
ECE 830 Fall 2010 Statistical Signal Processing

instructor: R. Nowak , scribe: I. Rosado-Mendez

Lecture 19: Bayesian Linear Estimators

1 Linear Minimum Mean-Square Estimator

Suppose our data is set X ∈ Rn , which is considered to be a random vector governed by a distribution
p(x|θ), which depends on the parameter θ. Moreover, the parameter θ ∈ Rk is treated as a random variable
with E[θ] = 0 and E[θθT ] = Σθθ. Also, assume that E[x] = 0 and let Σxx := E[xxT ] and Σθx := E[θxT ].
Then, as we saw in the previous lecture, the best linear estimator of θ is given by:

Â = arg min
A∈Rn×k

E
[
‖θ −ATx‖22

]
Â = Σ−1xxΣxθ

As a consequence, our Linear Minimum Mean Square Error Estimator or LMMSE estimator be-
comes:

θ̂ = ÂTx = ΣθxΣ−1xxx.

2 Orthogonality Principle

Let θ̂ = ΣθxΣ−1xxx be the LMMSE estimator, defined above. Then

E
[
(θ − θ̂)Tx

]
= E

[
tr
(
θ − θ̂)xT

)]
E
[
(θ − θ̂)Tx

]
= tr

(
Σθx − ΣθxΣ−1xxΣxx

)
E
[
(θ − θ̂)Tx

]
= 0

In other words, the error (θ − θ̂) is orghogonal to the data x. This is shown graphically in Fig. 1. It is

important to note that if θ̂ = ATx, then, by the orthogonality principle

0 = E
[
(θ − θ̂)xT

]
= Σθx −ATΣxx

∴ AT = ΣθxΣ−1xx .

which is the previously derived LMMSE estimator.
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Figure 1: Orthogonality between the estimator θ̂ and its error θ − θ̂.

2.1 Linear signal model

Suppose we model our detected signal as X = Hθ + W , where X and W ∈ Rn, θ ∈ Rk, Hn×k is a known
linear transformation, and W is a noise process. Furhtermore we know that

E[w] = 0,E[wwT ] = σ2
wIn×n

E[θ] = 0,E[θθT ] = σ2
θIk×k

In addition, we know that the parameter and the noise process are uncorrelated, i.e., E[θwT ] = E[wθT ]0. As
demonstrated before, the LMMSE estimator is

θ̂ = Σ−1xxΣxθx

where Σ−1xx and Σxθ can be obtained as follows:

Σxθ = E[θxT ] = E[θ(Hθ + w)T ] = σ2
θH

T

Σxx = E[xxT ] = E[(Hθ + w)(Hθ + w)T ] = σ2
θHH

T + σ2
w

Therefore, the LMMSE estimator is given by

θ̂ = σ2
θH

T (σ2
θHH

T + σ2
wIn×n)−1x

θ̂ = HT (HHT +
σ2
w

σ2
θ

In×n)−1x.

When does the LMMSE estimator minimize the Bayes MSE amog all possible estimators? When is the
linear estimar optimal? The LMMSE esteimator is optimal, i.e., it is the minimum Bayesian
MSE estimator when the Maximum A Posteriori estimator is linear.
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3 Gauss-Markov Theorem

Let X and Y be jointly Gaussian random vectors, whose joint distribution can be expressed as

[
X
Y

]
∼ N

([
µx
µy

]
,

[
Σxx Σxy
Σyx Σyy

])
then the conditional distribution of Y given X is

Y |X ∼ N
(
µy + ΣyxΣ−1xx (x− µx),Σyy − ΣyxΣ−1xxΣxy

)
.

3.1 Application to the Linear Signal Model

We model the detected signal as X = Hθ +W where W ∼ N (0, σ2
wIn×n) and θ ∼ N (0, σ2

θIk×k). Then, the
vector [Xθ]T is a multivarian Gaussian random vector. As we saw in previous lectures, the Bayesian MSE
is minimized by the posterior mean E[θ|X] which, in this case, using the Gauss-Markov theorem, is

E[θ|x] = µθ + ΣθxΣ−1xx (x− µx)

E[θ|x] = 0 + σ2
θH

T (σ2
θHH

T + σ2
wIn×n)−1(x− 0)

E[θ|x] = σ2
θH

T (σ2
θHH

T + σ2
wIn×n)−1x,

which is the previously derived LMMSE estimator. Therefore, linear estimators are optimal in the
Gaussian case.

3.2 Proof of the Gauss-Markov theorem

Without loss of generality assume that X and Y are zero-mean random vectors. Therefore

P (Y |X) =
P (X,Y )

P (X)
=

(2π)−n/2(2π)−n/2|Σ|−1exp{− 1
2

[
x y

]
Σ−1

[
x y

]T }
(2π)−n/2|Σxx|−1exp{− 1

2x
TΣ−1xxx}

where

Σ =

[
Σxx Σxy
Σyx Σyy

]
.

