
ECE 830 Fall 2010 Statistical Signal Processing

instructor: R. Nowak , scribe: Yang Song

Lecture 11: Signal Detection in Unknown Noise

Recall last lecture

H0 : X ∼ N (0, σ2I)

H1 : X ∼ N (Hθ, σ2I)

with σ2 known, Hn×k known, and θk×1 unknown. GLRT:

2 log Λ̂(x)
xTPHx

2σ2

H1

≷
H0

γ

Under H0,
xTPHx

2σ2
∼ χ2

k

Example 1 Generalize the above question:

H0 : X ∼ N (0,Σ)

H1 : X ∼ N (Hθ,Σ)

with Σ known, Hn×k known, and θk×1 unknown.

1 Wilk’s Theorem

Theorem 1 Suppose H0 and H1 composite with

H0 models
l dofs

⊂ H1 models
k> l dofs

, dof : degree of freedom

Then under mild regularity assumptions, if

X1, . . . , Xn
i.i.d.∼ χ2

k-l

Then, under H0

2 log Λ̂n(x)︸ ︷︷ ︸
log GLRT

n→∞∼ χ2
k−l

1
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Figure 1: Probability density function of χ2
k

2 Unknown Noise Level

Now let’s look at case where noise level is unknown. Suppose

H0 : X ∼ N (0, σ2I)

H1 : X ∼ N (s, σ2I)

where σ2 > 0 is unknown and s is n× 1 and known.

log Likelihood Ratio:

log Λ(x) = − 1

2σ2
(x− s)T (x− s) +

1

2σ2
xTx

So our test is equivalent to
1

σ2
sTx

H1

≷
H0

γ′

or

t(x) := sTx
H1

≷
H0

γ , since σ2 > 0

Then what is the distribution of t(x)?

H0 : t(x) ∼ N(0, σ2sT s)

H1 : t(x) ∼ N(sT s, σ2sT s)

Both distributions depend on unknown σ2!

Let’s look at the GLRT. The MLE for σ2 is

σ̂2
i = arg max

σ2

P(x|Hi), i = 0, 1
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For H0 we have

σ̂2
0 = arg max

σ2

1

(2πσ2)n/2
exp

(
− 1

2σ2

)
xTx

= arg max−n
2

(
log σ2 + log 2π

)
− 1

2σ2
xTx

= arg min
n

2
log σ2 +

1

σ2
xTx

Take derivative with respect to σ2

⇒ ∂

∂σ2
P(x|H0) =

n

2

1

σ2
− 1

2σ4
xTx = 0

⇒ σ̂2
0 =

1

n
xTx

Similarly,

σ̂2
1 =

1

n
(x− s)T (x− s)

So the GLRT is

Λ̂(x) =

1
(2πσ̂2

1)
n/2 exp

(
− 1

2σ2
1
(x− s)T (x− s)

)
1

(2πσ̂2
0)

n/2 exp
(
− 1

2σ̂2
0
xTx

) =

(
σ̂2
0

σ̂2
1

)n/2
the log GLRT is

log Λ̂(x) =
n

2
log

(
xTx

(x− s)T (x− s)

)
What is the distribution of X under H0? X ∼ N (0, σ2I)

⇒ log Λ̂(x)
↑

still a function of σ2!

=
n

2
log

(
σ2wTw

(σw − s)T (σw − s)

)
, where w ∼ N (0, σ2I)

And, Wilks’ Theorem doesn’t apply since both H0 and H1 models have one degree of freedom. We cannot
set γ to control either error.

3 Unknown Signal and Noise Amplitudes

Let’s look at a slightly different problem. The problem in the previous case is that the unkown noise
amplitude affected the variance of both distributions, and the MLE of the noise variance differed in the two
hypotheses. Let us now suppose:

H0 : X ∼ N (0, σ2I)

H1 : X ∼ N (θs, σ2I)

with σ2 unknown, θ unknown, and sn×1 unknown.
Under H0

X = σw, w ∼ N (0, I)
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Under H1

X = θs+ σw

= σ(θ′s+ w), where θ′ =
θ

σ

The advantage here is that σ can be viewed as a scaling factor for the observation in both cases.

