for some 0 ≤ ci < 1, in which case ai ≤ (1 + ci)/2.
Condition (1) quantifies the degree of uncertainty among
the hypotheses in Hi for the query xi. The smaller
the value of

∣∣∑
h∈Hi

h(xi)
∣∣ the greater the uncertainty.

Assuming that such an uncertainty condition holds for
i = 1, 2, . . . , then after n steps of the algorithm

|Hn| ≤ |H|
n∏

i=1

(1 + ci)/2

and, in particular, the algorithm will terminate with the
correct hypothesis as soon as |H|

∏n
i=1(1 + ci)/2 ≤ 1.

Note that (1) trivially holds with ci = 1 − 2|Hi|−1

(ai = 1 − |Hi|−1|), since there exists a query that
eliminates at least one hypothesis at each step (recall that
the hypotheses are assumed to be unique with respect to
X ). Thus, we are interested in cases in which the ci are
uniformly bounded from above by a constant 0 ≤ c < 1
that does not depend on |H|. In that case,

|Hn| ≤
(

1 + c

2

)n

|H|

and the process terminates after at most
dlog |H|/ log(2/(1 + c))e = O(log |H|) steps. Based on
the observations above, we can state the following:

Theorem 1. Let P(H) denote the power set of H. GBS
converges to the correct hypothesis in O(log |H|) if there
exists a 0 ≤ c < 1 that does not depend on |H| such
that

max
G∈P(H)

inf
x∈X

|G|−1

∣∣∣∣∣∑
h∈G

h(x)

∣∣∣∣∣ ≤ c (2)

Condition (2) is sufficient, but may not be necessary
since certain subsets in P(H) may never result through



any sequence of queries. However, note that in the
classic binary search setting, the condition does hold
with c = 1/3, and thus the number of viable hypotheses
is reduced by a factor of at least (1 + c)/2 = 2/3 at
each step. The value of c = 1/3 is an upper bound
that is achieved only in the worst-case situation, when G
consists of three elements; most of the steps in classic
binary search reduce the number of viable hypotheses
by a factor of roughly 1/2. Unfortunately, verifying
condition (2) in general is combinatorial, and so in the
next section we seek conditions that are more easily
verifiable.

III. GEOMETRICAL CONDITIONS FOR GBS
Let P denote a probability measure over X , assume

that every h ∈ H is measurable with respect to P , and
define the constant 0 ≤ cP ≤ 1 by

cP = max
h∈H

∣∣∣∣∫
X

h(x) dP (x)
∣∣∣∣ . (3)

Note that by the triangle inequality, (3) implies

max
G∈P(H)

|G|−1

∣∣∣∣∣∑
h∈G

∫
X

h(x) dP (x)

∣∣∣∣∣ ≤ cP . (4)

Inequality (4) is a sort of relaxation of (2), with the
minimization over X replaced by an average, and its
verification requires only the calculation of the first P -
moment of each h ∈ H. Note that the minimal value of
cP is given by

c∗ = min
P

max
h∈H

∣∣∣∣∫
X

h(x) dP (x)
∣∣∣∣ , (5)

where the minimization is over probability measures on
X . It is not hard to see that the minimizer exists because
H is finite. Observe that the query space X can be
partitioned into a finite number of disjoint sets such that
every h ∈ H is constant for all queries in each such
set. Let A = A(X ,H) denote the collection of these
sets, which are at most 2|H| in number. The sets in A
are equivalence classes in the following sense. For every
A ∈ A and h ∈ H, the value of h(x) is constant (either
+1 or −1) for all x ∈ A. Note that X =

⋃
A∈A A.

Therefore, the minimization in (5) can be carried out over
a space of finite-dimensional probability mass functions
over the elements of A. The value of c∗ will play an
important role in characterizing the behavior of the GBS,
but it does not need to be explicitly determined.

Note that for each G ∈ P(H) one of two situations
can occur:

1) minx∈X |G|−1
∣∣∑

h∈G h(x)
∣∣ ≤ c∗

2) minx∈X |G|−1
∣∣∑

h∈G h(x)
∣∣ > c∗

If c∗ is reasonably small, then the first situation guaran-
tees that a “good” discriminating query exists (i.e., one
that will reduce the number of viable hypotheses by a
factor of at least (1 + c∗)/2). In the second situation,
a highly discriminating query may not exist. The only
guarantee is that there is always a query that eliminates
at least one hypothesis, since the hypotheses are assumed
to be unique with respect to X . Therefore, a condition
is required to ensure that such “bad” situations are not
too problematic.

