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Statistical Learning Theory

So far in the course we have considered signal detection and estimation problems with parametric distri-
butions.

Example 1. Hypothesis testing:

H0 : xi
iid∼ p0

H1 : xi
iid∼ p1

Example 2. Parametric estimation:

xi
iid∼ Poisson(θ), θ̂ =

1

n

n∑
i=1

xi

Example 3. Signal estimator:

x ∼ N (Hθ, σ2I), θ̂ = (HTH)−1HTx

However in many problems we are faced with unknown distributional characteristics. The distribution
generating the data may be non-parametric or even completely unknown.

Example 4. Parameter Estimation:
Suppose that x ∈ Rd are ’features’ that can be used to predict the class ’label’:y = 0 or 1.This is similiar

to binary hypothesis testing if we have p0(x) = p(x|y = 0) and p1(x) = p(x|y = 1). Suppose we don’t know p0

and p1, but we have a set of labeled examples {(xi, yi)}ni=1
iid∼ p(x, y). Given these data we can try to design

a function to predict the proper label for other x.

Example 5. Non-parametric Estimation:
Suppose that we make noisy observations of an unknown function f .

yi = f(xi) + εi, i = 1, . . . , n

where εi are iid noise with possibly unknown distribution.
If the xi are also iid, then

(xi, yi)
n
i=1

iid∼ pxy(f)

How well can we estimate f from these data? If f were a parametric function of a single parameter, then
we expect the MSE to be on the order of 1

n . But what if f is a smooth (i.e. differentiable) but other unknown
function?

Density Estimation

Perhaps the most basic problem in statistical learning theory is density estimation. Suppose xi
iid∼ p, i =

1, . . . , n where the density p is unknown and doesn’t necessarily have a parametric form. For this moment
let’s assume p would be any probabilistic density function.

The most intuitive approach to density estimation is to estimate the density at a point x as:

p̂(x) ∝ #xi falling in a small neighborhood about x

If there are more/less xi near x, then the probabilistic density is probably higher/lower at that point.
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Histogram Density Estimators

Let’s assume that the unknown density p is supported on the unit hypercube in d-dimensions, i.e. supp(p) =
[0, 1]d. We can always rescale any bounded region of support to the cube.

Now divide [0, 1]d into m subcubes of sidelength m−
1
d . For example, if d = 2, then we have this partition

of the unit square:

Figure 1: Partition of the hypercube

Let’s call the subcubes ’bins’ and enumerate them as Bj , j = 1, . . . ,m.Let nj be the number of {xi} in
bin Bj , i.e.

nj :=

n∑
i=1

1xi∈Bj

The quantity

q̂j :=
nj
n

is an estimator of the probability mass p places on bin Bj , i.e.

qj :=

∫
Bj

p(x)dx

Note that nj is the number of samples out of a total of n in Bj and qj is the probability of a sample falling
in the bin, therefore:

nj ∼ Binomial(n, qj)

P(nj = k) =

(
n

k

)
qkj (1− qj)n−k

How good of an estimator is p̂m?
Let’s consider the squared error:

‖p− p̂m‖22 =

∫
[0,1]d

|p(x)− p̂m(x)|2dx
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The squared error is a random variable since it depends on the random sample xi
iid∼ p, i = 1, . . . , n. So let’s

consider the MSE E[‖p− p̂m‖22] where the expectation is with respect to the random sample used to design
p̂m.

The estimator p̂m is reasonable if it is consistent, i.e. if

E[‖p− p̂m‖22]
n→∞−→ 0

Specifically this is L2 or MSE consistency.
Based on the distribution of nj , we know E[nj ] = nqj , thus we have:

E[q̂j ] = E[
nj
n

] = qj

It also follows that Var(nj) = nqj(1− qj), thus we have:

Var(q̂j) = E[(qj − q̂j)2] =
qj(1− qj)

n

Now since q̂j is an unbiased estimator of the probability mass of Bj , we can estimate approximately the
probability density on Bj as

Prob mass

volume
=
q̂j
1
m

= mq̂j

which yields the following estimator of the density function p:

p̂m(x) =

m∑
j=1

mq̂j1x∈Bj

= m× 1

n
× {#xi in bin containing x}

To analyze the MSE, consider the following decomposition into bias and variance.

E[‖p− p̂m‖22] = E[‖p− pm + pm − p̂m‖22]

where pm = E[p̂m] =
∑m

j=1mqj1x∈Bj
.

