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Lecture 20: Signal Subspaces and Sparsity

1 Signal Subspaces and Sparsity

Recall the classical linear signal model:

X = Hθ + w, w ∼ N(0, σ2
wI)

Where S = Hθ, is a linear-parametric model for the signal and w is noise. Here H is a known n× k matrix,
whose columns span the signal subspace, and θ ∈ Rk are the signal parameters.

MLE:
The MLE of θ is:

θ̂MLE = (HT H)−1HT X

and the MLE of the signal is:
Ŝ = Hθ̂ = H(HT H)−1HT

︸ ︷︷ ︸
PH

X

Where PH = H(HHH)−1HT

Wiener filter:
The Bayes MMSE estimator based on a prior θ ∼ N(0, σ2

θI) is the Wiener filter:

θ̂wiener = HT
(
HHT +

σ2
w

σ2
θ

I
)−1

X =
( σ2

θ

σ2
θ + σ2

)
θ̂MLE

This follows directly from the Gauss-Markov Theorem, also

HT
(
HHT +

σ2
w

σ2
θ

I
)−1

−→ (HT H)−1HT as
σ2

w

σ2
θ

−→∞

So in the high SNR situation, the Wiener filter acts essentially the same as the MLE; it projects X onto the
signal subspace. At low SNR the Wiener filter “shrinks” the MLE to balance the tradeoff between bias2 and
variance.

2 Sparsity

In the classic set-up:
X = Hθ + w

we assume that we know the low-dimensional signal subspace. In many problems we may not have this
information, but we might know that the signal lies in one of many subspaces in a certain trasform domain.

Example 1 Narrowband communications
The communication signal lies in one of many narrow frequency bands, but we may not know which band

it will be in (e.g. frequency hopping communication).
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Example 2 Wavelet-based Image Processing
The discrete wavelet trasform (DWT) is very effective at compressing natural images. In fact it is the

basis of the JPEG 2000 Standard. The DWT 06 images tends to be “sparse” in the following sense.
If x is an image and w denotes the DWT, then the DWT coefficients θ = wX tend to be mostly zero

(or very nearly zero). The locations of the relatively few non-zero (or significant) coefficients in the vector θ
depend in a complicated way on x itself.

So, while image do approximately lie in a subspace of the wavelet domain, the subspace is different for
each different image.

3 Sparse Signal Models

Let u be an n × n matrix whoes columns form an orthobasis for R. For example, U could be the DFT or
DWT. Consider the denoising problem:

X = Hθ + w, w ∼ N(0, σ2
wI)

An equivalent observation model is:

uT X = uT uθ + uT w

= θ + w′

Where w′ ∼ N(0, σ2uT Iu)
Consider this model:

y = θ + w, w ∼ N(0, σ2
wI)

Where y = uT X
If we make no assumption about the θ, then we might use the MLE:

θ̂MLE = uT X = y,

ŜMLE = X

If we suppose that the coefficients tend to have a certain energy, then we could use the prior: θ ∼ N(0, σ2
θI)

and the wiener filter:

θ̂wiener = uT
(
uuT +

σ2
w

σ2
θ

I
)−1

X

Since u is an orthonormal transform uuT = I and the wiener filter simplifies to:

θ̂wiener = uT
(
1 +

σ2
w

σ2
θ

)−1

IX

=
(
1 +

σ2
w

σ2
θ

)−1

uT X

=
( σ2

θ

σ2
θ + σ2

w

)
· uT X

=
( σ2

θ

σ2
θ + σ2

w

)
· θ̂MLE

But now suppose our prior knowledge about θ is that it is sparse; i.e. many or most of the coefficients are
zero (or near zero). This is not captured by the Gaussian prior, which models every coefficient as a Gaussian
random variable with power σ2

θ . If many coefficients are zero, then many should have approximately zero
power!

So we would like to design a prior probability density that reflects our belief that most of the coefficients
are zero or near zero in magnitude.
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Example 3 Gaussian mixture
Let θ1, . . . , θn denote the coefficients and model them as follows:

θi
iid∼ p ·N(0, σ2

0) + (1− p) ·N(0, σ2
1)

where i=1,. . . , n, with σ2
0 << σ2

1.
In words this prior is saying that a fraction p of the coefficients tend to be very small in magnitude (i.e.

|θi| ∼ σ0) and 1-p tend to be large.
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Figure 1: Example of Gaussian Mixture

Example 4 Laplacian prior:

θi
iid∼ λ

2
e−λ|θi| , i = 1, . . . , n

We will focus on the laplacian prior because it leads to very simple and intuitive solutions to the donoising
problem and it is log-concave, which makes it computationablly tractable when used in inverse problems such
as deconvolution.
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Figure 2: Example of Laplacian prior
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4 Laplacian priors for sparsity