Note that if minx∈X |G|−1
∣∣∑

h∈G h(x)
∣∣ > c∗, then

there exist x, x′ ∈ X such that |G|−1
∑

h∈G h(x) > c∗

and |G|−1
∑

h∈G h(x′) < −c∗. This follows since oth-
erwise (4) cannot be satisfied with c∗. Under a mild
condition discussed next, the existence of such an x and
x′ implies that the cardinality of G must be rather small.
The condition is given in terms of the two following
definitions.

Definition 1. Two sets A,A′ ∈ A are said to be k-
neighbors if k or fewer hypotheses predict different val-
ues on A and A′. For example, A and A′ are 1-neighbors
if all but one element of H satisfy h(x) = h(x′) for all
x ∈ A and x′ ∈ A′.

Definition 2. The query and hypothesis space (X ,H)
are said to be k-neighborly if the k-neighborhood graph
of A is connected (i.e., for every pair of sets in A there
exists a sequence of k-neighbor sets that begins at one
of the pair and ends with the other).

Theorem 2. If (X ,H) is k-neighborly, then
GBS terminates with the correct hypothesis
after at most dlog |H|/ log(α−1)e queries,
where α = max{1+c∗

2 , k+1
k+2} and c∗ =

minP maxh∈H
∣∣∫
X h(x) dP (x)

∣∣.
Remark 1. Note that GBS requires no knowledge of c∗.

Proof: Let c be any number satisfying c∗ ≤ c < 1
and let xi denote the query selected according to GBS
at step i. If |Hi|−1|

∑
h∈Hi

h(xi)| ≤ c, then the query xi

reduces the number of viable hypotheses by a factor of
at least (1 + c)/2. Otherwise, there exist x, x′ ∈ X such
that |Hi|−1

∑
h∈Hi

h(x) > c and |Hi|−1
∑

h∈Hi
h(x′) <

−c, since (4) must be satisfied with c according to the
definition of c∗.

Let A,A′ ∈ A denote the subsets containing x and x′,
respectively. The k-neighborly condition guarantees that
there exists a sequence of k-neighbor sets beginning at A
and ending at A′. Note that |Hi|−1

∣∣∑
h∈Hi

h(·)
∣∣ > c on

every set and the sign of |Hi|−1
∑

h∈Hi
h(·) must change



at some point in the sequence. It follows that there exist
points x, x′ ∈ X such that |Hi|−1

∑
h∈Hi

h(x) > c and
|Hi|−1

∑
h∈Hi

h(x′) < −c and furthermore, all but at
most k of the hypotheses predict the same value for both
x and x′.

Two inequalities follow from this observation. First,∑
h∈Hi

h(x) −
∑

h∈Hi
h(x′) > 2c|Hi|. Second,

|
∑

h∈Hi
h(x) −

∑
h∈Hi

h(x′)| ≤ 2k. Combining these
inequalities yields |Hi| < k/c. Furthermore, there exists
a query that eliminates at least one hypothesis due to the
uniqueness of the hypotheses with respect to X . Thus, at
least one hypothesis must respond incorrectly to xi, and
so |Hi+1| ≤ |Hi|−1 = |Hi|(1−|Hi|−1) < |Hi|(1−c/k).

This shows that if |Hi|−1|
∑

h∈Hi
h(xi)| > c, then

the query xi reduces the number of viable hypotheses
by a factor of at least (1 − c/k). Also, recall that if
|Hi|−1|

∑
h∈Hi

h(xi)| ≤ c, then the query xi reduces
the number of viable hypotheses by a factor of at least
(1 + c)/2. It follows that the each GBS query reduces
the number of viable hypotheses by a factor of at least

min
c≥c∗

max
{

1 + c

2
, 1− c/k

}
= max

{
1 + c∗

2
,
k + 1
k + 2

}
.

IV. APPLICATIONS

For a given pair (X ,H), the effectiveness of GBS
hinges on determining (or bounding) c∗ and establishing
that (X ,H) are neighborly. Recall the definition of the
bound c∗ from (5). A trivial bound is

max
h∈H

∣∣∣∣∫
X

h(x) dP (x)
∣∣∣∣ ≤ 1− 2|H|−1 ,

since this bound simply produces the convergence factor
1 − |H|−1, which is achieved by an exhaustive linear
search. Non-trivial moment bounds are those for which

max
h∈H

∣∣∣∣∫
X

h(x) dP (x)
∣∣∣∣ ≤ c ,

for a 0 ≤ c < 1 that does not depend unfavorably on
|H|. In this section we consider several illustrative ap-
plications of GBS, calculating/bounding c∗ and verifying
neighborliness of (X ,H) in each case.

