
ECE 830 Spring 2013 Statistical Signal Processing

instructors: K. Jamieson and R. Nowak

Lecture: Adaptive Filtering

Adaptive filters are commonly used for online filtering of signals. The goal is to estimate a signal y from a
signal x. An adaptive filter is an adjustable filter that processes in time x. The output of the filter is the
estimator ŷ of y. The filter is adjusted after each time step to improve the estimation, as depicted in the
block diagram below.

Figure 1: Adaptive filtering block diagram

Wireless channel equalization is a situation where adaptive filters are commonly used. Figure 2 shows
how an FIR filter can represent multipath effects in a wireless channel. Consider the traditional adaptive
filtering setup where at each time t = 1, 2, 3, . . . we have a sampled input signal xn that is sent through an
unknown channel and we observe a sampled output signal yt. The goal is to learn the parameters of the
channel so that when we don’t know xt but only observe yt, we can estimate xt by removing the effect of
the channel. A prototypical example is that of improving the reliability of cell-service or wi-fi. The channel
from the cell tower or hotspot to your cell-phone is described by multipath, additive noise, and a frequency
selective channel. In order to guarantee high-quality communication performance between the cell tower and
your cell phone, the cell tower constantly sends test signals xt that are known to the phone. The phone then
tries to learn the parameters of the channel by comparing the observed signal yt to the known signal xt that
was transmitted. For this to work on a cell phone, the task of learning the parameters of the channel must
be very inexpensive computationally and not require too much wall-clock time. In this note we analyze the
the least mean squares (LMS) algorithm from the perspective of online convex optimization via gradient
descent. Fetal heart monitoring is another good example, depicted in Fig. 3.

1 Steepest Descent

A bit more formally, suppose that we would like to design an FIR filter to estimate a signal yt from another
signal xt. The estimator has the form

ŷt =
N−1∑

τ=0

wτ xt−τ = wTxt (1)

where xt = (xt, xt−1, . . . , xt−N+1)T and w = (w0, . . . , wN−1) is a vector of the FIR filter weights. Through-
out, scalars will be roman, vectors will be bold-face, and the dimension of w will be equal to N . For some

1

Lecture: Adaptive Filtering 2

given time horizon T define w∗ ∈ RN such that

w∗ = arg min
w∈RN

1
T

T∑

t=1

(yt −wTxt)2. (2)

If we stack the yt into a vector y and the xts into a matrix X = (x1,x2, . . . ,xT)T , we also have

w∗ = arg min
w∈RN

||y −Xw||22 = (XTX)−1XTy . (3)

Since the squared error is quadratic (and hence convex) in w, we have a simple linear-algebraic solution. It
would seem as if we are done. Unfortunately, computing inverses of matrices can be computationally very
hard and is impractical for real-time environments on a cell-phone. So an alternative to the matrix-inverse
approach is to minimize the squared error using steepest descent. This requires computing the gradient of
the squared error, which is −2XT (y −Xw). Note that the gradient is zero at the optimal solution, so the
optimal w∗ is the solution to the equations XTXw = XTy. Computing the gradient requires all the data,
and so gradient descent isn’t suitable for an online adaptive filtering algorithm that adjusts the filter as each
new sample is obtained. Also, in many situations you need an estimate for w∗ on a timescale much shorter
than it takes to perform the inverse and you are willing to accept a poor estimate at first that improves over
time and eventually converges to w∗. Finally, there are often situations where the w∗ is not a constant but
changes over time and you would like an estimate for w∗ that changes over time. We will study methods
that iteratively solve for w∗ and show that these iterates converge to w∗ as T gets big.

To gain a little insight, let us consider the steepest descent algorithm. Steepest descent is an iterative
algorithm following these steps:

wt = wt−1 −
1
2
µ
∂‖y −X‖22

∂w

∣∣
w=wt−1

= wt−1 + µXT (y −Xwt−1)

where µ > 0 is a step-size. Note that the algorithm takes a step in the negative gradient direction (i.e.,
‘downhill’). The choice of the step size is crucial. If the steps are too large, then the algorithm may diverge.
If they are too small, then convergence may take a long time. We can understand the effect of the step size
as follows. Note that we can write the iterates as

wt = wt−1 + µ(XT y −XTXwt−1)
= wt−1 + µXTX((XTX)−1XT y −wt−1)
= wt−1 − µXTX(wt−1 −w∗)

Subtracting w∗ from both sides gives us

vt = vt−1 − µXTXvt−1

where vt = wt −w∗, t = 1, 2, . . . So we have

vt = (I− µXTX)vt−1

= (I− µXTX)t−1v1

Thus the sequence vt → 0 if all the eigenvalues of (I−µXTX) are less than 1. This holds if µ < λ−1
max(X

TX).
We will see that the eigenvalues of XTX play a key role in adaptive filtering algorithms.

