ECE 830 Fall 2010 Statistical Signal Processing

instructor: R. Nowak , scribe: A. Pasha Hosseinbor

Lecture 6: Detection Theory

1 Neyman-Pearson Lemma

Consider two densities where H, : X p,(z) and H; : X p;(x).To maximize a probability
of detection (true positive) Pp for a given false alarm (false positive or type 1 error)
Pra = «a, decide according to

_ Hy
A(a:) _ p(:v|H1) Pycoo — Pocio S (1)

The Neyman-Pearson theorem is a constrained optimazation problem, and hence one
way to prove it is via Lagrange multipliers.

Y
p(!E|Ho) Pieyy — Picor 1§0

1.1 Method of Lagrange Multipliers

In the method of Lagrange multipliers, the problem at hand is of the form maz f(z) such
that g(x) <ec.

Theorem: Let A be a fixed non-negative number and let x,(\) be a maximizer of

M(z,A) = f(z) = Ag(x) (2)
Then z,(\) maximizes f(x) over all x such that g(x) < g(z,(\)).

Proof: We assume A > 0 and that x, = x,(\) satisfies

f(xo)_)‘g<xo) > f(I)—Ag(l’) (3)
Then

f(xo> > f(&?) —A (g<x) - g(xc))) (4)

Now let S = {z : g(x) < g(x,)}. Thus, for all x € 5, g(z) < g(z,). Since A is non-
negative, we conclude

flzo > f(x)Va €S (5)
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1.2 Proof of Neyman-Pearson Theorem

The problem at hand is maz Pp(7y) such that Pra(y) < a. The Lagrangian is

M(y,A) = Pp(v) = APra(v)

= x|Hy)dr — A x|H,)dx

/Rl(’)/)p( | ) /1%1(7)]9( ’ )

_ / (x| Hy) = Ap(|H,)] da, (6)
Ri(v)

where Ry () = {x : p(z|Hy) > Ap(x|H,)}. The likelihood ratio is

p(x|H,)
A(x) = <\ 7
(z) o) = (7)
Now determine \ = ~ as value that satisfies
Pra(y) = « (8)
Thus,
/ p(A|H,) dx = / p(z|H,)dr = « 9)
~ z:A(x) >y

1.3 Example: DC Level in Additive White Gaussian Noise (AWGN)

Consider independent random variables x; for i =1,...,n

H,:z;~N(0,0%) Hj:xz;~ N(u,o? (10)
According to likelihood ratio test (LRT)

o) ke S
A(x) = p V) _ Gro T BEON )
TELAp—

Lets take the natural logarithm of the likelihood ratio:

—1
>
In(A(r)) = 5 QM;xZ—Fn,u) In(v) (12)
Assuming p > 0,
H1 0'2 M
r, 2 —lhny+— =y, 13
2t (13)

i=1
where v is the threshold. Note that y = """ | x; is simply the sufficient statastic for p

of a normal distribution of unknown mean. Lets rewrite our hypotheses test in terms of
the sufficient statistic:
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H,:y~ N(0,n0%*)  Hy:y~ N(nunao?) (14)
Lets now determine Pr4 and Pp.

1
\V2nmo?

Pp = P(pick Hy|given Hy) = Q(

€—t2/2n02 dt = Q(

Pra = P(pick Hy|given H,) = / ) (15)

v
vVno?

vV—np
)

/ (16)
ny

Here @ is the complementary error function. Noting that v = Vno2Q ' (Pr,), we can

rewrite Pp as
2
Pp=Q(Q " (Pra) = /"5, (17)

where \/’";—“22 is simply the signal-to-noise ratio (SNR).

1.4 Example: Change in Variance

Consider independent random variables x; for i =1,....n

H,:z;~N(0,02) Hy:xz;~ N(u,o}) (18)
Assume o} > o2. Lets apply LRT, taking natural log of both sides:

2

n 0

O 0

After doing some algebra, we obtain

2 2

sz 2 277 ) in(y) + nln(Z) = v (20)

0% — o2 Oo

Note that y = Y | 27 is simply the sufficient statistic for variance of a normal distribu-
tion of unknown variance.
Now recall that if z1, ..., x, are iid N(0,1), then Y7  a? ~ x2 (chi-square of degree

n). Lets rewrite our null hypothesis test using the sufficient statistic:

Z —5 ™ ~ X (21)

Then, the probability of false alarm is
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Pra = P(pick Hy|given H,)

_ / " (ylH,) dy
= Py>v)

= P> =) (22)

We have to compute the variance numerically. For example, if we have n = 20
realizations of x; and Prys = 0.01, then we can numerically compute the threshold to be
v = 37.5702.

1.5 Neyman-Pearson Lemma: A Second Look

Here is an alternate proof of the Neyman-Pearson Lemma. Consider a binary hypothesis
test and LRT:

_pl)
M=o 2 29
Prs = P(Az) > |H,) = a (24)

There does not exist another test with Pry4 = o and a detection problem larger than
P(A(z) > |H,). That is, the LRT is the most powerful test with Pry = «.

Proof: The region where the LRT decides H; is

. pi(z)
Po()
Let Ry denote the region where some other test describes H;. Define for any region R

Ry = {a > \) (25)

P(R) = /R pilx) de, (26)

which is simply the probability of x € R under hypothesis H;. By assumption both tests
have Prgq = «:

a = P,(R,,) = P,(Rr). (27)

Next observe that
P,(Rnp) = Pi(Ryp N Rr) + P(Rynp N RY) (28)
R(RT) = Pz'(RNP N RT) + R(R?\;p N RT) (29)

Therefore from Eq. (27), we conclude that
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Py(Ryp N RS) = Py(Rep N Ry)

Now, we want to show

Pi(Ryp) > PA(R)
which from Fgq. (28 — 29) holds if

P(RypNRS) > Pi(Ryp N Ry)
Note

Pu(Byp N RS — / pi(z) dz
RNPQR%

> )\/ po(x) dx
RNPOR/T

= AP,(Ryp N RS)
= AP,(Ryp N Rr)

= A / Po() dx
R pNRr

> / p(z)dx
R?\,PQRT

= PRy N Ry).

(30)

(31)

(32)

(33)

Thus, from Eq. (33) we see that at A increases, R, decreases, and hence Ppy decreases.

In other words, if Ay > Xy, then R,,(A1) N R,,,(A2), and hence oy < as.



