ECE 830 Fall 2011 Statistical Signal Processing

instructor: R. Nowak

Lecture 4: Sufficient Statistics

Consider a random variable X whose distribution p is parametrized by $\theta \in \Theta$ where θ is a scalar or a vector. Denote this distribution as $p_{X}(x \mid \theta)$ or $p(x \mid \theta)$, for short. In many signal processing applications we need to make some decision about θ from observations of X, where the density of X can be one of many in a family of distributions, $\{p(x \mid \theta)\}_{\theta \in \Theta}$, indexed by different choices of the parameter θ.

More generally, suppose we make n independent observations of $X: X_{1}, X_{2}, \ldots, X_{n}$ where $p\left(x_{1} \ldots x_{n} \mid \theta\right)=$ $\prod_{i=1}^{n} p\left(x_{i} \mid \theta\right)$. These observations can be used to infer or estimate the correct value for θ. This problem can be posed as follows. Let $x=\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ be a vector containing the n observations.

Question: Is there a lower dimensional function of x, say $t(x)$, that alone carries all the relevant information about θ ? For example, if θ is a scalar parameter, then one might suppose that all relevant information in the observations can be summarized in a scalar statistic.

Goal: Given a family of distributions $\{p(x \mid \theta)\}_{\theta \in \Theta}$ and one or more observations from a particular distribution $p\left(x \mid \theta^{*}\right)$ in this family, find a data compression strategy that preserves all information pertaining to θ^{*}. The function identified by such strategyis called a sufficient statistic.

1 Sufficient Statistics

Example 1 (Binary Source) Suppose X is a $0 / 1$ - valued variable with $\mathbb{P}(X=1)=\theta$ and $\mathbb{P}(X=0)=$ $1-\theta$. That is $X \sim p(x \mid \theta)=\theta^{x}(1-\theta)^{1-x},(x \in[0,1])$.

We observe n independent realizations of $X: x_{1}, \ldots, x_{n}$ with $p\left(x_{1}, \ldots, x_{n} \mid \theta\right)=\prod_{i=1}^{n} \theta^{x_{i}}(1-\theta)^{1-x_{i}}=$ $\theta^{k}(1-\theta)^{n-k} ; k=\sum_{i=1}^{n} x_{i}$ (number of 1 's).
Note that $K=\sum_{i=1}^{n} X_{i}$ is a random variable with values in $\{0,1 \ldots, n\}$

$$
p(k \mid \theta)=\binom{n}{k} \theta^{k}(1-\theta)^{n-k}, \text { a binomial distribution with }\binom{n}{k}=\frac{n!}{(n-k)!k!}
$$

The joint probability mass function of $\left(X_{1}, \ldots, X_{n}\right)$ and K is

$$
\begin{array}{r}
p\left(x_{1}, \ldots, x_{n}, k \mid \theta\right)=\left\{\begin{aligned}
p\left(x_{1}, \ldots, x_{n} \mid \theta\right) ; & \text { if } k=\sum x_{i} \\
0 ; & \text { otherwise }
\end{aligned}\right. \\
\Rightarrow p\left(x_{1}, \ldots, x_{n} \mid k, \theta\right)=\frac{p(x, k \mid \theta)}{p(k \mid \theta)} \\
=\frac{\theta^{k}(1-\theta)^{n-k}}{\binom{n}{k} \theta^{k}(1-\theta)^{n-k}}=\frac{1}{\binom{n}{k}}
\end{array}
$$

\Rightarrow conditional prob of X_{1}, \ldots, X_{n} given $\sum x_{i}$ is uniformly distributed over the $\binom{n}{k}$ sequences that have exactly k 1's. In other words, the condition distribution of X_{1}, \ldots, X_{n} given k is independent of θ. So k carries all relevant info about θ !
Note: $k=\sum x_{i}$ compresses $\{0,1\}^{n}$ (n bits) to $\{0, \ldots, n\}$ ($\log n$ bits).
Definition 1 Let X denote a random variable whose distributon is parametrized by $\theta \in \Theta$. Let $p(x \mid \theta)$ denote the density of mass function. A statistic $t(X)$ is sufficient for θ if the distribution of X given $t(X)$ is independent of θ; i.e., $p(x \mid t, \theta)=p(x \mid t)$

