
ECE 830 Fall 2010 Statistical Signal Processing

instructor: R. Nowak , scribe: C. Hall

Lecture 25: Nonparametric Signal Estimation

Nonparametric Signal Estimation Setup

Recall in previous lectures we considered parametric signal estimation or “denoising” problems
Parametric Signal Estimation Setting

x = Hθ︸︷︷︸
f

+w , w ∼ N (0, I)

Hn×k known

θk×1 unknownk ≤ n

The signal is a vector in Rn that is described by k ≤ n parameters.
Now we are investigating a nonparametric version of this problem. Suppose we collect noisy samples of a
function f : [0, 1]→ R, the setting becomes
Nonparametric Signal Estimation Setting

xi = f(ti) + wi , i = 1, ..., n

Where:
f : [0, 1]→ R , unknown
t1, t2, ..., tn (the sampling locations) are uniformly spaced on the unit interval; e.g. ti = i−1

n
wi are iid noise, with E[wi] = 0 and E[w2

i ] = σ2, but otherwise unknown distribution

We know from classical Shannon-Nyquist sampling theory that the spacing between samples must be
inversely proportional to the highest frequency of f . In other words the sampling rate should be inversely
proportional to the “wiggliness” or “roughness” of the signal, the smoother the signal the fewer samples
are needed. Sample signals are reconstructed by interpolating between the sampled values. For example,
linear or polynomial interpolation is quite common. The classic theory doesn’t address how the interpolation
should be modified if noise is present in the samples, the topic of this lecture.

Hölder Smoothness

Since linear or polynomial interpolation is commonly used, that is the approach we will adopt. It is natural
to ask: what types of signals or functions can be accurately interpolated/approximated by polynomials?

Recall the definition of Lipschitz Continuous, Equation 1.

|f(t)− f(s)| ≤ L|t− s| (1)

|f ′(t)− f ′(s)| ≤ L|t− s| (2)

Equation 1 implies it is Hölder 1 smooth with a Hölder constant α = 1, if Equations 1 and 2 both hold
then it is Hölder 2 smooth with a Hölder constant α = 2, and so it continues as we take derivatives. More
formally we say:
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Definition A function f : [0, 1]→ R with k continuous derivatives is said to be Hölder smooth with parameter
and constant Lα ≥ 0 if

|f(t)− p(t; t0)| ≤ Lα|t− t0|α

where p(t; t0) is the degree k Taylor series approximation to f at t0, and k = dαe − 1

Examples

α = 1⇒ k = 0, Lipschitz smoothness

α = 2⇒ k ≥ 1 and linear (degree 1) approximation

Smoother f ⇔ Larger α

Approximating Hölder Smooth Functions

A Hölder α-smooth function can be well approximated by a piecewise polynomial function as follows. Divide
the interval [0,1) into m disjoint subintervals,[

0,
1

m

)
,

[
1

m
,

2

m

)
, ...,

[
m− 1

m
, 1

)
Denote the jth subinterval Ij :=

[
j−1
m , jm

)
. Let p(t;t’) be the degree k = dαe − 1 Taylor polynmial of f at

some t′ ∈ Ij . Then
|f(t)− p(t; t′)| ≤ Lα|t− t′|

≤ Lαm−α , ∀ t, t′ ∈ Ij
Now consider the sample points ti ∈ Ij There are n

m sample points in Ij . Let pj denote the polynomial of
degree k that fits best to these points; i.e.,

pj = arg min
p∈poly(k)

1

n/m

∑
i:ti∈Ij

|f(ti)− p(ti)|2 = arg min
θ∈Rk

1

n/m

∑
i:ti∈Ij

|f(ti)−
k∑
`=0

θ`t
`
i |2

Then
|f(t)− pj(t)| ≤ Lαm−α , ∀t ∈ Ij

pj has a simple parametric form

pj(t) = θ0j + θ1jt+ . . .+ θkjt
k = θTj v

where

θj =


θ0j

θ1j

...
θkj

 v =


1
t
...
tk


θj = arg min

θ∈Rk+1

∑
i:ti∈Ij

|f(ti)− θT vi|2

We can express this in matrix-vector notation.
Let fj be a vector of n

m samples of f(ti) , ti ∈ Ij .
Let Vj be the Vandermonde matrix with rows {vTi }i:ti∈Ij .
Then

θj = arg max
θ∈Rk+1

||fj − Vjθ||22
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(V Tj Vj)
−1V Tj fj , if Vj has full − rank

