
ECE 830 Fall 2010 Statistical Signal Processing

instructor: R. Nowak , scribe: A. Pasha Hosseinbor

Lecture 6: Detection Theory

1 Neyman-Pearson Lemma

Consider two densities where Ho : X po(x) and H1 : X p1(x).To maximize a probability
of detection (true positive) PD for a given false alarm (false positive or type 1 error)
PFA = α, decide according to

Λ(x) =
p(x|H1)

p(x|Ho)

Poc00 − Poc10

P1c11 − P1c01

H1

≷
H0

γ (1)

The Neyman-Pearson theorem is a constrained optimazation problem, and hence one
way to prove it is via Lagrange multipliers.

1.1 Method of Lagrange Multipliers

In the method of Lagrange multipliers, the problem at hand is of the form max f(x) such
that g(x) ≤ c.

Theorem: Let λ be a fixed non-negative number and let xo(λ) be a maximizer of

M(x, λ) = f(x)− λ g(x) (2)

Then xo(λ) maximizes f(x) over all x such that g(x) ≤ g(xo(λ)).

Proof: We assume λ ≥ 0 and that xo = xo(λ) satisfies

f(xo)− λ g(xo) ≥ f(x)− λ g(x) (3)

Then

f(xo) ≥ f(x)− λ (g(x)− g(xo)) (4)

Now let S = {x : g(x) ≤ g(xo)}. Thus, for all x ∈ S, g(x) ≤ g(xo). Since λ is non-
negative, we conclude

f(xo ≥ f(x) ∀ x ∈ S (5)
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1.2 Proof of Neyman-Pearson Theorem

The problem at hand is max PD(γ) such that PFA(γ) ≤ α. The Lagrangian is

M(γ, λ) = PD(γ)− λPFA(γ)

=

∫
R1(γ)

p(x|H1) dx− λ
∫
R1(γ)

p(x|Ho) dx

=

∫
R1(γ)

[p(x|H1)− λp(x|Ho)] dx, (6)

where R1(γ) = {x : p(x|H1) > λp(x|Ho)}. The likelihood ratio is

Λ(x) =
p(x|H1)

p(x|Ho)
≤ λ. (7)

Now determine λ = γ as value that satisfies

PFA(γ) = α (8)

Thus, ∫ ∞

γ

p(Λ|Ho) dx =

∫
x:Λ(x)>γ

p(x|Ho) dx = α (9)

1.3 Example: DC Level in Additive White Gaussian Noise (AWGN)

Consider independent random variables xi for i = 1, ..., n:

Ho : xi ∼ N(0, σ2) H1 : xi ∼ N(µ, σ2) (10)

According to likelihood ratio test (LRT)

Λ(x) =
p(x|H1)

p(x|Ho)
=

1
(2πσ2)n/2

e
−1

2σ2

Pn
i=1 (xi−µ)2

1
(2πσ2)n/2

e
−1

2σ2

Pn
i=1(xi−µ)2

H1

≷
H0

γ (11)

Lets take the natural logarithm of the likelihood ratio:

ln(Λ(x)) =
−1

2σ2
(−2µ

n∑
i=1

xi + nµ2)
H1

≷
H0

ln(γ) (12)

Assuming µ > 0,

n∑
i=1

xi
H1

≷
H0

σ2

µ
ln γ +

nµ

2
≡ ν, (13)

where ν is the threshold. Note that y ≡
∑n

i=1 xi is simply the sufficient statastic for µ
of a normal distribution of unknown mean. Lets rewrite our hypotheses test in terms of
the sufficient statistic:
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Ho : y ∼ N(0, nσ2) H1 : y ∼ N(nµ, nσ2) (14)

Lets now determine PFA and PD.

PFA = P (pick H1|given Ho) =

∫ ∞

ν

1√
2nπσ2

e−t
2/2nσ2

dt = Q(
ν√
nσ2

) (15)

PD = P (pick H1|given H1) = Q(
ν − nµ√
nµ2

) (16)

Here Q is the complementary error function. Noting that ν =
√
nσ2Q−1(PFA), we can

rewrite PD as

PD = Q(Q−1(PFA)−
√
nµ2

σ2
), (17)

where
√

nµ2

σ2 is simply the signal-to-noise ratio (SNR).

