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Lecture 8: Signal Detection and Noise Assumption

1 Signal Detection

H0 : X = W

H1 : X = S +W

where W ∼ N(0, σ2In×n) and S = [s1, s2, . . . , sn]
T is the known signal waveform.

P0(X) =
1

(2πσ2)
n
2
exp(− 1

2σ2
XTX)

P1(X) =
1

(2πσ2)
n
2
exp[− 1

2σ2
(X − S)T (X − S)]

The second equation holds because under hypothesis H0, W = X − S.

The Log Likelihood Ratio test is

log Λ(x) = log
PW (X)

PW (X − S)
= − 1

2σ2
[(X − S)T (X − S)−XTX] = − 1

2σ2
[−2XT + STS]

H1

≷
H0

γ′

After simplifying it, we can get

XTS
H1

≷
H0

σ2γ′ +
STS

2
= γ

In this case, XTS is the sufficient statistics t(x) for the parameter θ = 0, 1. Note that STS = ∥S∥22 is
the signal energy. The LR detector ”filters” data by projecting them onto signal subspace.

1.1 Example 1

Suppose we want to control the probability of false alarm. For example, choose γ so that P(XTS > γ |
H0) ≤ 0.05.

The test statistic XTS is usually called ”matched filter”.

In particular, projection onto subspace spanned by S is

PS =
SST

STS
=

S

∥S∥
· ST

∥S∥

1
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Figure 1: Projection of X onto subspace S

PSX =
SST

∥S∥2
X = (XTS)

S

∥S∥2

where XTS
∥S∥2 is just a number.

Geometrically, suppose the horizontal line is the subspace S and X is some other vector. The projection
of vector X into subspace S can be expressed in the figure 1.

1.2 Example 2

Suppose the signal value Sk is sinusoid.

Sk = cos(2πf0k + θ), k = 1, . . . , n

The match filter in this case is to compute the value in the specific frequency. So PS in this example is
a bandpass filter.

1.3 Performance Analysis

Next problem what we want to know is what’s the probability density of XTS, which is the sufficient statis-
tics of this test.

H0 : X ∼ N(0, σ2I)

H1 : X ∼ N(S, σ2I)

XTS =
∑n

k=1 XkSk is also Gaussian distributed. Recall if X ∼ N(µ,Σ), then Y = AX ∼ N(Aµ,AΣAT ),
where A is a matrix.

Since Y = XTS = STX, Y is a scalar. So we can get

H0 : XTS ∼ N(0TS, STσ2IS) = N(0, σ2∥S∥2)
H1 : XTS ∼ N(STS, STσ2IS) = N(∥S∥2, σ2∥S∥2)

The probability of false alarm is PFA = Q( γ−0
σ∥S∥ ), and the probability of detection is PD = Q(γ−∥S∥2

σ∥S∥ ) =

Q( γ
σ∥S∥−

∥S∥
σ ). Since Q function is invertible, we can get γ

σ∥S∥ = Q−1(PFA). Therefore, PD = Q(Q−1(PFA)−
∥S∥
σ ). In the equation, ∥S∥

σ is the square root of Signal Noise Ratio(
√
SNR).
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Figure 2: Distribution of P0 and P1
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Figure 3: Relation between probability of detection and false alarm

2 AWGN Assumption

Is real-world noise really additive, white and Gaussian? Well, here are a few observations. Noise in many
applications (e.g. communication and radar) arose from several independent sources, all adding together
at sensors and combining additively to the measurement. AWGN is gaussian distributed as the following
formula.

W ∼ N(0, σ2I)

CLT(Central Limit Theorem): If x1, . . . , xn are independent random variables with means µi and
variances σ2

i < ∞ ,then Zn = 1√
n

∑n
i=1

xi−µi

σi
→ N(0, 1) in distribution quite quickly.

Thus, it is quite reasonable to model noise as additive and Gaussian list in many applications. However,
whiteness is not always a good assumption.

2.1 Example 3

Suppose W = S1 + S2 + · · ·+ Sk, where S1, S2, . . . Sk are inteferencing signals that are not of interest. But
each of them is structured/correlated in time. Therefore, we need a more generalized form of noise, which is
”Colored Gaussian Noise”.
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Figure 4: Relation between probability of detection and SNR

3 Colored Gaussian Noise

W ∼ N(0,Σ) is called correlated or ”colored” noise, where Σ is a structured covariance matrix.
Consider the binary hypothesis test in this case.

H0 : X = S0 +W

H1 : X = S1 +W

where W ∼ N(0,Σ) and S0 and S1 are know signal waveforms. So we can rewrite the hypothesis as

H0 : X ∼ N(S0,Σ)

H1 : X ∼ N(S1,Σ)

The probability density of each hypothesis is

Pi(X) =
1

(2π)
2
n (Σ)

1
2

exp[−1

2
(X − Si)

TΣ−1(X − Si)], i = 0, 1

The log likelihood ratio is

log(
P1(X)

P2(X)
) = −1

2
[(X−S1)

TΣ(X−S1)−(X−S0)
TΣ−1(X−S0)] = XTΣ−1(S1−S0)−

1

2
ST
1 Σ

−1S1+
1

2
ST
0 Σ

−1S0

H1

≷
H0

γ′

(S1 − S0)Σ
−1X

H1

≷
H0

γ′ +
ST
1 Σ

−1S1

2
− ST

0 Σ
−1S0

2
= γ

Let t(X) = (S1 − S0)Σ
−1X, we can get

H0 : t ∼ N((S1 − S0)Σ
−1S0, (S1 − S0)

TΣ−1(S1 − S0))

H1 : t ∼ N((S1 − S0)Σ
−1S1, (S1 − S0)

TΣ−1(S1 − S0))

The probability of false alarm is
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PFA = Q(
γ − (S1 − S0)

TΣ−1S0

[(S1 − S0)TΣ−1(S1 − S0)]
1
2

)

In this case it is natural to define

SNR = (S1 − S0)
TΣ−1(S1 − S0)

3.1 Example 4

S1 = [12 ,
1
2 ], S0 = [−1

2 ,−
1
2 ], Σ =

[
1 ρ
ρ 1

]
, Σ−1 = 1

1−ρ2

[
1 −ρ
−ρ 1

]
.

The test statistics is

y = (S1 − S0)Σ
−1X = [1, 1]

1

1− ρ2

[
1 −ρ
−ρ 1

] [
x1

x2

]
=

1

1 + ρ
(x1 + x2)

H0 : y ∼ N(− 1

1 + ρ
,

2

1 + ρ
)

H1 : y ∼ N(+
1

1 + ρ
,

2

1 + ρ
)

The probability of false alarm is

PFA = Q(
γ + 1

1+ρ√
2

1+ρ

)

The probability of detection is

PD = Q(
γ − 1

1+ρ√
2

1+ρ

)
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Figure 5: ROC curve at different ρ


