ECE 830 Fall 2010 Statistical Signal Processing instructor: R. Nowak , scribe: A. Pasha Hosseinbor
 Lecture 6: Detection Theory

1 Neyman-Pearson Lemma

Consider two densities where $H_{o}: X p_{o}(x)$ and $H_{1}: X p_{1}(x)$.To maximize a probability of detection (true positive) P_{D} for a given false alarm (false positive or type 1 error) $P_{F A}=\alpha$, decide according to

$$
\begin{equation*}
\Lambda(x)=\frac{p\left(x \mid H_{1}\right)}{p\left(x \mid H_{o}\right)} \frac{P_{o} c_{00}-P_{o} c_{10}}{P_{1} c_{11}-P_{1} c_{01}} \stackrel{H_{1}}{\underset{H_{0}}{\gtrless}} \gamma \tag{1}
\end{equation*}
$$

The Neyman-Pearson theorem is a constrained optimazation problem, and hence one way to prove it is via Lagrange multipliers.

1.1 Method of Lagrange Multipliers

In the method of Lagrange multipliers, the problem at hand is of the form max $f(x)$ such that $g(x) \leq c$.

Theorem: Let λ be a fixed non-negative number and let $x_{o}(\lambda)$ be a maximizer of

$$
\begin{equation*}
M(x, \lambda)=f(x)-\lambda g(x) \tag{2}
\end{equation*}
$$

Then $x_{o}(\lambda)$ maximizes $\mathrm{f}(\mathrm{x})$ over all x such that $g(x) \leq g\left(x_{o}(\lambda)\right)$.
Proof: We assume $\lambda \geq 0$ and that $x_{o}=x_{o}(\lambda)$ satisfies

$$
\begin{equation*}
f\left(x_{o}\right)-\lambda g\left(x_{o}\right) \geq f(x)-\lambda g(x) \tag{3}
\end{equation*}
$$

Then

$$
\begin{equation*}
f\left(x_{o}\right) \geq f(x)-\lambda\left(g(x)-g\left(x_{o}\right)\right) \tag{4}
\end{equation*}
$$

Now let $S=\left\{x: g(x) \leq g\left(x_{o}\right)\right\}$. Thus, for all $x \in S, g(x) \leq g\left(x_{o}\right)$. Since λ is nonnegative, we conclude

$$
\begin{equation*}
f\left(x_{o} \geq f(x) \forall x \in S\right. \tag{5}
\end{equation*}
$$

1.2 Proof of Neyman-Pearson Theorem

The problem at hand is $\max P_{D}(\gamma)$ such that $P_{F A}(\gamma) \leq \alpha$. The Lagrangian is

$$
\begin{align*}
M(\gamma, \lambda) & =P_{D}(\gamma)-\lambda P_{F A}(\gamma) \\
& =\int_{R_{1}(\gamma)} p\left(x \mid H_{1}\right) d x-\lambda \int_{R_{1}(\gamma)} p\left(x \mid H_{o}\right) d x \\
& =\int_{R_{1}(\gamma)}\left[p\left(x \mid H_{1}\right)-\lambda p\left(x \mid H_{o}\right)\right] d x \tag{6}
\end{align*}
$$

where $R_{1}(\gamma)=\left\{x: p\left(x \mid H_{1}\right)>\lambda p\left(x \mid H_{o}\right)\right\}$. The likelihood ratio is

$$
\begin{equation*}
\Lambda(x)=\frac{p\left(x \mid H_{1}\right)}{p\left(x \mid H_{o}\right)} \leq \lambda \tag{7}
\end{equation*}
$$

Now determine $\lambda=\gamma$ as value that satisfies

$$
\begin{equation*}
P_{F A}(\gamma)=\alpha \tag{8}
\end{equation*}
$$

Thus,

$$
\begin{equation*}
\int_{\gamma}^{\infty} p\left(\Lambda \mid H_{o}\right) d x=\int_{x: \Lambda(x)>\gamma} p\left(x \mid H_{o}\right) d x=\alpha \tag{9}
\end{equation*}
$$

1.3 Example: DC Level in Additive White Gaussian Noise (AWGN)

Consider independent random variables x_{i} for $i=1, \ldots, n$:

$$
\begin{equation*}
H_{o}: x_{i} \sim N\left(0, \sigma^{2}\right) \quad H_{1}: x_{i} \sim N\left(\mu, \sigma^{2}\right) \tag{10}
\end{equation*}
$$

According to likelihood ratio test (LRT)

$$
\begin{equation*}
\Lambda(x)=\frac{p\left(x \mid H_{1}\right)}{p\left(x \mid H_{o}\right)}=\frac{\frac{1}{\left(2 \pi \sigma^{2}\right)^{n / 2}} e^{\frac{-1}{2 \sigma^{2}} \sum_{i=1}^{n}\left(x_{i}-\mu\right)^{2}}}{\frac{1}{\left(2 \pi \sigma^{2}\right)^{n / 2}} e^{\frac{-1}{2 \sigma^{2}} \sum_{i=1}^{n}\left(x_{i}-\mu\right)^{2}}} \stackrel{H_{1}}{H_{0}} \gamma \tag{11}
\end{equation*}
$$

