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Lecture 24: Classification

Suppose we want to design an algorithm that will automatically classify objects into one of two categories
or “classes”. For example, imagine a computer-based system that when presented with an image of a cat or
dog must automatically decide which it is using only the image.

This can be done as follows:

1. Locate animal in picture

2. Extract features (e.g., size of ears, length of tail, shape of head, etc.). Collect the features into a vector
x ∈ Rd

3. 3. Provide the computer with a few “labeled” examples; e.g., “this is a picture of a dog”. Let the label
Y = 0 for cats and Y = 1 for dogs.

Now given n labeled examples, the computer has pairs

(X1, Y1), (X2, Y2), . . . , (Xn, Yn)

and will use these to predict the label for unlabelled images. Given an unlabeled image the algorithm extracts
the features X and uses the training data (Xi, Yi)

n
i = 1 to predict the correct label for Xj , i.e., to classify

the new image as a cat or dog image. How should this be done?

Simple solution: nearest neighbor.

1 Nearest Neighbor (NN) Classifier

1) Find xi ‘closest’ to x

2) Assign label associated with closest point in training set

Theorem 1 Let Pn denote the error rate of the NN classifier based on n samples

lim
n→∞

Pn ≤ 2Popt

Notice, Popt is the min error rate possible (Bayes error rate)

The NN classification rule works quite well if n is large, but generally not so well if n is small. The
problem is that the N classifier is completely unconstrained; it simply fits as well as possible to the data,
and it can “overfit” the data.
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Example 1 Suppose cats and dogs are to be classified using a 2D feature in [0, 1]2.

We will therefore consider systems that aim to determine the best classification rule from a restricted
collection of rules.

2 Terminology and Notation

Consider

(X,Y ) ∼ Pxyunknown x ∈ X, y ∈ 0, 1

Here, we define X as a feature, Y as a label, and Pxy as the unknown distribution relating features and
labels.

(Xi, Yi)
n
i=1 ∼ Pxy labeled set of examples; “training data”

h : X ∈ 0, 1 classification rule; “classifier”

1{h(x)6=y} =

{
0, h(x) = y

1, o.w.
Loss function

R(h) = E[1{h(x)6=Y } = P(h(x) 6= Y ) Risk of h (i.e., probability of error or “error rate” of h.)

3 Bayes Classifier

hopt = 1{ p(x|y=1)
p(x|y=0)

>
p(y=0)
p(y=1)

}

Notice, p(x|y=1)
p(x|y=0) >

p(y=0)
p(y=1) is the likelihood ratio test.

- minimizes probability of error; i.e. Bayes error rate Popt

- defines optimal decision region in X

- impossible to construct without perfect knowledge of class-conditional distributions p(x|y)
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4 Collections of Classifiers

His a collection of classifiers; i.e., functions h : X ∈ {0, 1}

Definition 1 The minimum risk classifier in H(h∗ has min probability of error, but also requires knowl-
edge of Pxy) is

h∗ = argmin
h∈H

R(h)

4.1 Examples of Collections of Classifiers

4.1.1 Histograms

Let X = [0, 1]d be a partition hypercube into m bins (each with sidelength m−1/2)

Assign a ’1 or ’0’ label to each bin. There are 2m possible labelings; each corresponding to a different
classifier.

H = {h ∈ {one of 2m labelings of m bins}} |H| = 2m. For h ∈ H, h(x)=label h has on bin that X falls
into.
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4.1.2 Linear Classifiers

X = [0, 1]d H = {all hyperplanes that split [0, 1]d into two halves} d = 2

Fact: if we assume that Px (distribution of features) satisfies

0 < c0 ≤ P (x) ≤ c1, ∀x

then there exists a finite collection of linear classifiers

Nε =

(
1

ε

)d+1

, Hε = {h1, . . . , hNε}

such that for any n ∈ H, ∃hi ∈ Hε s.t. |R(h)−R(hε)| ≤ ε.
Goal: Use training data {(Xi, Yi)} to select an h ∈ H that is (hopefully almost as good as h∗.

5 Empirical Risk Minimization

The “empirical risk” of a classifier h is

R̂ =
1

n

n∑
i=1

1h(xi)6=yi

i.e., the error rate on the training data. Note that

E[R̂(h)] =
1

n

n∑
i=1

E[1{h(xi) 6= yi]

= P(h(x) 6= Y ) since xi, yi ∼ Pxy
= R(h).

Since we would like to minimize R(h), this suggests the following procedure for selecting a classifier using
the training data:

ĥ = argmin
h∈H

R̂(h)

ĥ is called the minimum empirical risk classifier.
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6 Analysis of ĥ

How good is ĥ? We hope that R(ĥ) is close to R(h∗). Consider any h ∈ H.

R̂(h) =
1

n

n∑
i=1

1h(xi) 6=yi

E[R̂(h)] = R(h)

Since the pairs (xi, yi) are iid, R̂(h) is an average of bounded iid random variables (in fact, there are iid
Bernoulli(R(h)).) Therefore we can apply Hoeffding’s inequality (also known as the Chernoff bound in the
case of sums of Bernoulli r.v.’s) to obtain the bound

P(|R(h)− R̂(h)| > ε) ≤ 2e−2nε
2

Approach: Show that

1)R̂(ĥ) is close to R(ĥ)

2) R(ĥ) is close to R(h∗)

So, can we claim that

P(|R(ĥ)− R̂(ĥ)| > ε) ≤ 2e−2nε
2

?