To simplify the formula we need to determine Σ−1. The inverse can be written as:

[
Σxx Σxy
Σyx Σyy

]−1
=

[
Σ−1xx 0

0 0

]
+

[
−Σ−1xxΣxy

I

]
Q−1

[
−ΣyxΣ−1xx I

]
where

Q := Σyy − ΣyxΣ−1xxΣxy.
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This formula for the inverse is easily verified by multiplying it by Σ to get the identity matrix. Substituting
the inverse into P (Y |X) yields

P (X|Y ) = (2π)−n/2|Q|−1exp{−1

2
(y − ΣyxΣ−1xxx)TQ−1(y − ΣyxΣ−1xxx)}

which shows that Y |X ∼ N (ΣyxΣ−1xxx,Q). For the general case when E[X] = µx and E[Y ] = µy then

(Y − µy)|(X − µx) ∼ N (ΣyxΣ−1xx (x− µx), Q)

Y |X ∼ N (µy + ΣyxΣ−1xx (x− µx), Q)

4 The Wiener Filter

When the expected values of the parameter θ ∈ Rk and the data x ∈ Rn are zero, then the Wiener filter
Aopt is obtained by minimizing the mean square error between the parameter and estimator:

Aopt = arg min
A:θ̂=Ax

E
[
‖θ −Ax‖22

]
which results in Aopt = ΣθxΣ−1xx , involving second order moments and which becomes the optimal estimator
when both the data and the parameter are jointly Gaussian distributed.

4.1 Signal + Noise Model

We model our detected signal as X = S+W where the noiseless signal S (our parameter) follows a Gaussian
distribution N (0,Σss) and W ∼ N (0,Σww). In addition, S and W are uncorrelated. Therefore, the data
vector X ∼ N (0,Σss+Σww) and E[sxT ] = E[s(s+w)T ] = Σss. From here, the LMMSE estimator ŝ becomes:

ŝ = Σss(Σss + Σww)−1x.

4.2 Linear Signal + Noise Model

Now we assume that the detected signal can be model as X = Hθ + W where now θ ∼ N (0,Σθθ) and
W ∼ N (0,Σww) where θ ∈ Rk and W ∈ Rn (which are uncorrelated) and H is an n× k linear transforma-
tion matrix. Therefore X ∼ N (0, HΣθθH

T + Σww). In addition, E[θxT ] = E[θ(Hθ+w)T ] = ΣθθH
T and the

estimator becomes

θ̂ = ΣθθH
T (HΣθθH

T + Σww)−1x.

Now suppose that Σθθ = σ2
θIk×k and Σww = σ2

wIn×n, then

θ̂ = σ2
θH

T (σ2
θHH

T + σ2
wIn×n)−1x

and the LMMSE estimator of the noisless signal becomes
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ŝ = Hθ̂ = σ2
θHH

T (σ2
θHH

T + σ2
wIn×n)−1x

In some cases HHT can be diagonalized under an orthonormal transformation U (its columns are orthonor-
mal to each other) in such a way that only the first k elements of the diagonal are nonzero

HHT = U



λ1 . . . 0 0 . . . 0
...

. . .
...

...
. . .

...
0 . . . λk 0 . . . 0
0 . . . 0 0 . . . 0
...

. . .
...

...
. . .

...
0 . . . 0 0 . . . 0


UT = UDUT .

As a consequence

ŝ = σ2
θUDU

T (σ2
θUDU

T + σ2
wIn×n)−1x

ŝ = σ2
θUDU

T (σ2
θUDU

T + σ2
wUU

T )−1x

ŝ = σ2
θUDU

T (U
[
σ2
θD + σ2

wIn×n
]
UT )−1x

ŝ = σ2
θUD

[
σ2
θD + σ2

wIn×n
]−1

UTx

ŝ = U(σ2
θD
[
σ2
θD + σ2

wIn×n
]−1

)UTx

Note that the term in parenthesis reduces to a diagonal matrix of the form

σ2
θλ1

σ2
θλ1+σ2

w
. . . 0 0 . . . 0

...
. . .

...
...

. . .
...

0 . . .
σ2
θλk

σ2
θλk+σ

2
w

0 . . . 0

0 . . . 0 0 . . . 0
...

. . .
...

...
. . .

...
0 . . . 0 0 . . . 0


which, as σ2

w/σ
2
θ tends to zero, converges to

1 . . . 0 0 . . . 0
...

. . .
...

...
. . .

...
0 . . . 1 0 . . . 0
0 . . . 0 0 . . . 0
...

. . .
...

...
. . .