A. Classic Binary Search

Classic binary search can be viewed as the problem of
determining a threshold value t ∈ (0, 1). Let H be a set
of hypotheses of the form hv(x) = 21{x>v} − 1, where
v ∈ V and V is a finite set of points in (0, 1) and 1B

denotes the indicator of the event B. Each query x ∈
X ⊂ [0, 1] receives a correct response y = 21{x>t} − 1

from the oracle. Assume that t ∈ V (i.e., the oracle is
contained in H) and assume that V ⊂ X .

First consider c∗. Assume that X contains the points
0 and 1. Then taking P to be two point masses at
x = 0 and x = 1 of probability 1/2 each yields∣∣∫
X h(x) dP (x)

∣∣ = 0 for every h ∈ H, since h(0) = −1
and h(1) = 1 for every h ∈ H. Thus, c∗ = 0.

Now consider the neighborly condition. Recall that A
is the partition on X induced by H, such that for each set
A ∈ A every h ∈ H has a constant response. In this case,
each such set is an interval of the form Ai = (vi−1, vi],
i = 1, . . . , |V | + 1, where v1 < v2 < · · · < v|V | are the
ordered values in V and v0 = 0 and v|V |+1 = 1. Note
that since V ⊂ X , each set Ai contains at least one query.
Furthermore, observe that only a single hypothesis, hvi

,
has different responses to queries from Ai and Ai+1.
Thus, each successive pair of such sets are 1-neighbors.
Moreover, the 1-neighborhood graph is connected in this
case, and so (X ,H) are 1-neighborly.

We conclude that the generalized binary search algo-
rithm of Theorem 2 determines the optimal hypothesis
in O(log |H|) steps; i.e., the classic binary search result.

B. Interval Classes

Let X = [0, 1] and consider a finite collection of
hypotheses of the form ha,b(x) = 21a≤x<b − 1, with
0 ≤ a < b ≤ 1. Assume that the hypotheses do not
have endpoints in common, and that one produces the
correct prediction at all points in [0, 1]. The partition
A again consists of intervals, and since there are no
common endpoints, the neighborly condition is satisfied
with k = 1. To bound c∗, note that the minimizing
P must place some mass within and outside each such
interval. If the intervals all have length at least ` > 0,
then taking P to be the uniform measure on [0, 1] yields
that c∗ ≤ |2`− 1|, irrespective of the number of interval
hypotheses under consideration. Therefore, in this setting
GBS determines the correct hypothesis in O(log |H|)
steps.

However, consider the special case in which the in-
tervals are disjoint. Then it is not hard to see that the
best allocation of mass is to place 1/|H| mass in each
subinterval, resulting in c∗ = 1−2|H|−1. And so, GBS is
not guaranteed to terminate in fewer than |H| steps (the
number of steps required by exhaustive linear search). In
this case, however, note that if queries of a different form
were allowed, then much better performance is possible.
For example, if queries in the form of dyadic subinterval
tests were allowed (e.g., tests that indicate whether or
not the correct hypothesis is +1-valued anywhere on a



dyadic subinterval of choice), then the correct hypothesis
can be identified through O(log |H|) queries (essentially
a binary encoding of the correct hypothesis). This em-
phasizes the importance of the geometrical relationship
between X and H embodied in the neighborly condition
and the value of c∗. Optimizing the query space to the
structure of H is somewhat related to the ideas in [6]
and to the theory of compressed sensing [7], [8].

C. Linear Separators in [−1, 1]d

Multi-dimensional threshold functions are particularly
relevant in machine learning and pattern classification.
Learning binary classifiers based on hyperplanes in
d > 1 dimensions is thus an important generalization
of classic binary search. Let X = [−1, 1]d, d ≥ 1,
and consider a finite collection of hyperplanes of the
form 〈a, x〉 + b = 0, where a ∈ Rd, b ∈ R, and
〈a, x〉 is the inner product between a and x. Assume
that every hyperplane in the collection is distinct and
intersects the set (−1, 1)d. Two d-dimensional threshold
functions are associated with each hyperplane: ha,b(x) =
21{〈a,x〉+b>0}−1 and −ha,b(x). Let H denote the set of
threshold functions formed from the finite collection of
hyperplanes in this fashion. Assume that the correct label
at each point x ∈ X is given by one function in H.

