
ECE 830 Fall 2011 Statistical Signal Processing

instructor: R. Nowak

Lecture 7: Hypothesis Testing and KL Divergence

1 Introducing the Kullback-Leibler Divergence

Suppose X1, X2, . . . , Xn
iid∼ q(x) and we have two models for q(x), p0(x) and p1(x). In past lectures we have

seen that the likelihood ratio test (LRT) is optimal, assuming that q is p0 or p1. The error probabilities can
be computed numerically in many cases. The error probabilities converge to 0 as the number of samples n
grows, but numerical calculations do not always yield insight into rate of convergence. In this lecture we
will see that the rate is exponential in n and parameterized the Kullback-Leibler (KL) divergence, which
quantifies the differences between the distributions p0 and p1. Our analysis will also give insight into the
performance of the LRT when q is neither p0 nor p1. This is important since in practice p0 and p1 may be
imperfect models for reality, q in this context. The LRT acts as one would expect in such cases, it picks the
model that is closest (in the sense of KL divergence) to q.

To begin our discusion, recall the likelihood ratio is

Λ =
n∏
i=1

p1(xi)
p0(xi)

The log likelihood ratio, normalized by dividing by n, is then

Λ̂n =
1
n

n∑
i=1

log
p1(xi)
p0(xi)

Note that Λ̂n is itself a random variable, and is in fact a sum of iid random variables Li = log p1(xi)
p0(xi)

which
are independent because the xi are. In addition, we know from the strong law of large numbers that for
large n,

Λ̂n
a.s.→ E

[
Λ̂n
]

E
[
Λ̂
]

=
1
n

n∑
i=1

E [Li]

= E [L1]

=
∫

log
p1(x)
p0(x)

q(x)dx

=
∫

log
(
p1(x)
p0(x)

q(x)
q(x)

)
q(x)dx

=
∫ [

log
q(x)
p0(x)

− log
q(x)
p1(x)

]
q(x)dx

=
∫

log
q(x)
p0(x)

q(x)dx−
∫

log
q(x)
p1(x)

q(x)dx

1
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The quantity
∫

log q(x)
p(x)q(x)dx is known as the Kullback-Leibler Divergence of p from q, or the KL diver-

gence for short. We use the notation

D(q||p) =
∫
q(x) log

q(x)
p(x)

dx

for continuous random variables, and

D(q||p) =
∑
i

qi log
qi
pi

for discrete random variables. The above expression for E
[
Λ̂n
]

can then be written as

E
[
Λ̂n
]

= D(q||p0)−D(q||p1)

Therefore, for large n, the log likelihood ratio test Λ̂n
H1

≷
H0

λ is approximately performing the comparison

D(q||p0)−D(q||p1)
H1

≷
H0

λ

since Λ̂n will be close to its mean when n is large. Recall that the minimum probability of error test (assuming
equal prior probabilities for the two hypotheses) is obtained by setting λ = 0. In this case, we have the test

D(q||p0)
H1

≷
H0

D(q||p1)

For this case, using the LRT is selecting the model that is “closer” to q in the sense of KL divergence.

Example 1 Suppose we have the hypotheses

H0 : X1, . . . , Xn
iid∼ N (µ0, σ

2)

H1 : X1, . . . , Xn
iid∼ N (µ1, σ

2)
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Then we can calculate the KL divergence:

log
p1(x)
p0(x)

= log

(
1√

2πσ2 exp
[
− 1

2σ2 (x− µ1)2
]

1√
2πσ2 exp

[
− 1

2σ2 (x− µ0)2
])

= − 1
2σ2

[
(x− µ1)2 − (x− µ0)2

]
= − 1

2σ2

[
−2xµ1 + µ2

1 + 2xµ0 − µ2
0

]
D(p1||p0) =

∫
log p1(x)

p1(x)
p0(x)

dx

= Ep1
[
log

p1

p0

]
= Ep1

[
− 1

2σ2

(
−2xµ1 + µ2

1 + 2xµ0 − µ2
0

)]
= − 1

2σ2

(
2(µ0 − µ1)Ep1 [x] + µ2

1 − µ2
0

)
= − 1

2σ2

(
−2mu2

1 + µ2
1 + 2µ1µ0 − µ2

0

)
=

1
2σ2

(
µ2

0 − 2µ0µ1 + µ2
1

)
=

(µ1 − µ0)2

2σ2

So the KL divergence between two Gaussian distributions with different means and the same variance is
just proportional to the squared distance between the two means. In this case, we can see by symmetry that
D(p1||p0) = D(p0||p1), but in general this is not true.

