
ECE 830 Fall 2010 Statistical Signal Processing

instructor: R. Nowak , scribe: R. Nowak

Lecture 3: Review of Linear Algebra

Very often in this course we will represent signals as vectors and operators (e.g., filters, transforms, etc)
as matrices. This lecture reviews basic concepts from linear algebra that will be useful.

1 Linear Vector Space

Definition 1 A linear vector space X is a collection of elements satisfying the following properties:

addition: ∀x, y, z ∈ X

a) x+ y ∈ X
b) x+ y = y + x

c) (x+ y) + z = x+ (y + z)

d) ∃ 0 ∈ X , such that x+ 0 = x

e) ∀x ∈ X ,∃ − x ∈ X such that x+ (−x) = 0

multiplication: ∀x, y ∈ X and a, b ∈ R

a) a x ∈ X
b) a(b x) = (ab)x

c) 1x = x, 0x = 0

d) a(x+ y) = ax+ ay

Example 1 Here are two examples of linear vector spaces. The familiar d-dimensional Euclidean space Rd

and the space of finite energy signals/functions supported on the interval [0.T ]

L2([0, T ]) :=

{
x :

∫ T

0

x2(t) dt < ∞

}

It is easy to verify the properties above for both examples.

Definition 2 A subset M⊂ X is subspace if x, y ∈M ⇒ ax+ by ∈M, ∀ scalars a, b.

Definition 3 An inner product is a mapping from X ×X to R. The inner product between any x, y ∈ X is
denoted by 〈x, y〉 and it must satisfy two properties for all x, y, z ∈ X :

a) 〈x, y〉 = 〈y, x〉

b) 〈ax, y〉 = a〈x, y〉, ∀ scalars a

c) 〈x+ y, z〉 = 〈x, z〉+ 〈y, z〉

d) 〈x, x〉 ≥ 0

A space X equipped with an inner product is called an inner product space.
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Example 2 Let X = Rn. Then 〈x, y〉 := xT y =
∑n

i=1 xiyi.

Example 3 Let X = L2([0, 1]). Then 〈x, y〉 :=
∫ 1

0
x(t)y(t) dt.

The inner product measures the alignment of the two vectors. The inner product induces a norm defined
as ‖x‖ :=

√
〈x, x〉. The norm measures the length/size of x. The inner product 〈x, y〉 = ‖x‖ ‖y‖ cos(θ),

where θ is the angle between x and y. Thus, in general, for every x, y ∈ X we have |〈x, y〉| ≤ ‖x‖‖y‖,
with equality if and only if x and y are linearly dependent or “parallel”; i.e., θ = 0. This is called the
Cauchy-Schwarz Inequality. Two vectors x, y are orthogonal if 〈x, y〉 = 0.

Example 4 Let X = R2, then x =
[

1
0

]
and y =

[
0
1

]
are orthogonal, as are u =

[
1
1

]
and v =

[
1
−1

]
.

Definition 4 An inner product space that contains all its limits is called a Hilbert Space and in this case
we often denote the space by H; i.e., if x1, x2, . . . are in H and limn→∞ xn exists, then the limit is also in
H.

It is easy to verify that Rn, L2([0, T ]), and `2(Z), the set of all finite energy sequences (e.g., discrete-time
signals), are all Hilbert Spaces.

2 Bases and Representations

Definition 5 A collection of vectors {x1, . . . , xk} are said to be linearly independent if none of them can be
written as a linear combination of the others. That is, for any xi and every set of scalar weights {wj} we
have xi 6=

∑
j 6=i wjxj.

Definition 6 A set of linearly independent vectors {φi}i≥1 is a basis for H if every x ∈ H can be represented
as a linear combination of {φi}. That is, every x ∈ H can be expressed as

x =
∑
i≥1

θiφi

for a certain unique set of scalar weights {θi}.

Example 5 Let H = R2. Then
[

1
0

]
and

[
0
1

]
are a basis (since they are orthogonal). Also,

[
1
0

]
and[

1
1

]
are a basis because they are linearly independent (although not orthogonal).

Definition 7 An orthonormal basis is one satisfying

〈φi, φj〉 = δi,j =
{

1 , i = j
0 , i 6= j

Any basis can be converted into an orthonormal basis using the Gram-Schmidt Orthogonalization proce-
dure. Let {φi} be a basis. Generate an orthonormal basis according to the following steps.

1. ψ1 := φ1/‖φ1‖

2. ψ′2 := φ2 − 〈ψ1, φ2〉ψ1; ψ2 = ψ′2/‖ψ′2‖

...

k. ψ′k = φk −
∑k−1

i=1 〈ψi, φk〉ψi; ψk = ψ′k/‖ψ′k‖
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...

Every x ∈ H can be represented in terms of an orthonormal basis {φi}i≥1 (or ‘orthobasis’ for short)
according to:

x =
∑
i≥1

〈x, φi〉 φi

This is easy to see as follows. Suppose x has a representation
∑

i θiφi. Then 〈x, φj〉 = 〈
∑

i θiφi, φj〉 =∑
i θi〈φi, φj〉 =

∑
i θiδi,j = θj .

Example 6 Here is an orthobasis for L2([0, 1]): for i = 1, 2, . . .

φ2i−1(t) :=
√

2 cos(2π(i− 1)t)

φ2i(t) :=
√

2 sin(2πit)

Doesn’t it look familiar?