Let’s consider the GLRT for this problem. Under H0

σ̂2
0 =

1

n
xTx, asbefore.

Under H1, we must find the MLE of θ and σ2.

P(x|H, θ, σ
2) =

1

(sπσ2)n/2
exp

(
− 1

2sigma2
(x− θs)T (x− θs)

)
Taking the log we have:

−n
2

(log σ2 + log 2π)− 1

2σ2
(xTx− 1θsTx+ θ2sT s)

Differentiating with respect to σ2:

sTx = θsT s

⇒ θ̂ =
sTx

sT s

Differentiating with respect to σ2

− n

2

1

σ2
+

1

2σ
(x− θ̂s)T (x− θ̂s) = 0

⇒ σ̂2
1 =

1

n
(x− θ̂s)T (x− θ̂s)

Note: Wilks’ Theorem applies:

2 log
P(X|H1, θ̂, σ̂

2
1)

P(X|H0, σ̂2
0)

∼ χ2
1 for large n

Let’s look at the GLRT more closely.

Λ̂(x) =
P(x|H1, θ̂, σ̂2)

P(x|H0, σ̂2
0)

=

(
σ̂2
0

σ2
1

)n/2
exp

(
− 1

2σ̂2
1

(x− θ̂s)T (x− θ̂s) +
1

2σ̂2
0x
Tx

)
=

(
σ̂2
0

σ̂2
1

)n/2
exp

(
−n

2
+
n

2

)
=

(
σ̂2
0

σ̂2
0

)
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So the GLRT has the simple form

σ̂2
0

σ̂2
1

=
xTx

(x− θ̂s)T (x− θ̂s)

H1

≷
H0

γ

or equivalently
xTx

(x− ssT x
sT s

)(x− ssT x
sT s

)

H1

≷
H0

γ

Under H0 we have X = σw, w ∼ N (0, I), and so the test statistic is

σ2wTw

σ2(w − Psw)T (w − Psw)
→ invariant to σ2

Definition 1 γ can be chosen to insure a special PFA for every value of σ2. A test like this is said to have
a constant false alarm rate and is called CFAR detector.

To set γ we need to determine the distribution of wTw
(w−Psw)T (w−Psw)

, w ∼ N (0, I). Consider the test
statistic

t(x) =
xTx

(x− Psx)T (x− Psx)

=
xTx

x(I − Ps)x
=
xT (I − Ps)x+ xTPsx

xT (I − Ps)x

= 1 +
xtPsx

xT (I − Ps)x

So equivalently, we can write the GLRT as:

xTPsx

xT (I − Ps)x
H1

≷
H0

γ

Let U be n× (n− 1) matrix whose orthonormal columns span subspace orthogonal to s.

U = [u1, . . . , un−1]

Then u1, . . . , un−1,
s
‖s‖ are orthonormal basis for Rn

xTPsx =
|sTx|2

‖s‖2

xTPss =

n−1∑
i=1

|uTi x|2

Under H0

|sTw|2

‖s‖2
∼ χ2

1

n−1∑
i=1

(uTi w)2 ∼ χ2
n−1

Moreover, because u1, . . . , un−1 are orthogonal to s, the sTx and uTi x, i = 1, . . . , n− 1 are uncorrelated and
thus independent.
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⇒ (sTw)2

‖s‖2 are independent!

The ratio of independent χ2 random variables with degree of freedom k and l respectively has been well
studied and has a name: F-distributed with (k, l) degree of freedom

χ2
k/k

χ2
l /l

∼ Fk, l

In our case, under H0

xTPsx

xT (I − Ps)x/(n− 1)
∼ F1, n−1

and thus we can use the tail of the F-distribution to set a threshold for a desired PFA.
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Figure 2: Probability density function of F distribution and χ2
1 distribution

Note:
If X ∼ F (ν1, ν2), then Y = lim

ν2→∞
ν1X has the chi-square distribution χ2

ν1 .

In our case, lim
n→∞

F1,n−1 ∼ χ2
1, which is what Wilks’ Theorem told us.