To bound c∗, let P be point masses of probability
2−d at each of the 2d vertices of the cube [−1, 1]d. Then∣∣∫
X h(x) dP (x)

∣∣ ≤ 1− 2−d+1 for every h ∈ H, since
for each h there is at least one vertex on where it predicts
+1 and one where it predicts −1. Thus, c∗ ≤ 1−2−d+1.

To verify the neighborly condition, note that in this
case every set in the partition A is a polytope delineated
by a subset of the hyperplanes. And, since the hyper-
planes are distinct, two sets which share a common face
are 2-neighbors (only the two hypotheses associated with
the hyperplane that defines that face predict differently
on queries from the two sets). Clearly, since the sets in A
tesselate X , the 2-neighborhood graph is connected and
so (X ,H) is 2-neighborly. We conclude that the GBS
determines the optimal hypothesis in O(2d−1 log |H|)
steps. This appears to be a new result.

A noteworthy case is the collection of hypotheses
formed by threshold functions based on hyperplanes of
the form 〈a, x〉 = 0, i.e., hyperplanes passing through
the origin. In this case, with P as specified above,
c∗ = 0, since each hypothesis responds with +1 at half
of the vertices and −1 on the other half. Therefore,
GBS determines the optimal hypothesis in no more
than O(log |H|) steps, independent of the dimension.
Related results for this special case have been previously

reported; see [9] and the references therein. Note that
even if the hyperplanes do not pass through the origin
(b 6= 0), O(log |H|) convergence is still attained so long
as |b| is not too large. This generalizes earlier results.

In the case of general linear separators, the depen-
dence on dimension d can also be eliminated with an
additional assumption. Suppose that for a certain P on
X the P -moment of the optimal hypothesis is known
to be upper bounded by a constant ρ < 1 that does
not depend on |H|. Then all hypotheses that violate the
bound can be eliminated from consideration and GBS
applied to the set of remaining hypotheses will determine
the correct hypothesis in O(log |H|) steps. Situations
like this can arise, for example, in binary classification
problems with side/prior knowledge that the marginal
probabilities of the two classes are somewhat balanced.
Then the moment of the correct hypothesis, with respect
to the marginal probability distribution of features, is
bounded far away from 1 and −1. This provides another
generalization of earlier results.

D. Discrete Query Spaces

In many situations both the hypothesis and query
spaces may be discrete. A machine learning application,
for example, may have access to a large (but finite) pool
of unlabeled examples, any of which may be queried
for a label. Because obtaining labels can be costly,
“active” learning algorithms select only those examples
that are predicted to be highly informative for labeling.
Theorem 2 applies equally well to continuous or discrete
query spaces. For example, consider the linear separator
case, but instead of the query space [−1, 1]d suppose that
X is a finite subset of points in [−1, 1]d. The hypotheses
again induce a partition of X into subsets A(X ,H),
but the number of subsets in the partition may be less
than the number in A([−1, 1]d,H). Consequently, the 2-
neighborhood graph of A(X ,H) depends on the specific
points that are included in X and may or may not be
connected.

Consider two illustrative examples. Let H be a col-
lection of linear separators as in Section IV-C above and
first reconsider the partition A([−1, 1]d,H). Recall that
each set in A([−1, 1]d,H) is a polytope. Suppose that
a discrete set X contains at least one point inside each
of the polytopes in A([−1, 1]d,H). Then it follows from
the results above that (X ,H) is 2-neighborly. Second,
consider a very simple case in d = 2 dimensions.
Suppose X consists of just three non-colinear points
{x1, x2, x3} and suppose that H is comprised of six clas-
sifers, {h+

1 , h−1 , h+
2 , h−2 , h+

3 , h−3 }, satisfying h+
i (xi) =



+1, h+
i (xj) = −1, j 6= i , i = 1, 2, 3, and h−i = −h+

i ,
i = 1, 2, 3. In this case, A(X ,H) = {{x1}, {x2}, {x3}}
and the responses to each pair of queries differ for four
of the six hypotheses. Thus, the 4-neighborhood graph
of A(X ,H) is connected, but the 2-neighborhood is not.

V. EXTENSIONS TO NOISY SEARCH

We now turn attention to the so-called noisy binary
search problem. The situation considered here is that
the oracle no longer returns the correct answer to every
query, but instead responds correctly with probability at
least 1 − p and incorrectly with probability at most p,
for an unknown 0 < p < 1/2. This is equivalent to
the situation in which the oracle (sender) communicates
answers to the learner (receiver) over a binary symmetric
channel with crossover probability p, but the feedback
channel (query channel) is noiseless. The goal remains to
identify the correct hypothesis in H, despite the fact that
the oracle may respond incorrectly. We will assume that
the erroneous responses are determined by a random coin
toss. Therefore, since the oracle is probably correct, one
can decide the correct response to a given query (with
very high confidence) by repeating it several times. This
observation is the basis for most noisy binary search
procedures, although optimal methods require a fairly
delicate and subtle application of this basic intuition.