3 Orthogonal Projections and Filters

One of the most important tools that we will use from linear algebra is the notion of an orthogonal projec-
tion. Most linear filters used in signal processing (e.g., bandpass filters, averaging filters, etc.) may all be
interpreted as or related to orthogonal projections. Let H be a Hilbert space and letM⊂ H be a subspace.
Every x ∈ H can be written as x = y+ z, where y ∈M and z ⊥M, which is shorthand for z orthogonal to
M; that is ∀v ∈M, 〈v, z〉 = 0. The vector y is the optimal approximation to x in terms of vectors in M in
the following sense:

‖x− y‖ = min
v∈M

‖x− v‖

The vector y is called the projection of x onto M.
Here is an application of this concept. LetM⊂ H and let {φi}ri=1 be an orthobasis forM. We say that

the subspace M is spanned by {φi}ri=1. Note that this implies that M is an r-dimensional subspace of H
(and it is isometric to Rr). For any x ∈ H, the projection of x onto M is given by

y =
r∑

i=1

〈φi, x〉φi

and this projection can be viewed as a sort of filter that removes all components of the signal that are
orthogonal to M.

Example 7 Let H = R2. Consider the canonical coordinate system φ1 =
[

1
0

]
and φ2 =

[
0
1

]
. Consider

the subspace spanned by φ1. The projection of any x = [x1 x2]T ∈ R2 onto this subspace is

P1x = 〈x,
[

1
0

]
〉
[

1
0

]
=
(

[x1 x2]
[

1
0

])[
1
0

]
=
[
x1

0

]
The projection operator P1 is just a matrix and it is given by

P1 := φ1φ
T
1 =

[
1
0

]
[1 0] =

[
1 0
0 0

]

It is also easy to check that φ1 =
[

1/
√

2
1/
√

2

]
and φ2 =

[
1/
√

2
−1/
√

2

]
is an orthobasis for R2. What is the

projection operator onto the span of φ1 in this case?
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More generally suppose we are considering Rn and we have a orthobasis {φi}ri=1 for some r-dimensional,
r < n, subspace M of Rn. Then the projection matrix is given by PM =

∑r
i=1 φiφ

T
i . Moreover, if {φi}ri=1 is

a basis for M, but not necessarily orthonormal, then PM = Φ(ΦT Φ)−1Φ, where Φ = [φ1, . . . , φr], a matrix
whose columns are the basis vectors.

Example 8 Let H = L2([0, 1]) and let M = {linear functions on [0, 1]}. Since all linear functions have the
form at + b, for t ∈ [0, 1], here is a basis for M: φ1(t) = 1, φ2(t) = t. Note that this means that M is
two-dimensional. That makes sense since every line is defined by its slope and intercept (two real numbers).
Using the Gram-Schmidt procedure we can construct the orthobasis ψ1(t) = 1, ψ2(t) = t−1/2. Now, consider
any signal/function x ∈ L2([0, 1]). The projection of x onto M is

PM x = 〈x, 1〉+ 〈x, t− 1/2〉(t− 1/2)

=
∫ 1

0

x(τ) dτ + (t− 1/2)
∫ 1

0

(τ − 1/2)x(t) dτ

4 Eigenanalysis

Suppose A is an m×n matrix with entries from a field (e.g., R or C, the latter being the complex numbers).
Then there exists a factorization of the form

A = U DV ∗

where U = [u1 · · ·um] is m×m with orthonormal columns, V = [v1 · · · vn] is n×n with orthonormal columns
and the superscript ∗ means transposition and conjugation (if complex-valued), and the matrix D is m× n
and has the form

D =


σ1 0 0 · · · 0
0 σ2 0 · · · 0
... 0

. . . · · ·
...

0 0 · · · σm 0 · · ·


The values σ1, . . . , σm are called the singular values of A and the factorization is called the singular value
decomposition (SVD). Because of the orthonormality of the columns of U and V we have Avi = σiui and
A∗ui = σivi, i = 1, . . . ,m.

A vector u is called an eigenvector of A if Au = λu for some scalar λ. The scalar λ is called the eigenvalue
associated with u. Symmetric matrices (which are always square) always have real eigenvalues and have an
eigendecomposition of the form A = UDU∗, where the columns of U the orthonormal eigenvectors of A, D
is a diagonal matrix written D = diag(λ1, . . . , λn), and diagonal entries are the eigenvalues. This is just a
special case of the SVD. A symmetric positive-semidefinite matrix satisfies the property vTAv ≥ 0 for all v.
This implies that the eigenvalues of symmetric positive-semidefinite matrices are non-negative.

Example 9 Let X be a random vector taking values in Rn and recall the definition of the covariance matrix:

Σ := E[(X − µ)(X − µ)T ]

It is easy to see that vT Σv ≥ 0, and of course Σ is symmetric. Therefore, every covariance matrix has an
eigendecomposition of the form Σ = UDU∗, where D = diag(λ1, . . . , λn) and λi ≥ 0 for i = 1, . . . , n.

The Karhunen-Lo’eve Transform (KLT), which is also called Principal Component Analysis (PCA), is
based on transforming a random vector X into the coordinate system associated with the eigendecomposition
of the covariance of X. Let X be an n-dimensional random vector with covariance matrix Σ = UDU∗.
Let u1, . . . , un be the eigenvectors. Assume that the eigenvectors and eigenvalues are ordered such that
λ1 ≥ λ2 ≥ · · · ≥ λn. The KLT or PCA representation of the random vector X is given by

X =
n∑

i=1

(uT
i X)ui
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The coefficients in this representation can be arranged in a vector as θ = UTX, where U is as defined above.
The vector θ is called the KLT or PCA of X. Using this representation we can define the approximation to
X in the span of the first r < n eigenvectors

Xr =
r∑

i=1

(uT
i X)ui

Note that this approximation involves only r scalar random variables {(uT
i X)}ri=1 rather than n. In fact, it

is easy to show that among all r-term linear approximations of X in terms of r random variables, Xr has
the smallest mean square error; that is if we let Sr denote all r-term linear approximations to X, then

E[‖X −Xr‖2] = min
Yr∈Sr

E[‖X − Yr‖]


