
ECE 830 Fall 2010 Statistical Signal Processing

instructor: R. Nowak , scribe: K. Surender

Lecture 18: Bayesian Signal Processing

Most signal processing algorithms are designed and based on prior knowledge of signal and noise character-
istics. It is therefore natural (and useful) to view them as Bayesian inference strategies. Let’s first review
the Bayesian set-up:

Prior: p(θ) - Prior probability distribution on signal parameters

Likelihood: p(x|θ) - Conditional Distribution of observation x given θ

Posterior: p(θ|x) = p(x,θ)
p(x) = p(x|θ)p(θ)∫

p(x|θ)p(θ) dθ - Posterior probability distribution of θ given x

Example 1 Let S(θ) ∈ Rn, θ ∈ Rk. S is a n-dimensional signal vector determined by k ≤ n parameters θ.
We observe X = S(θ) +W , W ∼ N (0, σ2I)

Prior: p(θ)

Likelihood: X|θ ∼ N (S(θ), σ2I)

Posterior: p(θ|x) ∝ p(x|θ)p(θ)

p(x|θ)p(θ) =
1

(2πσ2)n/2
exp

(
− 1

2σ2

(
X − S(θ)

)T(
X − S(θ)

))
p(θ)

A loss function is formed by taking the negative log of the posterior probability. Note that this loss
function is comprised of two θ dependent terms. One term is based on the observed data and the other
term is based on the prior probability.

−log(p(θ|x)) =
‖ X − S(θ) ‖22

2σ2
− log(p(θ)) + constants

1 Point Estimators

Usually we are interested in obtaining an estimator of θ given x. Here are the two most common Bayesian
estimators.

1.1 Maximum A Posteriori (MAP) Estimator

θ̂MAP = argmax
θ

p(θ|x)

= argmax
θ

p(x|θ)p(θ)

Note if p(θ) = constant then θ̂MAP = θ̂MLE , where θ̂MLE is the maximum likelihood estimate of θ.

1



Lecture 18: Bayesian Signal Processing 2

1.2 Posterior Mean Estimator

The posterior mean estimator is defined as:

θ̂PM = E[θ|x] =

∫
θ p(θ|x) dθ

Note that p(θ|x) requires knowledge of the normalizing term p(x). Specifically,

p(θ|x) =
p(x|θ)p(θ)∫
p(x|θ)p(θ) dθ

where the denominator represents the normalization.

1.3 Posterior Mean and Bayesian MSE

The Bayesian MSE is E
[
‖ θ̂ − θ ‖

2

2

]
. The estimator that minimizes this MSE is the posterior mean:

θ̂ = argmin
θ

E
[
‖ θ̂ − θ ‖

2

2

]
= min

θ̃

∫∫
‖ θ̃ − θ ‖

2

2 p(x, θ) dx dθ

= argmin
θ̃

∫
‖ θ̃ − θ ‖

2

2 p(θ|x) dθ

Now differentiate with respect to θ̃ and set equal to zero to find the minimizer θ̂

∂

∂θ̃

∫
‖ θ̃ − θ ‖

2

2 p(θ|x) dθ =

∫
2 (θ̂ − θ) p(θ|x) dθ = 0

=⇒ θ̂

∫
p(θ|x) dθ =

∫
θ p(θ|x) dθ∫

p(θ|x) dθ = 1 therefore: θ̂ =

∫
θ p(θ|x) dθ

= θ̂PM

Example 2 Coin Tossing. Let θ ∼ Uniform[0, 1] be a parameter describing the probability that a coin toss
lands heads. Additionally assume we observe x = 10 heads in 10 flips. Then the posterior probability is given
as p(θ|x) = 11θ10 and the point estimators of θ are:

θ̂MAP = 1

θ̂PM =

∫ 1

0

θ p(θ|x) dθ = 11

∫ 1

0

θ11 dθ = 11
θ12

12
|10 =

11

12

In the above example it is seen that the MAP estimator is more aggresive than the posterior mean estimator.

2 Linear Minimum MSE (LMMSE) Estimators

Suppose p(θ) is such that
∫
θ p(θ) dθ = 0. Also, assume that E[x] = 0. Consider an estimator of the form

θ̂ = ATX where A is a (kxn) matrix. Let’s find the A to minimize the Bayesian MSE:
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Figure 1: Posterior Probability Function from Example 2.

MSE(A) = E
[
‖ θ −ATX ‖22

]
= E

[
tr
(

(θ −ATX)(θ −ATX)T
)]

= tr
(
E
[
(θ −ATX)(θ −ATX)T

])
= tr

(
E[θθT ]−ATE[XθT ]− E[θXT ]A+ATE[XXT ]A

)
= tr

(
Σθθ −ATΣxθ − ΣθxA+ATΣxxA

)
Now differentiate with respect to A and set equal to zero to find the minimizer Â

∂

∂A
MSE(A) = −2Σxθ + 2ΣxxÂ = 0

The following equation is called the Wiener Hopf Equation and provides a solution for Â.

Σxθ = ΣxxÂ

=⇒ Â = Σ−1xxΣxθ

Therefore the LMMSE Estimator is given by the Wiener Filter and the observed data X

θ̂LMMSE = ΣxθΣ
−1
xxX

ΣxθΣ
−1
xx is the Wiener Filter

Example 3 Let X = Hθ + W where θ ∼ N (0, σ2
θI) and W ∼ N (0, σ2

W I) are independent. Therefore
X ∼ N (0, σ2

θHH
T + σ2

W I). To find the LMMSE define the covariance matrices:

Σxx = σ2
θHH

T + σ2
W I

Σxθ = E[XθT ] = E[(Hθ +W )θT ] = HΣθθ = σ2
θH

Now the LMMSE can be found as ÂTX.

Â = (σ2
θHH

T + σ2
W I)−1σ2

θH
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θ̂LMMSE = σ2
θH

T (σ2
θHH

T + σ2
W I)−1X = HT (HHT +

σ2
W

σ2
θ

I)−1X

Note that as SNR increases the LMMSE goes to the MLE. That is:

As
σ2
θ

σ2
W

→∞ θ̂LMMSE → (HTH)−1HTX = θ̂MLE

We can rewrite the LMMSE by letting H be a matrix of k orthonormal column vectors H =
[
h1 | h2 | · · · | hk

]
and U an orthonormal basis for RN U =

[
h1 | h2 | · · · | hk | h̃k+1 | · · · | h̃n

]
.

θ̂LMMSE = σ2
θH

T (σ2
θU

[
Ik×k 0k×n−k

0n−k×k 0n−k×n−k

]
UT + σ2

WUU
T )−1X

= σ2
θH

T
(
U(σ2

θ

[
Ik×k 0k×n−k

0n−k×k 0n−k×n−k

]
+ σ2

W )UT
)−1

X = σ2
θH

TUD−1UTX

Note that:

HTU =
[
Ik×k 0k×(n−k)

]
D−1 =



1
(σ2
θ+σ

2
W )

. . .
1

(σ2
θ+σ

2
W )

1
σ2
W

. . .
1
σ2
W


Then:

HTUD−1UT =
1

σ2
θ + σ2

W

[
Ik×k 0k×n

]
UT =

1

σ2
θ + σ2

W

HT

Now the LMMSE can be written as the MLE multiplied by a shrinkage term
σ2
θ

σ2
θ+σ

2
W

by noting that in this

case HTH = I.

θ̂LMMSE =
σ2
θ

σ2
θ + σ2

W

(HTH)−1HTX