Note that
E[‖p− p̂m‖22] = ‖p− pm‖22 + E[‖pm − p̂m‖22]

since E[
∫

(p(x)−pm(x))(pm(x)−p̂m(x))dx] =
∫

(p(x)−pm(x))E[pm(x)−p̂m(x)]dx =
∫

(p(x)−pm(x))×0dx = 0
The quantity ‖p − pm‖22 measures the bias or ’approximation error’ that is incurred by approximating

the density as piecewise constant on the histogram partition.
For example, if d = 1, then the picture looks like this:
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Figure 2: Picture of p(x) and pm(x)

It is clear that as m→∞, the approximation error ‖p− pm‖22 → 0.So more bins is better in this sense.
The term E[‖pm − p̂m‖22] is the variance or ’stochastic error’ incurred because we must estimate the

probability mass qj on each bin using the training data {xi}ni=1.
Clearly, if m� n, then we will have no samples in most bins, which makes estimation impossible. So m

should not be too large.
To get a better sense of this effect let’s look at the variance more closely.

‖pm − p̂m‖22 =

∫
[0,1]d

|pm(x)− p̂m(x)|2dx =

m∑
j=1

∫
Bj

|mqj −mq̂j |2dx =

m∑
j=1

1

m
|mqj −mq̂j |2 = m

m∑
j=1

|qj − q̂j |2

Therefore,

E[‖pm − p̂m‖22] = m

m∑
j=1

E[(qj − q̂j)2] = m

m∑
j=1

qj(1− qj)
n

As we know ∀qj ∈ [0, 1], qj(1− qj) ≤ qj , so we have the upper bound for E[‖pm − p̂m‖22]:

E[‖pm − p̂m‖22] ≤ m
m∑
j=1

qj
n

=
m

n

So we have shown that:

E[‖pm − p̂m‖22] = C
m

n
, for some constant C > 0

If we want the variance to go to zero then we require:

m

n

n→∞−→ 0

To conclude so far:

The bias ‖p− pm‖22 → 0 if m→∞

The variance E[‖pm − p̂m‖22]→ 0 if
m

n
→ 0



Statistical Learning Theory 5

So we can take m = m(n) any diverging function of n such that

lim
n→∞

m(n)

n
= 0

For example, m =
√
n,m = log n,etc. will suffice for consistency.

What choice of m is the best? This depends on the underlying density p. If it is very smooth, like

Figure 3: An example of smooth distribution

then large bins are best since the approximation error as well as the variance is small.
However if the density is more irregular, lay like this:
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Figure 4: An example of irregular distribution

Then the approximation error will be very large unless we use many small bins.
To move forward, we must make some assumptions about the smoothness of p.
One of the least restrictive notion of smoothness is Lipschitz regularity.
We say that p is Lipschitz smooth with constant L > 0 if:

|p(x)− p(y)| ≤ L‖x− y‖2 ∀x, y ∈ [0, 1]d

If ‖x− y‖2 is small, then p(x) ≈ p(y).
Assuming p is Lipschitz we can bound the bias (approximation error) as follows:∫

|p(x)− pm(x)|2dx =

m∑
j=1

∫
Bj

|p(x)− pm(x)|2dx ≤
m∑
j=1

∫
Bj

|p(x)− p(zj)|2dx

where zj is midpoint of bin Bj .
Then we have:∫

|p(x)− pm(x)|2dx ≤
m∑
j=1

∫
Bj

L2|x− zj |2dx ≤
m∑
j=1

∫
Bj

L2dm−
2
d dx = L2dm−

2
d

since the diameter of cube of sidelength m−
1
d is dm−

2
d and

∫
Bj

1x∈Bj
dx = 1

m .

So we have:
‖p− pm‖22 ≤ dL2m−

2
d

and
E[‖pm − p̂m‖22] ≤ Cm

n

as before, put them together, we have:

MSE(p̂m) = E[‖p− p̂m‖22] ≤ dL2m−
2
d + C

m

n
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To minimize the upper bound we choose m so that both terms are equal(since one is proportional to m
and the other is inverse proportional to m). Ignoring constants:

m−
2
d =

m

n
⇒ m = n

d
2+d

Plugging this choice back into the MSE bound yields

MSE(p̂m) ≤ Constant× n−
2

2+d

Note that the rate of convergence depends on d.Moreover, we can also prove according to information
theory that there is no Lipschitz smooth function that can perform better than the decreasing rate of

n−
2

2+d .Obviously, the decreasing rate is considerably slower in high dimensions, which is called ’curse of
dimensionality’.


