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instructor: R. Nowak

Lecture 12: Multiple Hypothesis Testing

Introduction In many applications we consider multiple hypothesis test at the same time.

Example 1 FMRI (Functional Magnetic Resonance Imaging)

Figure 1: Brain image by FMRI with m voxels

Example 2 Microarrays

Figure 2: Gene test plot

Is there a difference in the mean expression level in the healthy and diseased cells?
For the overall m genes that are expressed,

H0i : Xi ∼ N (0, 1)
H1i : Xi ∼ N (µ, 1)

where i = 1, 2, ...m, µ 6= 0

Suppose we have m tests and each is designed to guarantee PFA ≤ α. Then for any one test, the chance
of a false alarm is α. However the prob of at least one false alarm among all the tests is much higher. This
is the multiple testing problem.
Consider m hypothesis tests (a family of tests): H0i v.s. H1i, where i = 1, 2, ...,m
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Definition 1 The family-wise error rate (FWER) is the probability of one or more false alarms.

FWER = P(
m⋃
i=1

{decide H1i when H0i is true})

In many applications we want to control the FWER. For example, we want to be confident that all
detected voxels or genes are truly relevant.

1 The Bonferroni Correction

Suppose we have two tests:

H01 v.s. H11 ; H02 v.s. H12

t1
H11

≷
H01

γ1 ; t1
H12

≷
H02

γ1

P(t1 > γ1 | H01) ≤ α ; P(t2 > γ2 | H02) ≤ α

γ1 and γ2 are sets such that PFA ≤ α in both cases.

Recall that for any two events A and B, we have P(A∪B) ≤ P(A) + P(B) with equality iff A∪B = ∅. This
is called the union of events bound, union bound or Bonferroni’s inequality.

Thus,

FWER = P(t1 > γ1 or t2 > γ2 | H01,H02) = P({t1 > γ1 | H01} ∪ {t2 > γ2 | H02}) ≤ 2α

More generally, if we have m tests and each has an individual PFA ≤ α, then FWER ≤ mα.

Definition 2 Borferroni Correction
To guarantee a FWER ≤ α for a family of m tests, we can set the PFA ≤ α

m for each individual test.

Example 3 Threshold for multiple hypothesis testing

H0i : Xi ∼ N (0, 1)
H1i : Xi ∼ N (µ, 1)

where i = 1, 2, ...m, µ ≥ 1

For the test: xi
H1i

≷
H0i

γ, if we use γ = Q−1( αm ) instead of γ = Q−1(α), then FWER ≤ α

Example 4 Testing for differential expression in genes
Suppose we have 2638 genes or tests with H0i : X ∼ N (0, 1). If we want a FWER ≤ 0.05, then the threshold
γFW = Q−1( 0.05

2638 ) = 4.119 will suffice.
For comparison, if we only consider one gene, then the threshold γ1 = Q−1(0.05) = 1.6449 would guarantee
PFA ≤ α.
Thus, the Bonferroni correction is a quite conservative threshold.

2 Multiple Testing When m Is Large

To get a better insight into this problem, let’s consider the situation when m is very large and consider the
composite tests:
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H0i : Xi ∼ N (0, 1)
H1i : Xi ∼ N (µ, 1)

where i = 1, 2, ...m, µ ≥ 0

The Bonferroni Correction is conservative and the union bound may be too loose.

Can we do better? Consider the following bound on the tail of N (0, 1)

1√
2π

∞∫
γ

e
−x2

2 dx ≤ 1
2
e
−γ2

2

With this bound, we can conclude that the PFA of the test xi
H1i

≷
H0i

γ satisfies PFAi ≤ 1
2e

−γ2
2 . Now the union

bound implies

FWER ≤
m∑
i=1

PFAi ≤
m

2
e
−γ2

2 =
1
2
e(

−γ2
2 −logm)

To guarantee FWER ≤ 1
2 , we must have

γ ≥
√

2 logm

For large m, this is the Bonferoni threshold.