Theorem 1 (Fisher-Neyman Factorization) Let X be a random variable with density $P(x \mid \theta)$ for some $\theta \in \Theta$. The statistic $t(X)$ is sufficient for θ iff the density can be factorized into a function $a(x)$ and a function $b(t, \theta)$, a function of θ but only depending on x through the $t(x)$; i.e.,

$$
p(x \mid \theta)=a(x) b(t, \theta)
$$

Proof: (if/sufficiency) Assume $p(x \mid \theta)=a(x) b(t \mid \theta)$

$$
\begin{gathered}
p(t \mid \theta)=\int_{x: t(x)=t} p(x \mid \theta) d x=\left(\int_{x: t(x)=t} a(x) d x\right) b(t, \theta) \\
p(x \mid t, \theta)=\frac{p(x, t \mid \theta)}{p(t \mid \theta)}=\frac{p(x \mid \theta)}{p(t \mid \theta)} \\
=\frac{a(x)}{\int_{x: T=t} a(x) d x} \text { independent of } \theta \\
\Rightarrow t(x) \text { is a sufficient statistic }
\end{gathered}
$$

(only if/necessity) If $p(x \mid t, \theta)=p(x \mid t)$ independent of θ then $p(x \mid \theta)=p(x \mid t, \theta) p(t \mid \theta)=\underbrace{p(x \mid t)}_{a(x)} \underbrace{p(t \mid \theta)}_{b(t, \theta)}$
Example 2 (Binary Sourse) $p(x \mid \theta)=\theta^{k}(1-\theta)^{n-k}=\underbrace{\frac{1}{\binom{n}{k}}}_{a(x)} \underbrace{\binom{n}{k} \theta^{k}(1-\theta)^{n-k}}_{b(k, \theta)} \Rightarrow k$ is sufficient for θ.
Example 3 (Poisson) Let λ be an average number of packets/sec sent over a network. Let X be a random variable representing number of packets seen in 1 second. Assume $\mathbb{P}(X=x)=e^{-\lambda} \frac{\lambda^{x}}{x!}=: p(x \mid \lambda)$.
Given X_{1}, \ldots, X_{n},

$$
p\left(x_{1}, \ldots, x_{n} \mid \lambda\right)=\prod_{i=1}^{n} e^{-\lambda} \frac{\lambda^{x_{i}}}{x_{i}!}=\underbrace{\prod_{i=1}^{n} \frac{1}{x_{i}}}_{a(x)} \underbrace{e^{-n \lambda} \lambda^{\sum x_{i}}}_{b\left(\sum x_{i}, \lambda\right)}
$$

So $\sum_{i=1}^{n} x_{i}$ is a sufficient statistic for λ.
Example 4 (Gaussian) $X \sim \mathcal{N}(\mu, \Sigma)$ is d-dimensional.
$X_{1}, \ldots, X_{n} \stackrel{i i d}{\sim} \mathcal{N}(\mu, \Sigma) ; \theta=(\mu, \Sigma)$

$$
\begin{aligned}
p\left(x_{1}, \ldots, x_{n} \mid \theta\right)=\prod_{i=1}^{n} p\left(x_{i} ; \theta\right) & =\prod_{i=1}^{n} \frac{1}{\sqrt{2 \pi^{d}|\Sigma|}} e^{-\frac{1}{2}\left(x_{i}-\mu\right)^{T} \Sigma^{-1}\left(x_{i}-\mu\right)} \\
& =2 \pi^{-n d / 2}|\Sigma|^{-n / 2} e^{-\frac{1}{2} \sum_{i=1}^{n}\left(x_{i}-\mu\right)^{T} \Sigma^{-1}\left(x_{i}-\mu\right)}
\end{aligned}
$$