2 A Key Property

The key property in question is that D(q||p) ≥ 0, with equality if and only if q = p. To prove this, we will
need a result in probability known as Jensen’s Inequality:

Jensen’s Inequality: If a function f(x) is convex, then

E [f(x)] ≥ f(E [x])

A function is convex if ∀ λ ∈ [0, 1]

f (λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y)

The left hand side of this inequality is the function value at some point between x and y, and
the right hand side is the value of a straight line connecting the points (x, f(x)) and (y, f(y)).
In other words, for a convex function the function value between two points is always lower than
the straight line between those points.

Now if we rearrange the KL divergence formula,
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D(q||p) =
∫
q(x) log

q(x)
p(x)

dx

= Eq
[
log

q(x)
p(x)

]
= −Eq

[
log

p(x)
q(x)

]
we can use Jensen’s inequality, since − log z is a convex function.

≥ − log
(

Eq
[
p(x)
q(x)

])
= − log

(∫
q(x)

p(x)
q(x)

dx

)
= − log

(∫
p(x)dx

)
= − log(1)
= 0

Therefore D(q||p) ≥ 0.

3 Bounding the Error Probabilities

The KL divergence also provides a means to bound the error probabilities for a hypothesis test. For this we
will need to recall Hoeffding’s Inequality.

Hoeffding’s Inequality: If Z1, . . . , Zn are iid and a ≤ Zi ≤ b, ∀ i, then

P

(
1
n

∑
i

Zi − E [Z] > ε

)
≤ e−2nε2/c2

and

P

(
E [Z]− 1

n

∑
i

Zi > ε

)
≤ e−2nε2/c2

where c2 = (b− a)2.

Now suppose that p0 and p1 have the same support and that over that support they are both bounded away
from zero and from above; i.e. 0 < α ≤ pi(x) ≤ β <∞, i = 0, 1. It then follows that

log
α

β
≤ log

p1(xi)
p0(xi)

≤ log
β

α

The quantity log p1(xi)
p0(xi)

is just the random variable Li. Thus Li is bounded, and Λ̂n is a sum of iid
bounded random variables. This allows us to use Hoeffding’s Inequality. Now, consider the hypothesis test
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Λ̂n
H1

≷
H0

0. We will now assume that the data X1, . . . , Xn
iid∼ q, with q either p0 or p1. We can write the

probability of false alarm as

PFA = P
(

Λ̂n > 0|H0

)
= P

(
Λ̂n − E

[
Λ̂n|H0

]
> −E

[
Λ̂n|H0

]
| H0

)
The quantity −E

[
Λ̂n|H0

]
will be the ε in Hoeffding’s inequality. We can re-express it as

Ep0
[
Λ̂n|H0

]
=

∫
p0(x) log

p1(x)
p0(x)

dx

= −
∫
p0(x) log

p0(x)
p1(x)

dx

= −D(p0||p1)

Finally applying Hoeffding’s inequality, we get

PFA = P
(

Λ̂n − (−D(p0||p1)) > D(p0||p1) | H0

)
≤ e−2nD2(p0||p1)/c2

with c2 =
(

log β
α − log α

β

)
.

Thus the probability of false alarm error is bounded by the KL divergence D(p0||p1). As n or D(p0||p1)
increase, the error decreases exponentially. The bound for the probability of miss, the other type of error,
can be found in a similar fashion:

PM = P
(

Λ̂n < 0 | H1

)
= P

(
Λ̂n −D(p1||p0) < −D(p1||p0) | H1

)
= P

(
D(p1||p0)− Λ̂n > D(p1||p0) | H1

)
≤ e−2nD2(p1||p0)/c2