To the best of our knowledge, a version of the classic
binary search problem in noise was first considered
by Horstein [4] in the context of channel coding with
noiseless feedback. The first rigorous analysis, motivated
by the work of Horstein, was developed in [1], where
the information-theoretic optimality of a multiplicative
weighting algorithm was established. A closely related
set of results was recently reported in [3], which also
includes results similar in spirit to [2]. We also mention
the works of [10], [11], which consider adversarial
situations in which the total number of erroneous oracle
responses is fixed in advance.

Based on an approach similar to that used in many
of the papers above, we have the following result.
Recall that under the assumptions of Theorem 2, GBS
terminates after at most no = O(log |H|) queries.

Theorem 3. If the oracle error probability is less than
or equal to p, for some unknown 0 < p < 1/2, and the
assumptions of Theorem 2 hold, then there exists a noise-
tolerant variant of GBS in the following sense: If GBS
terminates in at most no queries in the noiseless setting
(p = 0), then there exists a modified search strategy that,
with probability at least 1−δ, terminates with the correct

hypothesis in at most

O
(
no log(no/δ) log log(no/δ)/ε2

)
steps,

where ε = |p− 1/2|.

Proof: The modified algorithm is based on the
simple idea of repeating each query of the GBS several
times, in order to overcome the uncertainty introduced
by the noise. Since the value of p is unknown in advance,
an adaptive procedure is required. Thus, we first recall
Lemma 1 from [2].

Lemma 1. Consider a coin with an unknown probability
p of heads. Then for any δ′ > 0 there exists an adaptive
procedure for tossing the coin such that, with probability
at least 1− δ′, the number of coin tosses is at most

m(δ′) =
log(2/δ′)

4ε2
log

(
log(2/δ′)

4ε2

)
and the procedure reports correctly whether heads or
tails is more likely.

The proof of the lemma and the procedure itself are
based on relatively straightforward, iterated applications
of Chernoff’s bound; see [2] for further details. For the
sake of completeness, we state the procedure here.

Adaptive Coin Tossing Procedure
initialize: set mo = 1 and toss the coin once.
for j = 0, 1, . . . set
1) pj = frequency of heads (+1)

2) Ij =
[
pj −

√
(j+1) log(2/δ)

2j , pj +
√

(j+1) log(2/δ)
2j

]
3) If 1/2 ∈ Ij , then toss coin mj more times and
set mj+1 = 2mj , otherwise break.
end
If Ij ⊂ [−∞, 1/2], output −1, otherwise output +1.

Now consider the no queries chosen by GBS in
the noiseless case. Repeat each query several times,
according to the adaptive procedure above. By the union
bound, with probability at least 1 − noδ

′, each query is
repeated at most m(δ′) times and the correct responses
to all no queries are determined. Setting δ′ = δ/no yields
the upper bound on the number of queries.

Whether or not the bound in Theorem 3 is optimal in
the case of noisy GBS is an open question. For classic
binary search with noise, more subtle procedures can be
used to obtain slight improvements [1], [3].



VI. CONCLUSIONS

This paper studied a generalization of the classic
binary search problem. In particular, the generalized
problem extends binary search techniques to multi-
dimensional threshold functions, which arise in machine
learning and pattern classification. If (X ,H) is neigh-
borly (Definition 2) and if c∗ does not depend explicity
on |H|, then the number of steps required by GBS
is O(log |H|), exponentially smaller than the number
of steps in an exhaustive linear search. The conditions
express a geometrical relationship between X and H
which quantifies how well matched the queries are to
the structure of hypotheses.

The GBS problem can also be viewed as a source
coding problem in which X plays the role of a codeset
and H plays the role of a source. In certain cases (e.g.,
classic binary search) GBS and ideal binary encoding are
equivalent, but in general they are not. The neighborly
condition and the value of c∗ reflect the degree to which
X matches the source H.

Finally, we point out that if the error probability is
not bounded away from 1/2 in the noisy setting, then
exponential speed-ups over linear search are no longer
achievable by any search strategy. However, appropriate
noisy binary search strategies can provide polynomial
speed-ups over linear search [12], [13].
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