ECE 830 Fall 2010 Statistical Signal Processing

instructor: R. Nowak , scribe: K. Surender

Lecture 18: Bayesian Signal Processing

Most signal processing algorithms are designed and based on prior knowledge of signal and noise character-
istics. It is therefore natural (and useful) to view them as Bayesian inference strategies. Let’s first review
the Bayesian set-up:

Prior: p(#) - Prior probability distribution on signal parameters

Likelihood: p(z|0) - Conditional Distribution of observation z given 6

Posterior: p(f|z) = p}gz’g) =7 ;’ ((;‘f)); ((g)) -5 - Posterior probability distribution of 6 given z

Example 1 Let S(0) € R",0 € R¥. S is a n-dimensional signal vector determined by k < n parameters 0.
We observe X = S(0) + W, W ~ N(0,0%I)

Prior: p(6)
Likelihood: X0 ~ N(S(0),0°I)
Posterior: p(0)x) o p(x|0)p(6)

p(]6)p(6) = Wexp< _ # (x- 5(9))T(X _ 5(9))) ()

A loss function is formed by taking the negative log of the posterior probability. Note that this loss
function is comprised of two 6 dependent terms. One term is based on the observed data and the other
term is based on the prior probability.

| X -5 |3

902 —log(p(9)) + constants
g

—log(p(0|r)) =

1 Point Estimators

Usually we are interested in obtaining an estimator of 6 given x. Here are the two most common Bayesian
estimators.

1.1 Maximum A Posteriori (M AP) Estimator

éMAP = arg mgxp(f)lr)

= argmazp(xl6)p(6)

Note if p(f) = constant then HAMAP = é]\/[LE, where éMLE is the maximum likelihood estimate of 6.
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1.2 Posterior Mean Estimator

The posterior mean estimator is defined as:
fpns = Effla] = /9p(9\x) 4o

Note that p(]z) requires knowledge of the normalizing term p(x). Specifically,

C p(]0)p(0)
PO) = o)) o

where the denominator represents the normalization.

1.3 Posterior Mean and Bayesian MSE
N 2
The Bayesian MSE is IE[H 0—96 Hz} The estimator that minimizes this MSE is the posterior mean:

. A 2
0 = argmemE[H 0—0 Hz}
— min [ 16013020 dea
0
— argmin [ 6-0 1530/ a9
0
Now differentiate with respect to 6 and set equal to zero to find the minimizer 0
0 ~ 2 A
=180 lpelerde = [ 260yl a0 —0
= 0 /p(9|x) do = /9p(9|x) do

/ p(0]x) df = 1 therefore: § = / 0p(0|x) do
= éPM

Example 2 Coin Tossing. Let 6 ~ Uniforml0,1] be a parameter describing the probability that a coin toss
lands heads. Additionally assume we observe x = 10 heads in 10 flips. Then the posterior probability is given
as p(0]x) = 116 and the point estimators of 0 are:

Orrap =1

R 1 1 » f12 1 11
Opyv = Op@lx)dd =11 | 0" d0=11—|, = —

In the above example it is seen that the MAP estimator is more aggresive than the posterior mean estimator.

2 Linear Minimum MSE (LMMSE) Estimators

Suppose p(6) is such that [6p(0)dd = 0. Also, assume that E[z] = 0. Consider an estimator of the form
0 = AT X where A is a (kzn) matrix. Let’s find the A to minimize the Bayesian MSE:
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=

Figure 1: Posterior Probability Function from Example 2.

E[ll 6 ATX |3]

= E[tr((0-ATX)(0 - ATX)")]

= tr( [ —ATX)(0 - ATX)TD

- tr(]E 1007) — ATE[X6T] — [HXT]A+ATIE[XXT]A)
R (299 C AT, — e A+ ATEMA)

Now differentiate with respect to A and set equal to zero to find the minimizer A

0 A
G MSE(A) = —2550 + 255, 4 = 0

The following equation is called the Wiener Hopf Equation and provides a solution for A.

E:r@ = waA
— A = ¥;1%.

Therefore the LMMSE Estimator is given by the Wiener Filter and the observed data X
Ornrnise = SeoS o X
ngx;} is the Wiener Filter

Example 3 Let X = HO + W where 0 ~ N(0,031) and W ~ N(0,0%/1) are independent. Therefore
X ~N(0,02HHT + 6%,1). To find the LMMSE define the covariance matrices:

Yor = 0g HHY + 031
Yoo =E[X0T] =E[(HO+W)0T) = HSgp = 02 H
Now the LMMSE can be found as ATX.

A= (c2HHT + 0%, 1) 'o2H
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2
Orvimvse = ogH (of HHY + 03, 1) 7' X = HI(HH" + %I)’IX
Note that as SNR increases the LMMSE goes to the MLE. That is:

2
As 0-720 — 00 GLMMSE — (HTH)_IHTX = QMLE
Tw
We can rewrite the LMMSE by letting H be a matrix of k orthonormal column vectors H = [hl | ho |- hk]
and U an orthonormal basis for RN U = [hy | ha |-+ | hy | Pigr |- | ﬁn]

5 Tiexc Ok xcn— _
QLMMSE N UgHT(UgU |:0nk>l<€l:<k Onkixnkk] UT - U‘Q/VUUT) 1X

_ 27T 2| Irxk Okxn—k 2 ™! _ 2pT —17/T
= o2H (U(ag {On_m 0, " | ahU ) X =o2HTUD 'UTX

Note that:
- -
(o’é-&-a‘z/v)
%
H'U = [Tk Opxnory] D' = witew)
oy
1
0.2
L w d
Then: 1 1
H'UD WU = —— I, Opxn| UF = —5HT
O'g-i-O"Q/V |: kxk kx } 0'3+U‘2/V

Now the LMMSE can be written as the MLE multiplied by a shrinkage term

2
% by noting that in this
w
case HTH = 1.

g

2
Ty

—f% _(HTH)"'HTX
os —&—U?,V( )

OLMMSE =



