
ECE 830 Fall 2011 Statistical Signal Processing

instructor: R. Nowak

Lecture 22: Dynamic Filtering

1 Dynamic Filtering

In many applications we want to track a time-varying (dynamic) phenomenon.

Example 1 Tracking temperature or humidity in a museum room with an inaccurate device.

Key: Temperature changes slowly with time so we should be able to average across time to obtain better
estimates. How to do this? Model dynamics of temperature changes and noise/uncertainties in measurement.

2 Dynamical State Equation (Prior)

Let x1, x2, . . . denotes quantity (“state”) of interest. The state is changing over time and we will model this
variation stochastically as follows. The state at time n depends causally on the past. Let p(xn|xn−1, xn−2, . . . , x1)
denote the conditional distribution of the state at time n given all the past states. This distribution is a
n-variate function, and as n grows it becomes more and more complex (to specifiy, to compute, etc). A rea-
sonable simplifying assumption is to assume that the probability distribution of the state at time n depends
only on value of the state at time n− 1, a so-called Markovian assumption,

p(xn|xn−1, . . . , x1) = p(xn|xn−1) .

Note that p(xn|xn−1) is bivariate and therefore much simpler than the general causal model. To define the
state process we must to specify

(a) p(x1), the “initial state” distribution

(b) p(xn|xn−1), n = 2, 3, . . ., the state transition probability density functions

This is illustrated in the following example.

Example 2 Santa Tracker On December 25th legend has it that Santa Claus makes his way around the
globe, delivering toys to all the good girls and boys. Tracking Santa’s delivery trip has attracted considerable

1

Lecture 22: Dynamic Filtering 2

interest by the signal processing research community in recent years, see http://www.noradsanta.org/.
Here is a simple approach to the problem.

x(t) = Santa’s position at time t on Christmas Eve
∂x(t)
∂t

= v(t), velocity

We can sample Santa’s position once every second, producing a sequence of position values x1, x2, His
velocity is also represented by a discrete-time process v1, v2, . . . We use the following model for Santa’s
dynamics: [

xn+1

vn+1

]
=
[

1 ∆
0 1

] [
xn

vn

]
+
[

0
σ2

]
un, un ∼ N (0, 1),∆ small

Also, Santa’s initial position is the North Pole, denoted by x0. So we take p(x1) = δ(x1 − x0). In words,
Santa’s position at time xn+1 is equal to his position at time n plus a small step proportional to his velocity.
His velocity is modeled as a Gaussian white noise process, representing the fact that he randomly speeds up
and slows down as he makes his stops around the world.

3 Observation Model (Likelihood)

Usually we cannot observe xn directly. Instead we observe z1, z2, . . . , which are noisy and/or indirect
measurements related to the states.

Example 3 Here are a few examples of observation processes.

zn = xn + wn , wn ∼ N (0, σ2) , simple signal+noise model
zn = Axn + wn , where A is a matrix representing, for example, a blur
zn = f(xn) + wn , f is a non-linear function

Let p(zn|xn) denote the likelihood of xn based on observation zn. We can combine the likelihoods and the
priors p(xn|xn−1) to compute the posterior distribution of x = (x1, . . . , xn) given z = (z1, . . . , zn)

p(x|z) ∝ p(z|x)p(x) =
n∏

i=1

p(zi|xi)p(xi|xi−1) .

The posterior can be computed efficiently in an incremental fasion by exploiting Markovian structure of state
transitions (prior). This incremental procedure is called Density Propagation.

4 Density Propagation

Density Propagation is an incremental procedure for efficiently computing p(xn|z1, . . . , zn). First let’s es-
tablish some notation.

Prior:
Sn(xn|xn−1) := p(xn|xn−1), P1(x1) = p(x1)

Likelihood:
Ln(zn|xn) := p(zn|xn)

Posterior:
Fn(xn) := p(xn|z1, . . . , zn)

Lecture 22: Dynamic Filtering 3

Prediction:
Pn(xn) := p(xn|z1, . . . , zn−1)

Pn(xn) is the prediction of the value of xn using only observations up to time n− 1, and this will play a key
role in the Density Propagation algorithm.

4.1 Density Propogation Algorithm

n = 1:
predict x1:

x1 ∼ p1(x1)

observe z1 and
compute posterior:

F1(x1) = p(x1|z1) =
p(z1|x1)p(x1)

p(z1)
∝ L1(z1|x1)p1(x1)

n = 2:
predict x2:

p(x1, x2|z1) =
p(x1, x2, z1)

p(z1)

=
p(x2|x1, z1)p(x1|z1)p(z1)

p(z1)
= p(x2|x1)F1(x1)
= S2(x2|x1)F1(x1)

p(x2|z1) =
∫
S2(x2|x1)F1(x1)dx

=: P2(x2)

observe z2 and
compute posterior:

F2(x2) = p(x2|z1, z2)

=
p(x2, z1, z2)
p(z1, z2)

=
p(z2|x2)p(x2|z1)p(z1)

p(z1, z2)
∝ L2(z2|x2)P2(x2)

at time step n:
predict xn:

Pn(xn) = p(xn|z1, . . . , zn−1)

=
∫
Sn(xn|xn−1)Fn−1(xn−1)dxn−1

observe zn and
compute posterior:

Fn(xn) = p(xn|z1, . . . , zn)
∝ Ln(zn|xn)Pn(xn)

Lecture 22: Dynamic Filtering 4

4.2 Block Diagram

Figure 1: Block diagram of dynamic filtering.

4.2.1 Filtering

Fn(xn) = Ln(zn|xn)Pn(xn)

Figure 2: The filtering or “focus” portion of the dynamical filtering block diagram.

4.2.2 Prediction

Pn+1(xn+1) =
∫
Sn(xn+1|xn)Fn(xn)dxn

Lecture 22: Dynamic Filtering 5

Figure 3: The prediction or “diffusion” portion of the dynamical filtering block diagram.

5 Estimating xn

We have many possibilities. Given,
Fn(xn) = p(xn|z1, . . . , zn)

We can minimize various risk functions based on a loss and the posterior distribution Fn.

`2:

x̂n = arg minex EFn [(xn − x̃)2]

=
∫
xnFn(xn)dxn

`1:
x̂n = arg minex EFn

[|xn − x̃|]

`0/1:
x̂n = arg max

x
Fn(xn)