1.4 Example: Change in Variance

Consider independent random variables xi for i = 1, ..., n:

Ho : xi ∼ N(0, σ2
o) H1 : xi ∼ N(µ, σ2

1) (18)

Assume σ2
1 > σ2

o . Lets apply LRT, taking natural log of both sides:

n

2
ln(

σ2
o

σ2
1

+ .5(
1

σ2
o

− 1

σ2
1

)
n∑
i=1

x2
i

H1

≷
H0

ln(γ) (19)

After doing some algebra, we obtain

n∑
i=1

x2
i

H1

≷
H0

2(
σ2

1σ
2
o

σ2
1 − σ2

o

)(ln(γ) + n ln(
σ1

σo
) ≡ ν (20)

Note that y ≡
∑n

i=1 x
2
i is simply the sufficient statistic for variance of a normal distribu-

tion of unknown variance.
Now recall that if x1, ..., xn are iid N(0, 1), then

∑n
i=1 x

2
i ∼ χ2

n (chi-square of degree
n). Lets rewrite our null hypothesis test using the sufficient statistic:

Ho : y =
n∑
i=1

x2
i

σ2
o

∼ χ2
n (21)

Then, the probability of false alarm is
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PFA = P (pick H1|given Ho)

=

∫ ∞

ν

p(y|Ho) dy

= P (y > ν)

= P (
y

σ2
o

>
ν

σ2
o

)

= P (χ2
n >

ν

σ2
o

) (22)

We have to compute the variance numerically. For example, if we have n = 20
realizations of xi and PFA = 0.01, then we can numerically compute the threshold to be
ν = 37.57σ2

o .

1.5 Neyman-Pearson Lemma: A Second Look

Here is an alternate proof of the Neyman-Pearson Lemma. Consider a binary hypothesis
test and LRT:

Λ(x) =
p1(x)

po(x)

H1

≷
H0

λ (23)

PFA = P (Λ(x) ≥ |Ho) = α (24)

There does not exist another test with PFA = α and a detection problem larger than
P (Λ(x) ≥ |Ho). That is, the LRT is the most powerful test with PFA = α.

Proof: The region where the LRT decides H1 is

Rnp = {x :
p1(x)

po(x)
≥ λ} (25)

Let RT denote the region where some other test describes H1. Define for any region R

Pi(R) =

∫
R

pi(x) dx, (26)

which is simply the probability of x ∈ R under hypothesis Hi. By assumption both tests
have PFA = α:

α = Po(Rnp) = Po(RT ). (27)

Next observe that

Pi(RNP ) = Pi(RNP ∩RT ) + Pi(RNP ∩Rc
T ) (28)

Pi(RT ) = Pi(RNP ∩RT ) + Pi(R
c
NP ∩RT ) (29)

Therefore from Eq. (27), we conclude that
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Po(RNP ∩Rc
T ) = Po(R

c
NP ∩RT ) (30)

Now, we want to show

P1(RNP ) ≥ P1(R′) (31)

which from Eq. (28− 29) holds if

P1(RNP ∩Rc
T ) ≥ P1(Rc

NP ∩RT ) (32)

Note

P1(RNP ∩Rc
T ) =

∫
RNP∩RcT

p1(x) dx

≥ λ

∫
RNP∩R

′
T

po(x) dx

= λPo(RNP ∩Rc
T )

= λPo(R
c
NP ∩RT )

= λ

∫
RcNP∩RT

po(x) dx

≥
∫
RcNP∩RT

p1(x) dx

= P1(Rc
NP ∩RT ). (33)

Thus, from Eq. (33) we see that at λ increases, Rnp decreases, and hence PFA decreases.
In other words, if λ1 ≥ λ2, then Rnp(λ1) ∩Rnp(λ2), and hence α1 ≤ α2.


