
ECE 830 Fall 2010 Statistical Signal Processing

instructor: R. Nowak , scribe: J.W.Yim

Lecture 15: MLE: Theory and Practice

Suppose X1, ..., Xn independent and identically distributed random variables with p(x|θ), for some θ ∈ Θ.
The Maximum Likelihood Estimator (MLE) is the random variable

θ̂n = argmax
θ

n∏
i=1

p(xi|θ)

= argmin
θ
−

n∑
i=1

log p(xi|θ)

Theorem 1 (Asymptotic Distribution of MLE) Let X1, X2, ..., Xn be iid random variables with p(x|θ∗),

where θ∗ ∈ Θ is a vector parameter. And let θ̂n = argmaxθ
∏n
i=1 p(xi|θ) = argmaxθ

∑n
i=1 log p(xi|θ).

Define log p(x|θ) :=
∑n
i=1 log p(xi|θ), and assume ∂logp(x|θ)

∂θj
and ∂2logp(x|θ)

∂θj∂θk
exist for all j,k. Then

θ̂n
asymp.∼ N(θ∗,

1

n
I−1(θ∗))

where I(θ∗) is the Fisher- Information Matrix.

[I(θ∗)]j,k = −E[
∂2logp(x|θ)
∂θj∂θk

|θ=θ∗ ]

PROOF (scalar θ)
By the mean value theorem,

∂logp(x|θ)
∂θ

|θ=θ̂ =
∂logp(x|θ)

∂θ
|θ=θ∗ +

∂2logp(x|θ)
∂θ2

|θ=θ̃ (θ̂ − θ∗)

, where θ̃ is some value between θ∗ and θ̂.

By definition, ∂logp(x|θ)
∂θ |θ=θ̂ = 0, so

0 =
∂logp(x|θ)

∂θ
|θ=θ∗ +

∂2logp(x|θ)
∂θ2

|θ=θ̃ (θ̂ − θ∗)

Now consider
√
n(θ̂ − θ∗). The reason for multiplying by

√
n is that in the case where X1, X2, ..., Xn be iid

random variables with N(θ∗, 1),
√
n(θ̂ − θ∗) ∼ N(0, 1).

From equation above we have

√
n(θ̂ − θ∗) =

1√
n
∂logp(x|θ)

∂θ |θ=θ∗
−1
n
∂2logp(x|θ)

∂θ2 |θ=θ̃

Consider the numerator.

1√
n

∂logp(x|θ)
∂θ

|θ=θ∗ =
1√
n

n∑
i=1

∂logp(xi|θ)
∂θ

|θ=θ∗

1
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By the Central Limit Theorem, we have

1√
n

∂logp(x|θ)
∂θ

|θ=θ∗
distribution→ Normal

with mean

E[
1√
n

n∑
i=1

∂logp(xi|θ)
∂θ

|θ=θ∗ ] =
1√
n

n∑
i=1

E[
∂logp(xi|θ)

∂θ
|θ=θ∗ ]

and

E[
∂logp(xi|θ)

∂θ
|θ=θ∗ ] =

∫
∂logp(x|θ)

∂θ
|θ=θ∗p(x|θ∗)dx

=

∫
1

p(x|θ∗)
∂p(x|θ)
∂θ

p(x|θ∗)dx

=

∫
∂p(x|θ)
∂θ

dx

=
∂

∂θ

∫
p(x|θ)dθ = 0

and variance

E[(
1√
n

n∑
i=1

∂logp(xi|θ)
∂θ

|θ=θ∗)2] =
1

n

n∑
i=1

E[(
∂logp(xi|θ)

∂θ
)2|θ=θ∗ ]

Note that

E[
∂2logp(xi|θ)

∂θ2
] =

∫
(

1

p(x|θ)
∂2p(xi|θ)
∂θ2

− (
1

p(x|θ)
∂p(xi|θ)
∂θ

)2)p(x|θ)dθ

= −E[(
∂logp(xi|θ)

∂θ
)2]

So the variance is

− 1

n

n∑
i=1

E[
∂2logp(xi|θ)

∂θ2
|θ=θ∗ ] = I(θ∗)

Now consider the denominator.