Define sample mean

$$
\hat{\mu}=\frac{1}{n} \sum_{i=1}^{n} x_{i}
$$

and sample covariance

$$
\hat{\Sigma}=\frac{1}{n} \sum_{i=1}^{n}\left(x_{i}-\hat{\mu}\right)\left(x_{i}-\hat{\mu}\right)^{T}
$$

$$
\begin{aligned}
\exp \left(-\frac{1}{2}\right. & \left.\sum_{i=1}^{n}\left(x_{i}-\mu\right)^{T} \Sigma^{-1}\left(x_{i}-\mu\right)\right)=\exp \left(-\frac{1}{2} \sum_{i=1}^{n}\left(x_{i}-\hat{\mu}+\hat{\mu}-\mu\right)^{T} \Sigma^{-1}\left(x_{i}-\hat{\mu}+\hat{\mu}-\mu\right)\right) \\
& =\exp \left(-\frac{1}{2} \sum_{i=1}^{n}\left(x_{i}-\hat{\mu}\right)^{T} \Sigma^{-1}\left(x_{i}-\hat{\mu}\right)-\sum_{i=1}^{n}\left(x_{i}-\hat{\mu}\right)^{T} \Sigma^{-1}(\hat{\mu}-\mu)-\frac{1}{2} \sum_{i=1}^{n}(\hat{\mu}-\mu)^{T} \Sigma^{-1}(\hat{\mu}-\mu)\right) \\
& =\exp \left(-\frac{1}{2} \sum_{i=1}^{n}\left(x_{i}-\hat{\mu}\right)^{T} \Sigma^{-1}\left(x_{i}-\hat{\mu}\right)\right) \exp \left(-\frac{1}{2} \sum_{i=1}^{n}(\hat{\mu}-\mu)^{T} \Sigma^{-1}(\hat{\mu}-\mu)\right) \\
& =\exp \left(-\frac{1}{2} \operatorname{tr}\left(\Sigma^{-1} \sum_{i=1}^{n}\left(x_{i}-\hat{\mu}\right)\left(x_{i}-\hat{\mu}\right)^{T}\right)\right) \exp \left(-\frac{1}{2} \sum_{i=1}^{n}(\hat{\mu}-\mu)^{T} \Sigma^{-1}(\hat{\mu}-\mu)\right) \\
& =\exp \left(-\frac{1}{2} \operatorname{tr}\left(\Sigma^{-1}(n \hat{\Sigma})\right)\right) \exp \left(-\frac{1}{2} \sum_{i=1}^{n}(\hat{\mu}-\mu)^{T} \Sigma^{-1}(\hat{\mu}-\mu)\right)
\end{aligned}
$$

Note that the second term on the second line is zero because $\frac{1}{n} \sum_{i} x_{i}=\widehat{\mu}$. For any matrix $B, \operatorname{tr}(B)$ is the sum of the diagonal elements. On the fourth line above we use the trace property, $\operatorname{tr}(A B)=\operatorname{tr}(B A)$.

$$
p\left(x_{1}, \ldots, x_{n} \mid \theta\right)=\underbrace{2 \pi^{-n d / 2}|\Sigma|^{-n / 2} \exp \left(-\frac{1}{2} \sum_{i=1}^{n}(\hat{\mu}-\mu)^{T} \Sigma^{-1}(\hat{\mu}-\mu)\right) \exp \left(-\frac{1}{2} \operatorname{tr}\left(\Sigma^{-1} n \hat{\Sigma}\right)\right)}_{b(\hat{\mu}, \hat{\Sigma}, \theta)} \cdot \underbrace{1}_{a\left(x_{1}, \ldots, x_{n}\right)}
$$

2 Minimal Sufficient Statistic

Definition 2 A sufficient statistic is minimal if the dimension of $T(X)$ cannot be further reduced and still be sufficient.
Example $5 X \sim \mathcal{N}(0,1)$ and $X_{1}, \ldots, X_{n} \stackrel{i i d}{\sim} \mathcal{N}(0,1)$

$$
\begin{array}{r}
u\left(x_{1}, \ldots, x_{n}\right)=\left[x_{1}+x_{2}, \ldots, x_{n-1}+x_{n}\right]^{T} u \text { is a } n / 2 \text {-dimensional statistic } \\
T\left(x_{1}, \ldots, x_{n}\right)=\sum_{i=1}^{n} x_{i} \text { a 1-dimensional statistic }
\end{array}
$$

T is sufficient, and $T=\sum_{i=1}^{n / 2} u_{i} \Rightarrow u$ is sufficient.