Lecture: Adaptive Filtering 3

2 The LMS Algorithm

The Least Mean Square (LMS) algorithm is an online variant of steepest descent. One can think of the LMS
algorithm as considering each term in the sum of (2) individually in order. The LMS iterates are

wt = wt−1 −
1
2
µ

(yt − xTt w)2

∂w

∣∣
w=wt−1

= wt−1 − µ(yt −wT
t−1xt)xt

The full gradients are simply replaced by instantaneous gradients. Geometrically, for T > N the complete
sum of (2) tends to look like a convex, quadratic bowl while each individual term is described by a degenerate
quadratic in the sense that in all but 1 of the N orthogonal directions, the function is flat. This concept
is illustrated in Figure 4 with ft equal to (yt − xTt w)2. Intuitively, each individual function ft only tells us
about at most one dimension of the total N so we should expect T � N .

+ + + =...

+f1(w) f2(w) + . . . + =
TX

t=1

ft(w)fT (w)

Figure 4: The LMS algorithm can be thought of as considering each of the T terms of (2) individually.
Because each term is “flat” in all but 1 of the total N directions, this implies that each term is convex but
not strongly convex (see Figure 5). However, if T > N we typically have that the complete sum is strongly
convex which can be exploited to achieve faster rates of convergence.

To analyze this algorithm we will study the slightly more general problem

w∗ = arg min
w∈RN

1
T

T∑

t=1

ft(w) (4)

where each of the ft : RN → R are general convex functions (see Figure 5. In the context of LMS,
ft(w) := (yt − xTt w)2, which is quadratic and hence convex in w. The problem of (4) is known as an
unconstrained online convex optimization program [1]. A very popular approach to solving these problems
is gradient descent: for each time t we have an estimate for the best estimate w∗ denoted as wt and we set

wt+1 = wt − ηt∇ft(wt) (5)

where ηt is a positive, non-increasing sequence of step sizes and the algorithm is initialized with some
arbitrary w1 ∈ RN . The following theorem characterizes the performance of this algorithm.

Lecture: Adaptive Filtering 4

x

y

f convex:

f(y) � f(x) +rf(x)T (y � x) 8x, y

x

f(y) � f(x) +rf(x)T (y � x) + `
2 ||y � x||22 8x, y

r2f(x) � `I 8x

f `-strongly convex:

f (�x + (1� �)y) �f(x) + (1� �)f(y) 8x, y,� 2 [0, 1]

Figure 5: A function f is said to be convex if for all λ ∈ [0, 1] and x, y we have f(λx + (1 − λ)y) ≤
λf(x) + (1−λ)f(y). If f is differentiable then an equivalent definition is that f(y) ≥ f(x) +∇f(x)T (y− x).
A function f is said to be `-strongly convex if f(y) ≥ f(x) + ∇f(x)T (y − x) + `

2 ||y − x||22 for all x, y. An
equivalent definition is that ∇2f(x) � `I for all x.

Theorem 1. [1] Let ft be convex and ||∇ft(wt)||2 ≤ G for all t,wt and let w∗ = arg minw∈RN

∑T
t=1 ft(w).

Using the algorithm of (5) with ηt = 1/
√
T and arbitrary w1 ∈ RN we have

1
T

T∑

t=1

(ft(wt)− ft(w∗)) ≤
||w1 −w∗||22 +G2

2
√
T

for all T .

Begin proving the theorem, note that this is a very strong result. It only uses the fact that the ft functions
are convex and that the gradients of ft are bounded. In particular, it assumes nothing about how the ft
functions relate to each other from time to time. Moreover, it requires no unknown parameters to set the
step size. In fact, the step size ηt is a constant and because the theorem holds for any T we can easily turn
this into a statement about how well this algorithm tracks a w∗ that changes over time.