Fact: Vj has full-rank iff n
m ≥ k + 1

Now consider the piecewise polynomial approximation

f̄(t) =

m∑
j=1

pj(t)1{t∈Ij}

The L2 error of this approximation is

||f − f̄ ||22 =

∫ 1

0

|f(t)− f̄(t)|dt =

m∑
j=1

∫
Ij

|f(t)− pj(t)|2dt ≤
m∑
j=1

∫
Ij

L2
αm
−2αdt = L2

αm
−2α

n

m
≥ k + 1⇒ m ≤ n

k + 1

Estimating a Hölder Smooth Function from Noisy Data

To estimate f from data

xi = f(ti) + wi , i = 1, ..., n , ti =
i− 1

n

We will assume that the noises are iid with E[w] = 0, E[w2
i ] = σ2. We will make no further assumptions

about the noise distribution.
Here is our approach. We will “fit” a polynomial of degree dαe − 1 to the observations falling in each of the
subintervals. On subinterval Ij we obtain

θ̂j := min
θ∈Rk+1

1

nj

∑
i:ti∈Ij

|xi − pθ(ti)|2

= min
θ

1

nj

∑
i:ti∈Ij

|xi − θTVi|2

where nj = #ti in Ij = n
m and vi =


1
ti
t2i
...
tki


This has a simple solution. Let xj be a vector of the samples {xi}i:ti∈Ij and let Vj be the Vandermonde
matrix with rows {vTi }i:ti∈Ij Then

θ̂ = min
θ∈Rk+1

||xj − Vjθ||22

= (V Tj Vj)
−1V Tj xj

assuming the matrix Vj is full-rank.
Fact: Vj has full-rank iff n

m ≥ k + 1

Let p̂j(t) := θ̂Tj v = θ̂0j + θ̂1jt+ ...+ θ̂djt
d

and define our estimator to be

f̂(t) :=

m∑
j=1

p̂j(t)1{t∈Ij}

Note:
E[θ̂j ] = (V Tj vj)

−1V Tj E[xj ]
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= (V Tj Vj)
−1Vj

 f(ti1)
...

f(tinj )

 = θj

⇒ E[p̂j ] = pj

Bounding the Error (MSE)

The error we would like to bound is

E[||f − f̂ ||22] = E
[∫
|f(t)− f̂(t)|2dt

]
= E

 m∑
j=1

∫
Ij

|f(t)− p̂j(t)|2dt


Let p̄j(t) := E[p̂j(t)] = E[θ̂0j ] + E[θ̂1j ]t+ ...+ E[θ̂dj ]t

d and f̄(t) =
∑m
j=1 p̄j(t)1{t∈Ij}.

Decompose the error as follows:

E[||f − f̂ ||22] = E[||f − f̄ + f̄ − f̂ ||22] ≤ ||f − f̄ ||22 + 2E

[∫
[0,1]

|f − f̄ ||f̄ − f̂ |dt

]
︸ ︷︷ ︸

=0 since E[f̂ ]=f̄

+E[||f̄ − f̂ ||22]

= ||f − f̄ ||22 + E[||f̄ − f̂ ||22]

≤ L2
αm
−2α + E[||f̄ − f̂ ||22]

Therefore
E[||f − f̂ ||22] ≤ L2

αm
−2α + E[||f̄ − f̂ ||22] (3)

Bounding E[||f̄ − f̂ ||22]

E[||f̄ − f̂ ||22] = E

 m∑
j=1

∫
Ij

|pj − p̂j |2dt


= E

∑
j

∫
Ij

|(θj − θ̂j)T v|2dt


≤
∑
j

E

[∫
Ij

||θj − θ̂j)||22 ||v||22dt

]
, by applying Cauchy − Schwarz

≤
m∑
j

∫
Ij

||v||22dtE
[
||θj − θ̂j ||22

]
Since θ̂j is an unbiased estimator of θj

E
[
||θj − θ̂j ||22

]
= var(θ̂) ≤ C ′1

k + 1

n/m

where C ′1 > 0 is a constant depending on vj and σ2. Therefore

||f̄ − f̂ ||22 ≤
∑
j

∫
Ij

C ′1
m(k + 1)

n
||v||22dt

≤ C1
m(k + 1)

n
, for some C1 > 0 since

∫
[0,1]

||v||22dt = constant
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Final Bound

E||f − f̂ ||22 = ||f − f̄ ||22 + E[||f̄ − f̂ ||22

≤ L2
αm
−2α + C1

m(k + 1)

n

= L2
αm
−2α + C2

m

n

Taking m = n+ 1
2α+1 yields

E[||f − f̂ ||22 ≤ C × n−
2α

2α+1 , for some C > 0 (4)

Note that as smoothness α increases so does the rate of convergence.
This analysis is easily extended to Hölder smooth functions on [0, 1]d

Estimating d-dimensional Hölder Smooth Functions
if:

f [0, 1]d → R, is a Hölder α-smooth function
then:

n noiseless samples→ ||f − f̄ ||22 =
∫

[0,1]d
|f(t)− f̄(t)|2dt ≤ Cn− 2α

d , C > 0

n noisy samples→ E[||f − f̂ ||22] ≤ Cn−
−2α
2α+d , C > 0

So the final error bound is:
E[||f − f̂ ||22] ≤ Cn−

2α
2α+d

Thus we see that the “blessing of smoothness” can offset the “curse of dimensionality”