Lets take the natural logarithm of the likelihood ratio:

$$
\begin{equation*}
\ln (\Lambda(x))=\frac{-1}{2 \sigma^{2}}\left(-2 \mu \sum_{i=1}^{n} x_{i}+n \mu^{2}\right) \underset{H_{0}}{\stackrel{H_{1}}{\gtrless}} \ln (\gamma) \tag{12}
\end{equation*}
$$

Assuming $\mu>0$,

$$
\begin{equation*}
\sum_{i=1}^{n} x_{i} \stackrel{H_{1}}{\underset{H_{0}}{\gtrless}} \frac{\sigma^{2}}{\mu} \ln \gamma+\frac{n \mu}{2} \equiv \nu \tag{13}
\end{equation*}
$$

where ν is the threshold. Note that $y \equiv \sum_{i=1}^{n} x_{i}$ is simply the sufficient statastic for μ of a normal distribution of unknown mean. Lets rewrite our hypotheses test in terms of the sufficient statistic:

$$
\begin{equation*}
H_{o}: y \sim N\left(0, n \sigma^{2}\right) \quad H_{1}: y \sim N\left(n \mu, n \sigma^{2}\right) \tag{14}
\end{equation*}
$$

Lets now determine $P_{F A}$ and P_{D}.

$$
\begin{gather*}
P_{F A}=P\left(\text { pick } H_{1} \mid \text { given } H_{o}\right)=\int_{\nu}^{\infty} \frac{1}{\sqrt{2 n \pi \sigma^{2}}} e^{-t^{2} / 2 n \sigma^{2}} d t=Q\left(\frac{\nu}{\sqrt{n \sigma^{2}}}\right) \tag{15}\\
P_{D}=P\left(\text { pick } H_{1} \mid \text { given } H_{1}\right)=Q\left(\frac{\nu-n \mu}{\sqrt{n \mu^{2}}}\right) \tag{16}
\end{gather*}
$$

Here Q is the complementary error function. Noting that $\nu=\sqrt{n \sigma^{2}} Q^{-1}\left(P_{F A}\right)$, we can rewrite P_{D} as

$$
\begin{equation*}
P_{D}=Q\left(Q^{-1}\left(P_{F A}\right)-\sqrt{\frac{n \mu^{2}}{\sigma^{2}}}\right) \tag{17}
\end{equation*}
$$

where $\sqrt{\frac{n \mu^{2}}{\sigma^{2}}}$ is simply the signal-to-noise ratio (SNR).

1.4 Example: Change in Variance

Consider independent random variables x_{i} for $i=1, \ldots, n$:

$$
\begin{equation*}
H_{o}: x_{i} \sim N\left(0, \sigma_{o}^{2}\right) \quad H_{1}: x_{i} \sim N\left(\mu, \sigma_{1}^{2}\right) \tag{18}
\end{equation*}
$$

Assume $\sigma_{1}^{2}>\sigma_{o}^{2}$. Lets apply LRT, taking natural \log of both sides:

$$
\begin{equation*}
\frac{n}{2} \ln \left(\frac{\sigma_{o}^{2}}{\sigma_{1}^{2}}+.5\left(\frac{1}{\sigma_{o}^{2}}-\frac{1}{\sigma_{1}^{2}}\right) \sum_{i=1}^{n} x_{i}^{2} \stackrel{H_{1}}{\underset{H_{0}}{\gtrless}} \ln (\gamma)\right. \tag{19}
\end{equation*}
$$

After doing some algebra, we obtain

$$
\begin{equation*}
\sum_{i=1}^{n} x_{i}^{2} \stackrel{H_{1}}{\underset{H_{0}}{\gtrless}} 2\left(\frac{\sigma_{1}^{2} \sigma_{o}^{2}}{\sigma_{1}^{2}-\sigma_{o}^{2}}\right)\left(\ln (\gamma)+n \ln \left(\frac{\sigma_{1}}{\sigma_{o}}\right) \equiv \nu\right. \tag{20}
\end{equation*}
$$

Note that $y \equiv \sum_{i=1}^{n} x_{i}^{2}$ is simply the sufficient statistic for variance of a normal distribution of unknown variance.