No. Since ĥ is also a function of the training data, both R(ĥ) and R̂(ĥ) are random variables and neither is
a simple average of iid variables. But suppose we had a “uniform” bound of the form

P(|R(h)− R̂(h)| > ε) ≤ δ ∀h ∈ H

equivalently
P(max

h∈H
|R(h)− R̂(h)| > ε) ≤ δ

Then since ĥ ∈ H it follows that
P(|R(ĥ)− R̂(ĥ)| > ε) ≤ δ

So, how do we get a “uniform” bound?

P(max
h
∈ H|R(h)− R̂(h)| > ε)

= P(∪h ∈ H{|R(h)− R̂(h)| > ε})

≤
∑
h∈H

P(|R(h)− R̂(h)| > ε) “union bound”

≤
∑
h∈H

2e−2nε
2

“Chernoff bound”

Now let’s assume H is finite and let |H| denote the number of classifiers in H. Then

P(max
h∈H
|R(h)− R̂)h| > ε) ≤ 2|H|e−2nε

2

=: δ

Note that in order for this bound to be non-trivial (i.e., δ < 1) we require

2|H|e−2nε
2

< 1
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=⇒ n >
log |H|+ log 2

2ε2
= O(log(|H|)

So now we have that with probability ≤ δ

max
h
|R(h)− R̂(h)| ≥ ε

or equivalently, with probability ≥ 1− δ

|R(h)− R̂(h)| ≤ ε, ∀h ∈ H

Now we can bound the error rate (risk of ĥ as follows. With probability ≥ 1− δ

R(ĥ) ≤ R̂(ĥ) + ε, since |R(ĥ)− R̂(ĥ)| ≤ ε

≤ R̂(h∗) + ε, since min
h
R̂(h) = R̂(ĥ)

≤ R(h∗) + 2ε, since |R(h∗)− R̂(h∗)| ≤ ε

So we have shown that for any ε > 0

P(R(ĥ) ≤ R(h∗) + 2ε) ≥ 1− 2|H|e−2nε
2

or equivalently for any δ ∈ [0, 1]

P

(
R(ĥ) ≤ R(h∗) + 2

√
log |H|+ log 2/δ

2n

)
≥ 1− δ

i.e., “with high probability R(ĥ) is not too much larger than R(h∗), provided n > log |H|”

We can use this probability bound to also bound the expected risk of ĥ:

E[R(ĥ)]−R(h∗) ≤ 2

√
log |H|+ log 2/δ

2n
· (1− δ) + 1 · δ

2

√
log |H + log 2/δ

2n
+ δ

where E[R(ĥ)] is the expectation w.r.t. training data, and 1 · δ is the worst case difference between R(ĥ) and
R(h∗)

Since this upper bound is always at least 1√
n

we may as well set δ = 1√
n

to obtain

E[R(ĥ)]−R(h∗) ≤ c0
√

log |H|/n

Where δ > 0 is a constant.

7 Histogram Classifiers

m bins =⇒ |H| = 2m, log |H| = m log 2

So for histogram classifiers, on bin j, ĥ takes label of “majority” vote of Yi associated with Xi in bin j.

E[R(ĥ)]−R(h∗) ≤ C0

√
m

n
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where m
n represents the degrees of freedom m divided by n data points.

But what about R(h∗)? We can’t say much without making some assumption about the optimal (Bayes)
classifier hopt. Let m = kd, i.e. each bin has sidelength 1/k. Furthermore, assume that the boundary of the
optimal classifier passes through no more than C1k

d−1 of the bins.

Consider best histogram h∗ approximate to hopt. h
∗ and hopt will agree on all bins except those where

boundary of hopt passes through. On those bins the worst case difference is 1. So assuming p(x) ≤ c on all
bins,

R(h∗)−R(hopt) ≤ C ·
C1k

(d− 1)

kd
= C2k

−1 = C2m
− 1
d

So we have

E[R(ĥ)−R(hopt)]

= E[R(ĥ)]−R(h∗) +R(h∗)−R(hopt) ≤ C0

√
m

n
+ C2m

− 1
d

Choose m to min upper bound =⇒ m = n
d
d+2

=⇒ E[R(ĥ)−R(hopt) ≤ constant× n−
1
d+2 , Curse of dimensionality

8 Linear Classifiers

Assume p(x) ≥ C > 0,∀x ∈ [0, 1]d

H is the ε-dense set of linear classifiers on [0, 1]d. |Hε| =
(
1
ε

)d+1

h∗ε = arg min
h∈Hε

R(h), R(h∗ε )−R(h∗) ≤ ε

h∗ = argmin
h∈H

R(h), where H is the set of all linear classifiers

ĥ = arg min
h∈Hε

R̂(h)
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E[R(ĥ)]−R(h∗ε ) ≤ C0

√
log |Hε|

n

= C0

√
(d+ 1) log 1

ε

n

=⇒ E[R(ĥ)]−R(h∗) ≤ C0

√
(d+ 1) log 1

ε

n
+ ε

Choose ε
√
d/n

=⇒ E[R(ĥ)−R(h∗)] ≤ constant ·
√
d log n

n