Assume the prior as:

p(θ) =
n∏

i=1

p(θi) =
n∏

i=1

λ

2
e−λ|θi|

Observation model:
X = uθ + w , w ∼ N((0, σ2I)

equivalently
uT x = θ + uT w

Note uT w ∼ N(0, uT (σ2
wI)u) ≡ N(0, σ2I)

Let’s define y = uT X, then we have the model:

y = θ + w , w ∼ N(0, σ2I)

The likelihood of θ given y is :

p(y|θ) =
n∏

i=1

1√
2πσ2

e−
(yi−θi)

2

2σ2

The posterior distribution of θ is:

p(θ|y) ∝ p(y|θ)p(θ)

=
n∏

i=1

1√
2πσ2

e−
(yi−θi)

2

2σ2 · λ

2
e−λ|θi|

Consider the MAP estimator:

θ̂ = argmax
θ

p(θ|x)

= argmax
θ

log(p(θ|x))

= argmax
θ

n∑

i=1

[
− (yi − θi)2

2σ2
− λ|θi|

]
+ constant

= argmin
θ

n∑

i=1

[ (yi − θi)2

2σ2
+ λ|θi|

]

If |θi| 6= 0, then we can differentiate to obtain:

− (yi − θi)
σ2

+ λsign(θi) = 0

−→ θi = yi − λσ2sign(θi)

and clearly the minimizer must have the same sign as yi, and so:

θ̂i = yi − λσ2sign(θi)

Plugging this into the argument of the minimization yields:

(yi − θ̂i)2

2σ2
+ λ|θi| = λ2σ4

2σ4
+ λ|yi − λσ2sign(yi)|

=
λ2σ2

2
+ λ|yi − λσ2sign(yi)| (1)
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On the other hand if θ̂i = 0, then the argument of the minimization is:

(yi − θ̂i)2

2σ2
+ λ|θi| = y2

i

2σ2
(2)

Observe that:

(1) < (2), if |yi| > λσ2;

(1) > (2), if |yi| ≤ λσ2

Therefore, the optimal solution is:

θ̂i =
{ 0, if |yi| ≤ λσ2

yi − λσ2sign(yi), if |yi| > λσ2

Graphically, the operation is this:

Figure 3: Plot of “soft-threshold”

This is called a “soft-threshold” function. It can be written compactly as:

θ̂i = sign(yi) ·max(|yi| − λσ2, 0)

The “soft-threshold” estimator is:

θ̂ =




θ̂1

...
θ̂n


 , ŝ = uθ̂ =

∑

i:|θ̂i|6=0

θ̂iui

Note that the soft-threshold estimator automatically selects a signal subspace based on the magnitude/energy
of the observed data in each 1-dimension subspace.

5 Summary

y = uT x + w, w ∼ N(0, σ2I)
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MLE:

θ̂MLE = argmin
θ

||x− uθ||22
2σ2

= argmin
θ

||x− uθ||2
2σ2

= uT x

= y

Wiener filter:

θ̂wiener =
( σ2

θ

σ2
θ + σ2

)
· y , θ ∼ N(0, σ2

θI)

or θ̂wiener,i =
( σ2

θi

σ2
θi + σ2

)
· yi , θi ∼ N(0, σ2

θiI)

−→ Fixed, non-adaptive trade off.

Soft-threshod: θi
iid∼ λ

2 e−λ|θi|

θ̂ = argmin
θ

||y − θ||22
2σ2

+ λ||θ||1

θ̂i = sign(yi) ·max(|yi| − λσ2, 0)

−→ Data-adaptive shrinkage to trade off bias and variance.

Example 5

σ2 = 1, y =
[
10
1

]
↙ probably just noise

MLE:

θ̂MLE = y =
[
10
1

]
full dimension

Wiener filter:

θ̂wiener =
( σ2

θ

σ2
θ + 1

) [
10
1

]
∝

[
10
1

]
full dimension

Soft-threshod:

θ̂wiener =
[
max(10− λ, 0)
max(1− λ, 0)

]
λ=1=

[
9
0

]
shrink to 1-dimension

6 Inverse problems

Suppose we observe a distorted signal s in noise:

x = As + w

= Auθ + w , w ∼ N(0, σ2I)

A is a known matrix, suppose s is sparse in basis u, and write s = uθ.
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Wiener Filter (with Gaussian Prior): θ ∼ N(0, λI)

θ̂wiener = argmin
θ

( ||x−Auθ||22
2σ2

+ λ||θ||22
)

−→ linear, non-adaptive.

Sparse Solution (Laplacian Prior): “LASSO”

θ̂L = argmin
θ

( ||x−Auθ||22
2σ2

+ λ||θ||21
)

︸ ︷︷ ︸
“LASSO”

−→ non-linear, adaptive.

Both are convex optimizations.


