ECE 830 Fall 2010 Statistical Signal Processing

instructor: R. Nowak , scribe: P. Melgarejo

Lecture 14: Maximum Likelihood Estimation

The maximum Likelihood (ML) Estimate is given by

b= 6
arg max p(z|6)

where p(z|f) as a function of z with the parameter 6 fixed is the probability density function or mass
function. And p(z|0) as a function of 6 with x fixed is called the “likelihood function”.

1 ML Estimation and Density Estimation

ML Estimation is equivalent to Density Estimation.
Assume
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The ML Estimation is equivalent to finding the density in {pp}oco that best fits the data. i.e., “The
generative model with the highest density /probability value at the point x.”

1.1 ML Estimation as Minimization

h = argminé
0 p(x|0)

arg HEH —log p(x|6)

Thus, we can view the MLE as minimizing the loss

0(6%,0) := —log p(x|0)

where dependence on 6* is embodied in z ~ p(x|6*)

Example 1.
1 1 Ty—1
p(x]f) = ﬁeXP{_*(x — HO)"YX7 (z — HO)}
(2m) 2517 2

The value of 8 is given by,

0 = arg mgin —log p(x|0)
= arg main(x — HO)TY Yz — HO)

(H'S'H)'HTY 'z
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2 MLE and Risk

The risk associated to the MLE is also known as a “expected loss”
E[¢(6",0)]
— E[-logp(al0)]

_ /p(xw*) (—log p(x|6)) dz

-~

Ruvre(67,0)

2.1 Excess Risk (“Regret”)

Let 0 be any value of the parameter and 6* be the true value that generates x. Then we can compare

Ryiie(07,0) — Rvue(07,07)

which quantifies how much larger the expected loss is when we use 6 instead of 6*.
Note that

Ryie(07,60) — Ryee(07,0%) = Ellogp(x]|0*) — log p(x|6)]
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with equality if 0 = 0*
Example 2.
X ~N(HO,Y), 6cRF X Hknown

f = arg mein —log p(x|6)

= arg mein(x — HO)TY Yz — HO)

(H'S='H)'HTS'H

3 Likelihood as a Loss function
In general
X; ifisp(x\ﬂ*), 0 e, i=1,---,n

the loss is given by,

06*,0) = —log (Hp(x“Q))

— 3" log p(a:[6)
=1
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MLE:

0 = argmeln—glogp(xﬂe)

Excess Risk:

Raie(07,0) — Rvue(97,0%) = nD (p(z]07)|lp(]0))

for any 0 € ©

4 Convergence of log likelihood to KL

Suppose X; e p(x]0*), then by strong law of large numbers (SLLN) for any 6 € ©

LY o f;}f'l"m) 254D (p(]0%) 1p(x16)

We would like to show that the MLE

~ 1<
0, = arg max — Zl log p(z;10)
=

converges to 8* in the following sense:

D (p(alo")llp(@lf)) — 0

Note that since 6,, maximizes S logp(x;]0) we have

1 Zlog P(ﬂfz\g ) <0
n i=1 p(xz|9n)

Thus we have

D08 B D (el ) + D (o1 p(al) < 0

= D (p(el0") Ip(lf)) <

DM m -D (p(xw*)npmén))’
i=1 Ti|Un

S0, D (p(a]6")|Ip(@l0h) ) — 0'if £ 320 log 22— b (p(a)o)|p(a/6n) )

The subtle issue here is that §n is a random variable, not a fixed 6 € ©, so we can not just appeal to the
SLLN.
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Theorem 1. Assume

Define

La.(0) = ,Z | , Vheco
L) = E[L ( )] D (p(x]607) [p(x|6))
Suppose the following assumptions hold

A1. sup|L,(0) — L(0)|->0
6€O

A2. sup L(6*) < L(#), Ve>0
0:]]0—6~ | 2€

then

-~

0, 0"
A1 says that the LR converges uniformly (wrt 0) to the KL divergence.
A2 says that locally 6* is strictly better (in KL) that 6.

Proof. Since 6,, minimizes L, (0) we have

Hence,

L) — L") = L(Bn) — Ln(6%) + L, (6%) — L(67)
< L(0n) — La(82) + Lo (67) — L(67)
< sup|L(0) — Ln(6)| + L, (6%) — L(6¥)

It follows that for any 6 > 0

P (L(@n) > L(6%) + (5) — 0, as n— o0

Now pick any € > 0. By A2 3§ > 0 such that

60— 6% >€e = L(O)>LO)+6
Hence

B([8, — 6] > €) < B(L(B.) > L(6") + ) — 0