Can we control the FWER with a smaller threshold? The answer, at least for large m, is no.
It can be shown that if ωi ∼ N (0, 1), i = 1, 2, ...,m, then

lim
m→∞

maxi {ωi}√
2 logm

a.s.= 1

lim
m→∞

FWER(γm,m) = 1 if γm ≤
√

2 logm

So, for large m, we must take γ ≥
√

2 logm if we want to keep FWER ≤ 1

Example 5 Consider the problem of “matched filtering.” Suppose that we wish to detect the presence of
a signal in noise, but the location/delay of the signal is unknown. More precisely, suppose the observation
x ∈ Rn and consider the following hypothesis test

H0 : x ∼ N (0, I)
H1 : x ∼ N (si, I), for one i ∈ {1, . . . ,m}

The signals {si}mi=1 represent different shifted versions of the same basic waveform. This can be generalized
to the case where the actual signal (if it is present) is close to, but not exactly equal to, one of the si.

3 False Discover Rate (FDR) Control

FWER control: P(one or more false alarms)≤ α. Perhaps the FWER constraint is too conservative.
Alternative,

number of false alarms ≈ α · (number of declared detections)

The declared detections includes both the false alarms and the correct detections. This constrain is less
conservative than FWER. In other words, we could instead aim to guarantee that among all the tests for
which we decide H1, only a small fraction α are false alarms.



Lecture 12: Multiple Hypothesis Testing 4

Definition 3 The false-discovery proportion is

FDP =
number of false alarms
number of discoveries

=
number of false alarms

number of false alarms + number of correct detections

Definition 4 The false-discovery rate is

FDR = E[
number of false alarms
number of discoveries

]

A discovery is made anytime we decide H1, whether it is the correct decision or not. We can now aim to
control the FDR as:

FDR ≤ α

Generally, γFDR ≤ γFWER since it allows a small fraction of false-alarms. Consequently, in general, FWER
≥ FDR. However, notice that if all the cases follow the null distribution, then there can be no correct
detections (only false-positives), so in this case FDR=FWER.

4 Benjamini-Hochberg (BH) Threshold

The BH threshold is an adaptively selected threshold that controls the FDR ≤ α. It is generally lower than
the bonferroni threshold for FWER ≤ α.

The BH threshold is completed as follows.

Step 1. Compute the “p-values” for each observation: Let ti, i = 1, . . . ,m denote the test statistics (e.g.,
log likelihood ratio statistics) and let T0 denote a random variable whose distribution is that of the
test statistic under the null distribution H0. Define

pi := P(T0 ≥ ti) , i = 1, 2, ...,m

These are the so-called p-values. The size of the p-value for each ti quantifies how typical or atypical it
is under the null distribution. Smaller p-values correspond to test statistics that are improbable under
the null.

Step 2. Sort p-values such that
p(1) ≤ p(2) ≤ . . . ≤ p(m)

where p(1) represents the most extreme tail probability corresponding to the largest xi and p(m) rep-
resents the least extreme tail probability corresponding to the smallest xi.

Step 3. Set threshold according to

i∗ := max
{
i : p(i) <

iα

m

}
and γBH = p(i∗)

Then the test xi
H1

≷
H0

γBH have FDR ≤ α

5 Gaussian Tail Bound

The tail of the standard Gaussian N (0, 1) distribution satisfies the bound for any t ≥ 0,

1√
2π

∞∫
t

e
−x2

2 dx ≤ min
{

1
2
e
−t2
2 ,

1√
2π t2

e
−t2
2

}
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Proof
Consider

R :=

1√
2π

∞∫
t

e
−x2

2 dx

e−
t2
2

(1)

=
1√
2π

∞∫
t

e
−(x2−t2)

2 dx (2)

=
1√
2π

∞∫
t

e
−(x−t)(x+t)

2 dx (3)

For the first bound, let y = x− t,

R =
1√
2π

∞∫
0

e
−y(y+2t)

2 dy ≤ 1√
2π

∞∫
0

e
−y2

2 dy =
1
2

(4)

For the second bound, note that

R ≤ 1√
2π

∞∫
t

e
−2t(x−t)

2 dx (5)

=
1√
2π

et
2

∞∫
t

e−txdx (6)

=
1√
2π

et
2 e−t

2

t
(7)

=
1√

2πt2
(8)


