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Lecture 7: Hypothesis Testing and KL Divergence

1 Introducing the KL Divergence

Suppose X1, X2, . . . , Xn
iid∼ q(x) and we have two models for q(x), p0(x) and p1(x). The likelihood ratio is

Λ =

n∏
i=1

p1(xi)

p0(xi)

The log likelihood ratio, normalized by dividing by n, is then

Λ̂n =
1

n

n∑
i=1

log
p1(xi)

p0(xi)

Note that Λ̂n is itself a random variable, and is in fact a sum of iid random variables Li = log p1(xi)
p0(xi)

which

are independent because the xi are. In addition, we know from the strong law of large numbers that for
large n,

Λ̂n
a.s.→ E

[
Λ̂n

]
E
[
Λ̂
]

=
1

n

n∑
i=1

E [Li]

= E [L1]

=

∫
log

p1(x)

p0(x)
q(x)dx

=

∫
log

(
p1(x)

p0(x)

q(x)

q(x)

)
q(x)dx

=

∫ [
log

q(x)

p0(x)
− log

q(x)

p1(x)

]
q(x)dx

=

∫
log

q(x)

p0(x)
q(x)dx−

∫
log

q(x)

p1(x)
q(x)dx

The quantity
∫

log q(x)
p(x)q(x)dx is known as the Kullback-Leibler Divergence of p from q, or the KL diver-

gence for short. We use the notation

D(q||p) =

∫
q(x) log

q(x)

p(x)
dx

for continuous random variables, and

D(q||p) =
∑
i

qi log
qi
pi

1
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for discrete random variables. The above expression for E
[
Λ̂n

]
can then be written as

E
[
Λ̂n

]
= D(q||p0)−D(q||p1)

Therefore, for large n, the log likelihood ratio test (LRT) E
[
Λ̂n

] H1

≷
H0

λ is approximately performing the

comparison

D(q||p0)−D(q||p1)
H1

≷
H0

λ

In particular, for λ = 0–i.e., if the probabilities for the two models are equal at the threshold value–we have
the test

D(q||p0)
H1

≷
H0

D(q||p1)

For this case, using the LRT is equivalent to selecting the model that is ”closer” to q in the sense of KL
divergence.

Example 1 Suppose we have the hypotheses

H0 : X1, . . . , Xn
iid∼ N (µ0, σ

2)

H1 : X1, . . . , Xn
iid∼ N (µ1, σ

2)

Then we can calculate the KL divergence:

log
p1(x)

p0(x)
= log

(
1√

2πσ2
exp

[
− 1

2σ2 (x− µ1)2
]

1√
2πσ2

exp
[
− 1

2σ2 (x− µ0)2
])

= − 1

2σ2

[
(x− µ1)2 − (x− µ0)2

]
= − 1

2σ2

[
−2xµ1 + µ2

1 + 2xµ0 − µ2
0

]
D(p1||p0) =

∫
log p1(x)

p1(x)

p0(x)
dx

= Ep1
[
log

p1
p0

]
= Ep1

[
− 1

2σ2

(
−2xµ1 + µ2

1 + 2xµ0 − µ2
0

)]
= − 1

2σ2

(
2(µ0 − µ1)Ep1 [x] + µ2

1 − µ2
0

)
= − 1

2σ2

(
−2mu21 + µ2

1 + 2µ1µ0 − µ2
0

)
=

1

2σ2

(
µ2
0 − 2µ0µ1 + µ2

1

)
=

(µ1 − µ0)2

2σ2

So the KL divergence between two Gaussian distributions with different means and the same variance is
just proportional to the squared distance between the two means. In this case, we can see by symmetry that
D(p1||p0) = D(p0||p1), but in general this is not true.
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2 A Key Property

The key property in question is that D(q||p) ≥ 0, with equality if and only if q = p. To prove this, we will
need a result in probability known as Jensen’s Inequality:

Jensen’s Inequality: If a function f(x) is convex, then

E [f(x)] ≥ f(E [x])

A function is convex if ∀ λ ∈ [0, 1]

f (λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y)

The left hand side of this inequality is the function value at some point between x and y, and
the right hand side is the value of a straight line connecting the points (x, f(x)) and (y, f(y)).
In other words, for a convex function the function value between two points is always lower than
the straight line between those points.

Now if we rearrange the KL divergence formula,

D(q||p) =

∫
q(x) log

q(x)

p(x)
dx

= Eq
[
log

q(x)

p(x)

]
= −Eq

[
log

p(x)

q(x)

]
we can use Jensen’s inequality, since − log z is a convex function.

≥ − log

(
Eq
[
p(x)

q(x)

])
= − log

(∫
q(x)

p(x)

q(x)
dx

)
= − log

(∫
p(x)dx

)
= − log(1)

= 0

Therefore D(q||p) ≥ 0.

3 Bounding the Error Probabilities

The KL divergence also provides a means to bound the error probabilities for a hypothesis test. For this we
will need to recall Hueffding’s Inequality.

Hueffding’s Inequality: If Z1, . . . , Zn are iid and a ≤ Zi ≤ b, ∀ i, then
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P

(
1

n

∑
i

Zi − E [Z] > ε

)
≤ e−2nε

2/c2

and

P

(
E [Z]− 1

n

∑
i

Zi > ε

)
≤ e−2nε

2/c2

where c2 = (b− a)2.

Now suppose that p0 and p1 have the same support and that over that support they are both bounded away
from zero and from above; i.e. 0 < α ≤ pi(x) ≤ β <∞, i = 0, 1. It then follows that

log
α

β
≤ log

p1(xi)

p0(xi)
≤ log

β

α

The quantity log p1(xi)
p0(xi)

is just the random variable Li. Thus Li is bounded, and Λ̂n is a sum of iid

bounded random variables. This allows us to use Hueffding’s Inequality. Now, consider the hypothesis test

Λ̂n
H1

≷
H0

0. We can write the probability of false alarm as

PFA = P
(

Λ̂n > 0|H0

)
= P

(
Λ̂n − E

[
Λ̂n|H0

]
> −E

[
Λ̂n|H0

]
| H0

)
The quantity −E

[
Λ̂n|H0

]
will be the ε in Hueffding’s inequality. We can re-express it as

Ep0
[
Λ̂n|H0

]
=

∫
p0(x) log

p1(x)

p0(x)
dx

= −
∫
p0(x) log

p0(x)

p1(x)
dx

= −D(p0||p1)

Finally applying Hueffding’s inequality, we get

PFA = P
(

Λ̂n − (−D(p0||p1)) > D(p0||p1) | H0

)
≤ e−2nD

2(p0||p1)/c2

with c2 =
(

log β
α − log α

β

)
.

Thus the probability of false alarm error is bounded by the KL divergence D(p0||p1). As n or D(p0||p1)
increase, the error decreases exponentially. The bound for the probability of miss, the other type of error,
can be found in a similar fashion:
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PFA = P
(

Λ̂n < 0 | H1

)
= P

(
Λ̂n −D(p1||p0) < −D(p1||p0) | H1

)
= P

(
D(p1||p0)− Λ̂n > D(p1||p0) | H1

)
≤ e−2nD

2(p1||p0)/c2