Proof. We begin by observing that

||wt+1 −w∗||22 = ||wt − ηt∇ft(wt)−w∗||22
= ||wt − ηt∇ft(wt)−w∗||22
= ||wt −w∗||22 − 2ηt∇ft(wt)T (wt −w∗) + η2

t ||∇ft(wt)||22

and after rearranging we have that

∇ft(wt)T (wt −w∗) ≤ ||wt −w∗||22 − ||wt+1 −w∗||22
2ηt

+
ηt
2
G2. (6)

By the convexity of ft for all t, wt we have ft(w∗) − ft(wt) ≥ ∇ft(wt)T (w∗ −wt). Thus, summing both

Lecture: Adaptive Filtering 5

sides of this equation from t = 1 to T and plugging in ηt = 1/
√
T we have

T∑

t=1

ft(wt)− ft(w∗) ≤
(
||w1 −w∗||22

2η1
+

1
2

T∑

t=2

||wt −w∗||22
(

1
ηt
− 1
ηt−1

))
+
G2

2

T∑

t=1

ηt

=
(
||w1 −w∗||22 +G2

) √T
2

.

This agnostic approach to the functions ft allow us to apply the theorem to analyzing LMS for adaptive
filters where there is lots of feedback and dependencies between iterations. If we plugin ft(w) = ||yt −
wTxt||2 so that ∇ft(w) = −2(yt − wTxt)xt we see that G2 ≤ 4N max

t
x2
t

(
max
t
y2
t +N max

t
x2
t ||wt||22

)
≈

N2 max
t
x4
t ||wt||22. The takeaway here is that if we assume nothing about the input signal xt we can do about

as well as w∗ at a rate proportional to 1/
√
T . With some additional assumptions on xt, however, we can

achieve a 1/T rate.
To gain more intuition for how the algorithm actually performs in practice, suppose xt was a zero-mean,

stationary random process and the model of (1) was correct: yt = xTt w∗ + et for some w∗ ∈ RN . The
errors et are assumed to be uncorrelated with xt and generated by a zero-mean stationary noise process with
variance E[e2t] ≤ σ2. Then for any w ∈ RN

E[ft(w)] = E
[
||yt −wTxt||22

]
= E

[
||(w∗ −w)Txt||22

]
+ σ2 = (w −w∗)TE

[
xtxTt

]
(w −w∗) + σ2 .

Because xt is stationary, define Rxx be the autocorrelation matrix for x such that

(Rxx)i,j = E[xt−i+1xt−j+1] = E[x0xi−j]

for all t. It follows that f(w) := E[ft(w)] = (w−w∗)TRxx(w−w∗)+σ2 and E[∇ft(w)] = ∇f(w) = 2Rxx(w−
w∗). The following theorem refines are convergence analysis of the algorithm under these assumptions. In
the theorem, F (w, ξ) will play the role of ft(w), which is a function of xt and et, which can be identified
with ξ in the context of the theorem.

Theorem 2. Let F (w, ξ) be a function that takes as input w ∈ RN and a random vector ξ ∈ Ξ drawn
from some probability distribution. Let f(w) = Eξ[F (w, ξ)] be `-strongly convex and for any t = 1, . . . , T
let ∇ft(w) := G(w, ξ) be an unbiased estimator of ∇f(w) with respect to ξ with E[||G(wt, ξt)||22] ≤ M2 for
all t, wt. If w∗ = arg minw∈RN f(w) and w2, . . . ,wT are a sequence of iterates generated from equation (5)
with ηt = 1

`t and arbitrary w1 ∈ RN then

1
T

T∑

t=1

E[ft(wt)− ft(w∗)] ≤
||w1 −w∗||22 +M2 log(eT)

2`T
.

and

E[||wT −w∗||22] ≤ max{||w1 −w∗||22,M2/`2}
T

for all T .

Before proving the theorem, we note that both results are known to be minimax optimal [2,3]. Unfortunately,
unlike the previous theorem, to set the step size we need to know ` which in general is usually unknown.
However, for adaptive filtering we will show that we essentially get to pick `. The following proof is based
on the analyses of [2, 4].

