ECE 830 Fall 2010 Statistical Signal Processing

instructor: R. Nowak , scribe: J.W.Yim

Lecture 15: MLE: Theory and Practice

Suppose X1, ..., X, independent and identically distributed random variables with p(z|@), for some 6 € ©.
The Maximum Likelihood Estimator (MLE) is the random variable

b = argmyx [T otoit)

= in — l il0
argmin ; og p(;|0)
Theorem 1 (Asymptotic Distribution of MLE) Let X1, Xs,..., X, be iid random wvariables with p(x|0*),
where §* € © is a vector parameter. And let 0, = argmaxg [[_, p(z;|0) = argmaxg Y., log p(z;|0).
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where 1(6*) is the Fisher- Information Matriz.
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PROOF (scalar 0)
By the mean value theorem,
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, where 0 is some value between 6* and 6.
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Now consider \/ﬁ(é — 6*). The reason for multiplying by +/n is that in the case where X3, Xs, ..., X, be iid
random variables with N(6*,1), /n(6 — 6*) ~ N(0,1).

From equation above we have

1 Blogp(m\e)

) * _ \/ﬁ | =0~
V(0 —67) = —1 6210917(96\9) ;
- o o=
Consider the numerator.
1 Ologp(x|0) | B Z 8logp J;Z\H |
\/5739 =0+ = \/» 0=0*



Lecture 15: MLE: Theory and Practice

By the Central Limit Theorem, we have
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Now consider the denominator.
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So from the equation below,
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and the denominator
1 02logp(x|6)
“n 902 ~lo—s
Hence, the whole term converges as follows
A distribution 1
0—0"

= N(0,I7(6%))

N(0,1(6"))

1 Invariance of the MLE
Theorem 2 Let 7 = g(0*) be a function of 0%, and let 0, be the MLE of 0*. Then 7, = g(@An) is the MLE
of T.

PROOF:
Let h = ¢! denote the inverse map of g. Define the induced log-likelihood function

L(z|r) = s logp(x0)

Cap Theta Cap tau

Figure 1: h is the inverse map of g
The MLE of 7 is
7, = argmaxL(z|7)
= argmax max logp(x|0
gmax max gp(z|0)
= g(7)

Example 1 X; i Poisson(A) , i =1,...,n
Find the MLE of probability that x ~ Poisson()) is greater than A. Define

p=9g(A) = PX>))
_ i A
= b
k=[A+1]
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The MLE of p is

where

2 Numerical Methods for Obtaining the MLE

If X ~ p(z|0),6 € ©, then the MLE is the solution to the equations %éww = 0. Sometimes these equations

have a simple closed form solution, and other times they do not and we must use computational methods to
find 6.

Example 2 X, ‘¢ Poisson(\), X, = a2 Xi

Example 3 X ~ N(H0,I), where H is nx k and known and 6 is kx 1 and unknown.
0= (HTH) '"H"X

i.3.d .
Example 4 X; "~ pN(uo,05) + (1 = p)N(u1,0%),i=1,...;n,0 = [p po 0§ pu 07"

z;—pg)? 2 —q)2
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p(xi|0) =

sig_1

Figure 2: Mixed Gaussian Density

p(x|d) = Hp(mi|9), a product of sums of exponentials
i=1

log p(z|0) = Z of logs (sums of exponentials) <+ Messy!

Sufficient Statistic: (X1, Xz, ..., Xpn)
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How to proceed?
1. Gradient/Newton methods

oD — g 4 A%Zog p(|0)]g—g, where A is a step size.

2. Expectation-Maximization Algorithm (EM algorithm)

3 The EM Algorithm

Suppose the log-likelihood function looks like this:

log-likelihood

thet
theta_o theta 1 theta_hat b

Figure 3: EM algorithm

We would like to find the maximum at the point 6. One way is to follow the gradient (uphill) from a
random initial guess.
The EM algorithm operates a bit differently. It is an iterative method that constructs a surrogate function
at an intial starting point 6y as shown above as the C2shed function. This function is designed to ”touch”
the log-likelihood at 6y and ty be easy to maximize. The maximizer of the surrogate gives us a new point 6,
which is guaranteed to have a likelihood value at least as large as 6.

We then repeat this process at 6; and generate a sequence of values(with increasing likelihood: g, 6, ...
in this fashion). Unfortunately, unless the log-likelihood is concave (negative log-likelihood convex) and
hence unimodal, there is no guarantee that any method, besides a global brute-force search, will converge to

0.