...
0 . . . 0 0 . . . 0


and ŝ −→ PHx.
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4.3 Frequency Domain Wiener Filter

In tihs part we review the signal + noise example (4.1) but approaching the problem from Fourier domain.
Again, our model is X = S +W and now we take the DFT of both sides:

UTX = UTS + UTW

X̃ = S̃ + W̃

where S̃ ∼ N (0,Λs) and W̃ ∼ N (0,Λw). Equivalently

X = UUTS + UUTW = S +W

so S ∼ N (0, UΛsU
T ) and W ∼ N (0, UΛwU

T )
Therefore, the Wiener-Fielter estimator becomes

ŝ = Σss(Σss + Σww)−1x

ŝ = UΛsU
T (U [Λs + Λw]UT )−1x

ŝ = UΛsU
TU [Λs + Λw]−1UTx

ŝ = UΛs[Λs + Λw]−1UTx

ŝ = U



σ2
1

σ2
1+γ

2
1

. . . 0 0 . . . 0

...
. . .

...
...

. . . 0

0
. . . σ2

i

σ2
i+γ

2
i

0 . . . 0

0
. . . 0 0 . . . 0

...
. . .

...
...

. . . 0

0 . . . 0 0 . . .
σ2
n

σ2
n+γ

2
n


UTx

where σ2
j and γ2j are the jth elements of the diagonal matrices Λs and Λw, respectively. Therefore the

filtering process can be synthesized by the following algorithm:

1. Take the DFT of the measured signal.

2. Attenuate each frequency component according to 1
1+SNR−1

j

at frequency ωj , where SNRj = σ2
j /γ

2
j .

3. Take the inverse DFT of the attenuated spectrum.

4.4 Classical derivation of the Wiener Filter

Again, we start with the model X = S+W where X,S,W are wide-sense stationary processes. We re-express
them as time series

x[n] = s[n] + w[n]

.
We aim at defining a filter h[n] that will be convolved with x[n] to etstimate s[n]
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ŝ[n] = Σ
k
h[k]x[n− k]

Our filter should minimize the MSE:

MSE(ŝ[n]) = E
[
(s[n]− ŝ[n])2

]
MSE(ŝ[n]) = E

[
(s[n]2 − 2s[n]Σ

k
h[k]x[n− k] + (Σ

k
h[k]x[n− k])2

]
Differentiating with respect to h[m] and making the derivative equal to zero

∂MSE(ŝ[n])

∂h[m]
= E

[
− 2s[n]h[m] + 2(Σ

k
h[k]x[n− k])x[n−m]

]
∂MSE(ŝ[n])

∂h[m]
= −2Rsx[m] + 2(Σ

k
h[k]Rxx[m− k])

∂MSE(ŝ[n])

∂h[m]
= −2Rss[m] + 2

(
Σ
k
h[k](Rss[m− k] +Rww[m− k])

)
= 0

Therefore the optimal filter satisfies Rss[m] = Σ
k
h[k](Rss[m − k] + Rww[m − k]), which is just the familiar

Wiener-Hopf equation. Taking the DFT of both sides, we get

Sss(ω) = H(ω)
(
Sss(ω) + Sww(ω)

)
where Sss(ω) and Sww(ω) are the power spectra of the signal and the noise process, respectively. Therefore,
the filter becomes:

H(ω) =
Sss(ω)

Sss(ω) + Sww(ω)

5 Deconvolution

The final topic of this lecture is deconvolution. We model the detected signal as X = GS + W where G is
a circular convolution operator (a blurring transformation, shown in Fig. 2). As in the previous sections
S ∼ N (0, UΛsU

T ) and W ∼ N (0, UΛwU
T ). Furthermore, since G is circulant, G = UDUT , where D is a

diagonal matrix, which is basically the frequency response of G.
In this case, the Wiener filter solution is computed as follows:

ŝ = ΣssG
T (GΣssG

T + Σww)−1x

ŝ = UΛsU
TGT (GUΛsU

TGT + UΛwU
T )−1x

ŝ = UΛsU
TUDTUT (UDUTUΛsU

TUDTUT + UΛwU
T )−1x

ŝ = UΛsD
T (DΛsD

T + Λw)−1UTx



Lecture 19: Bayesian Linear Estimators 8

Figure 2: Blurring process. (a) Original impulse signal. (b) Blurring function. (c). Blurred signal

ŝ = UD̃UTx, where D̃kk =
DT
kk

|Dkk|2 + P−1kk

and Pkk =
Λs(k, k)

Λw(k, k)

Do not forget that the transpose operator works as the conjugate transpose operator when the matrix has
complex elements.

5.1 Classical Wiener Filter

Following a derivation simmilar to that of Section 4.4, in the case of a blurred, noise time series modeled as

x[n] = g[n] ∗ s[n] + w[n]

we aim at obtaining a filter h[n] such that the estimator of the deblurred, noisless signal is computed
from ŝ[n] = Σ

k
h[k]x[n− k]. The resulting filter in Fourier domain is:

H(ω) =
G∗(ω)Sss(ω)

|G(ω)|2Sss(ω) + Sww(ω)

where G(ω) is the transfer function of the blurring filter g[n] and G∗ is its complex conjugate.