Lecture: Adaptive Filtering 6

Proof. We begin by taking the expectation of (6) on both sides:

E[G(wt, ξt)T (wt −w∗)] ≤ E[||wt −w∗||22]− E[||wt+1 −w∗||22]
2ηt

+
ηt
2
M2 . (7)

Define ξ[k] = {ξ1, . . . , ξk} so that under the assumption of the theorem, we have

Eξ[t] [(wt −w∗)TG(wt, ξt)] = Eξ[t−1]

[
Eξt

[
(wt −w∗)TG(wt, ξt)|ξ[t−1]

]]
= Eξ[t−1]

[
(wt −w∗)T∇f(wt)

]

for any t = 1, . . . , T . By the strong convexity of f we have

(wt −w∗)T∇f(wt) ≥ f(wt)− f(w∗) +
`

2
||wt −w∗||22 (8)

Note that strong convexity also implies

f(wt)− f(w∗) ≥ ∇f(w∗)T (wt −w∗) + `/2||wt −w∗||2
= `/2||wt −w∗||2

since by definition ∇f(w∗) = 0. So we also see that

(wt −w∗)T∇f(wt) ≥ `||wt −w∗||22. (9)

Thus, applying (8) and summing both sides of (7) from t = 1 to T and plugging in ηt = 1
`t we have

T∑

t=1

E[f(wt)− ft(w∗)] ≤
(
||w1 −w∗||22

2η1
+

1
2

T∑

t=2

E[||wt −w∗||22]
(

1
ηt
− 1
ηt−1

− `
))

+
M2

2

T∑

t=1

ηt

=
(||w1 −w∗||22

2`
+ 0
)

+
M2

2

T∑

t=1

1
`t
≤ ||w1 −w∗||22

2`
+
M2

2`
(1 + log(T)) .

Returning to (7) and applying (9) after rearranging we also have

E[||wt+1 −w∗||22] ≤ (1− 2ηt`)E[||wt −w∗||22] + η2
tM

2 .

We’ll now show by induction that with ηt = 1
`t we have E[||wt−w∗||22] ≤ Q

t for Q = max{||w1−w∗||22, M
2

`2 }.
It is obviously true for t = 1 so assume it holds for some time t. Plugging these values into the above
recursion assuming E[||wt −w∗||22] ≤ Q

t we have
(

1− 2
t

)
Q

t
+
M2

`2t2
≤ M2

`2

(
1
t
− 1
t2

)
=
M2

`2
t(t+ 1)− (t+ 1)

t2(t+ 1)
=
M2

`2
t2 − 1
t2(t+ 1)

≤ Q

t+ 1
.

To apply the theorem to adaptive filtering, recall that ft(w) is represented by F (w, ξt) with ξt := (xt, et).
We also need to define M and `. For M we have

E[||∇ft(wt)||22] = E[||2(yt −wT
t xt)xt||22]

= E[||2(w∗ −wt)Txtxt + 2etxt||22]

≤ 4||w∗ −w1||22 E[||xt||42] + 8σ2 E[||xt||22] =: M2

The strong convexity parameter ` is equal to the minimum eigenvalue of Rxx: ` = λmin(Rxx). The larger
λmin the greater the curvature of bowl that we are trying to minimize in the least squares problem and the
faster the convergence rate.
Example: Let xt ∼ N (0, 1), et ∼ N (0, σ2), and yt = xTt w∗ + et. Then Rxx = I and ` = 1 and M2 =
4||w∗ −w1||22(N + 4)2 + 8σ2N . Thus, E[||wT −w∗||22] ≤ 4||w∗−w1||22(N+4)2+8σ2N

T .

Lecture: Adaptive Filtering 7

References

[1] Martin Zinkevich. Online convex programming and generalized infinitesimal gradient ascent. 2003.

[2] Elad Hazan, Amit Agarwal, and Satyen Kale. Logarithmic regret algorithms for online convex optimiza-
tion. Machine Learning, 69(2-3):169–192, 2007.

[3] Maxim Raginsky and Alexander Rakhlin. Information complexity of black-box convex optimization: A
new look via feedback information theory. In Communication, Control, and Computing, 2009. Allerton
2009. 47th Annual Allerton Conference on, pages 803–510. IEEE, 2009.

[4] Arkadi Nemirovski, Anatoli Juditsky, Guanghui Lan, and Alexander Shapiro. Robust stochastic approx-
imation approach to stochastic programming. SIAM Journal on Optimization, 19(4):1574–1609, 2009.

Lecture: Adaptive Filtering 8

Figure 2: Channel equalization

Lecture: Adaptive Filtering 9

Figure 3: Fetal heart monitoring