1

n

∂2logp(x|θ)
∂θ2

|θ=θ̃ =
1

n

n∑
i=1

∂2logp(xi|θ)
∂θ2

|θ=θ∗

SLLN→ E[
∂2logp(xi|θ)

∂θ2
|θ=θ∗ ]

= −I(θ∗)

So from the equation below,

√
n(θ̂ − θ∗) =

1√
n
∂logp(x|θ)

∂θ |θ=θ∗
−1
n
∂2logp(x|θ)

∂θ2 |θ=θ̃
the numerator

1√
n

∂logp(x|θ)
∂θ

|θ=θ∗
distribution→ N(0, I(θ∗))
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and the denominator

− 1

n

∂2logp(x|θ)
∂θ2

|θ=θ̃
SLLN→ I(θ∗)

Hence, the whole term converges as follows

√
n(θ̂ − θ∗) distribution→ 1

I(θ∗)
N(0, I(θ∗))

≡ N(0, I−1(θ∗))

1 Invariance of the MLE

Theorem 2 Let τ = g(θ∗) be a function of θ∗, and let θ̂n be the MLE of θ∗. Then τ̂n = g(θ̂n) is the MLE
of τ .

PROOF:
Let h = g−1 denote the inverse map of g. Define the induced log-likelihood function

L(x|τ) = max
θ∈h(τ)

logp(x|θ)

Figure 1: h is the inverse map of g

The MLE of τ is

τ̂n = argmax
τ

L(x|τ)

= argmax
τ

max
θ∈h(τ)

logp(x|θ)

= g(τ̂n)

Example 1 Xi
i.i.d∼ Poisson(λ) , i = 1,...,n

Find the MLE of probability that x ∼ Poisson(λ) is greater than λ. Define

ρ = g(λ) = P (X > λ)

=

∞∑
k=bλ+1c

e−λ
λk

k!

= 1−
bλc∑
k=0

e−λ
λk

k!
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The MLE of ρ is

ρ̂n = 1−
bλ̂nc∑
k=0

e−λ̂n
λ̂n

k

k!

where

λ̂ =
1

n

n∑
i=1

xi

2 Numerical Methods for Obtaining the MLE

If X ∼ p(x|θ), θ ∈ Θ, then the MLE is the solution to the equations ∂logp(x|θ)
∂θ = 0. Sometimes these equations

have a simple closed form solution, and other times they do not and we must use computational methods to
find θ̂.

Example 2 Xi
i.i.d∼ Poisson(λ), λ̂n = 1

n

∑
Xi

Example 3 X ∼ N(Hθ, I), where H is n× k and known and θ is k× 1 and unknown.

θ̂ = (HTH)−1HTX

Example 4 Xi
i.i.d∼ pN(µ0, σ

2
0) + (1− p)N(µ1, σ

2
1), i = 1, ..., n, θ = [p µ0 σ

2
0 µ1 σ

2
1 ]T

p(xi|θ) =
p√

2πσ2
0

e
− (xi−µ0)2

2σ20 +
1− p√
2πσ2

1

e
− (xi−µ1)2

2σ21

Figure 2: Mixed Gaussian Density

p(x|θ) =

n∏
i=1

p(xi|θ), a product of sums of exponentials

log p(x|θ) =
∑

of logs (sums of exponentials) ←Messy!

Sufficient Statistic: (X1, X2, ..., Xn)
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How to proceed?
1. Gradient/Newton methods

θ(t+1) = θ(t) + ∆
∂

∂θ
log p(x|θ)|θ=θ(t) , where ∆ is a step size.

2. Expectation-Maximization Algorithm (EM algorithm)

3 The EM Algorithm

Suppose the log-likelihood function looks like this:

Figure 3: EM algorithm

We would like to find the maximum at the point θ̂. One way is to follow the gradient (uphill) from a
random initial guess.
The EM algorithm operates a bit differently. It is an iterative method that constructs a surrogate function
at an intial starting point θ0 as shown above as the C2shed function. This function is designed to ”touch”
the log-likelihood at θ0 and t0 be easy to maximize. The maximizer of the surrogate gives us a new point θ1
which is guaranteed to have a likelihood value at least as large as θ0.

We then repeat this process at θ1 and generate a sequence of values(with increasing likelihood: θ0, θ1, ...
in this fashion). Unfortunately, unless the log-likelihood is concave (negative log-likelihood convex) and
hence unimodal, there is no guarantee that any method, besides a global brute-force search, will converge to
θ̂.