Now recall that if x_{1}, \ldots, x_{n} are iid $N(0,1)$, then $\sum_{i=1}^{n} x_{i}^{2} \sim \chi_{n}^{2}$ (chi-square of degree $n)$. Lets rewrite our null hypothesis test using the sufficient statistic:

$$
\begin{equation*}
H_{o}: y=\sum_{i=1}^{n} \frac{x_{i}^{2}}{\sigma_{o}^{2}} \sim \chi_{n}^{2} \tag{21}
\end{equation*}
$$

Then, the probability of false alarm is

$$
\begin{align*}
P_{F A} & =P\left(\text { pick } H_{1} \mid \text { given } H_{o}\right) \\
& =\int_{\nu}^{\infty} p\left(y \mid H_{o}\right) d y \\
& =P(y>\nu) \\
& =P\left(\frac{y}{\sigma_{o}^{2}}>\frac{\nu}{\sigma_{o}^{2}}\right) \\
& =P\left(\chi_{n}^{2}>\frac{\nu}{\sigma_{o}^{2}}\right) \tag{22}
\end{align*}
$$

We have to compute the variance numerically. For example, if we have $n=20$ realizations of x_{i} and $P_{F A}=0.01$, then we can numerically compute the threshold to be $\nu=37.57 \sigma_{o}^{2}$.

1.5 Neyman-Pearson Lemma: A Second Look

Here is an alternate proof of the Neyman-Pearson Lemma. Consider a binary hypothesis test and LRT:

$$
\begin{gather*}
\Lambda(x)=\frac{p_{1}(x)}{p_{o}(x)}{\underset{H}{H_{0}}}_{H_{1}} \lambda \tag{23}\\
P_{F A}=P\left(\Lambda(x) \geq \mid H_{o}\right)=\alpha \tag{24}
\end{gather*}
$$

There does not exist another test with $P_{F A}=\alpha$ and a detection problem larger than $P\left(\Lambda(x) \geq \mid H_{o}\right)$. That is, the LRT is the most powerful test with $P_{F A}=\alpha$.

Proof: The region where the LRT decides H_{1} is

$$
\begin{equation*}
R_{n p}=\left\{x: \frac{p_{1}(x)}{p_{o}(x)} \geq \lambda\right\} \tag{25}
\end{equation*}
$$

Let R_{T} denote the region where some other test describes H_{1}. Define for any region R

$$
\begin{equation*}
P_{i}(R)=\int_{R} p_{i}(x) d x \tag{26}
\end{equation*}
$$

which is simply the probability of $x \in R$ under hypothesis H_{i}. By assumption both tests have $P_{F A}=\alpha$:

$$
\begin{equation*}
\alpha=P_{o}\left(R_{n p}\right)=P_{o}\left(R_{T}\right) . \tag{27}
\end{equation*}
$$

Next observe that

$$
\begin{gather*}
P_{i}\left(R_{N P}\right)=P_{i}\left(R_{N P} \cap R_{T}\right)+P_{i}\left(R_{N P} \cap R_{T}^{c}\right) \tag{28}\\
P_{i}\left(R_{T}\right)=P_{i}\left(R_{N P} \cap R_{T}\right)+P_{i}\left(R_{N P}^{c} \cap R_{T}\right) \tag{29}
\end{gather*}
$$

Therefore from $E q$. (27), we conclude that

$$
\begin{equation*}
P_{o}\left(R_{N P} \cap R_{T}^{c}\right)=P_{o}\left(R_{N P}^{c} \cap R_{T}\right) \tag{30}
\end{equation*}
$$

Now, we want to show

$$
\begin{equation*}
P_{1}\left(R_{N P}\right) \geq P_{1}\left(R^{\prime}\right) \tag{31}
\end{equation*}
$$

which from Eq. $(28-29)$ holds if

$$
\begin{equation*}
P_{1}\left(R_{N P} \cap R_{T}^{c}\right) \geq P_{1}\left(R_{N P}^{c} \cap R_{T}\right) \tag{32}
\end{equation*}
$$

Note

$$
\begin{align*}
P_{1}\left(R_{N P} \cap R_{T}^{c}\right) & =\int_{R_{N P} \cap R_{T}^{c}} p_{1}(x) d x \\
& \geq \lambda \int_{R_{N P} \cap R_{T}^{\prime}} p_{o}(x) d x \\
& =\lambda P_{o}\left(R_{N P} \cap R_{T}^{c}\right) \\
& =\lambda P_{o}\left(R_{N P}^{c} \cap R_{T}\right) \\
& =\lambda \int_{R_{N P}^{c} \cap R_{T}} p_{o}(x) d x \\
& \geq \int_{R_{N P}^{c} \cap R_{T}} p_{1}(x) d x \\
& =P_{1}\left(R_{N P}^{c} \cap R_{T}\right) . \tag{33}
\end{align*}
$$

Thus, from Eq. (33) we see that at λ increases, $R_{n p}$ decreases, and hence $P_{F A}$ decreases. In other words, if $\lambda_{1} \geq \lambda_{2}$, then $R_{n p}\left(\lambda_{1}\right) \cap R_{n p}\left(\lambda_{2}\right)$, and hence $\alpha_{1} \leq \alpha_{2}$.