3 Rao-Blackwell Theroem

Theorem 2 Assume $X \sim p(x \mid \theta), \theta \in \mathbb{R}$, and $t(X)$ is a sufficient statistic for θ. Let $f(x)$ be an estimator of θ and consider the mean square error $\mathbb{E}\left[(f(x)-\theta)^{2}\right]$. Define $g(t(X))=\mathbb{E}[f(X) \mid t(X)]$.

Then $\mathbb{E}\left[(g(t(X))-\theta)^{2}\right] \leq \mathbb{E}\left[(f(X)-\theta)^{2}\right]$, with equality iff $f(X)=g(t(X))$ with probability 1 ; i.e., if the function f is equal to g composed with t.

Proof: First note that because $t(X)$ is a sufficient statistic for θ, it follows that $g(t(X))=\mathbb{E}[f(X) \mid t(X)]$ does not depend on θ, and so it too is a valid estimator (i.e., if $t(X)$ were not sufficient, then $g(t(X))$ might be a function of $t(X)$ and θ and therefore not computable from the data alone).

Next recall the following basic facts about conditional expectation. Suppose X and Y are random variables. Then

$$
\mathbb{E}[X \mid Y]=\int x p(x \mid y) d x
$$

In the present context

$$
\mathbb{E}[f(X) \mid t(X)]=\int f(x) p(x \mid t) d x
$$

where $p(x \mid t)$ is conditional density of X given $t(X)=t$. Furthermore, for any random variables X and Y

$$
\begin{array}{r}
\mathbb{E}[\mathbb{E}[X \mid Y)]]=\int \underbrace{\mathbb{E}[X \mid Y=y]}_{h(y)} p(y) d y \\
=\int\left(\int x p(x \mid y) d x\right) p(y) d y \\
=\int x\left(\int p(x \mid y) p(y) d y\right) d x \\
=\int x p(x) d x=\mathbb{E}[X]
\end{array}
$$

This is sometimes called the smoothing property.
Now consider the conditional expectation

$$
\mathbb{E}[f(X)-\theta \mid t(X)]=g(t(X))-\theta
$$

Also

$$
(\mathbb{E}[f(X)-\theta \mid t(X)])^{2} \leq \mathbb{E}\left[(f(X)-\theta)^{2} \mid t(X)\right] \text { by Jensen's inequality }
$$

Jensen's inequality (see general statement below) implies that the expectation of a squared random variable is greater or equal to than the square of its expected value. So

$$
(g(t(X))-\theta)^{2} \leq \mathbb{E}\left[(f(X)-\theta)^{2} \mid t(X)\right]
$$

Take expectation of both sides (recall the smoothing property above) yields

$$
\mathbb{E}\left[(g(t(X))-\theta)^{2}\right] \leq \mathbb{E}\left[(f(X)-\theta)^{2}\right]
$$

4 Jensen's Inequality

Suppose that ϕ is a convex function; $\lambda \phi(x)+(1-\lambda) \phi(y) \geq \phi(\lambda x+(1-\lambda) y)$.
Then

$$
\mathbb{E}[\phi(X)] \geq \phi(\mathbb{E}[X])
$$

average of convex functions \geq convex function of average

Example 6

$$
\begin{aligned}
\mathbb{E}\left[X^{2}\right] & \geq(\mathbb{E}[X])^{2} \\
\text { mean }^{2}+\text { var } & \geq \text { mean }^{2}
\end{aligned}
$$

