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Addendum: The EM Algorithm

In many problems MLE based on observed data X would be greatly simplified if we had additionally
observed another piece of data Y .Y is called the hidden or latent data.

Example 1 X ∼ N (Hθ, I) can be modeled as:

Yk×1 = θ +W1

Xn×1 = Hn×kY +W2

such that HW1 +W2 ∼ N (0, I).

If we just have X, then we must solve a system of equations to obtain the MLE. If the dimension is large,
then computing the MLE is quite expensive(i.e. the inversion is at least O(max(nk2, k3))). But if we also

have Y , then the MLE can be computed with O(k) as we know θ̂ = Y .

Example 2

xi
iid∼ pN (µ0, σ

2
0) + (1− p)N (µ1, σ

2
1)

yi
iid∼ Bernoulli(p) = p1−yi(1− p)yi

xi|yi = l ∼ N (µl, σ
2
l )

Given {(xi, yi)}ni=1, we have:

µ̂l =
1∑
1yi=l

∑
i:yi=l

xi

σ̂l =
1∑
1yi=l

∑
i:yi=l

(xi − µ̂l)
2

p̂ =

∑
1yi=l

n

MLE’s are easy to compute here. However, if we only have {xi}ni=1, the computation of MLE is a
complicated, non-convex optimization, where we can apply EM algorithm to compute. The application of
EM algorithm in this situation is shown in Example 4.

Main Idea

Let L(θ) = log p(x|θ) and also define the complete data log-like:

Lc(θ) = log p(x, y|θ) = log p(y|x|θ)p(x|θ)

= log p(y|x|θ) + log p(x|θ) = log p(y|x|θ) + L(θ)

Suppose our current guess of θ is θ(t) and that we would like to imporve this guess. Consider

L(θ)− L(θ(t)) = Lc(θ)− Lc(θ
(t)) + log

p(y|x|θ(t))
p(y|x|θ)

1
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Now take expectation of both sides with respect to y ∼ p(y|x|θ(t)), we have:

L(θ)− L(θ(t)) = Ey[Lc(θ)]− Ey[Lc(θ
(t))] +D(p(y|x|θ(t))∥p(y|x|θ))

As D(p(y|x|θ(t))∥p(y|x|θ)) ≥ 0, we have the following inequality:

L(θ)− L(θ(t)) ≥ Ey[Lc(θ)]− Ey[Lc(θ
(t))] = Q(θ, θ(t))−Q(θ(t), θ(t))

Note: Q(θ, θ′) = Ep(y|x|θ′)[log p(x, y|θ)] is the expectation of complete data log-likelihood.

We choose θ(t+1) as answer of the following optimization problem:

θ(t+1) = argmax
θ

Q(θ, θ(t))

The relationship between log p(x, θ), Q(θ, θ(t)), θt and θ(t+1) are showed in the following graph:

O
θ

log p(x|θ)Q(θ, θ(t))

θ(t) θ(t+1)

Figure 1: Graphical show of EM algorithm

The process of EM algorithm is as follows:
Init: t = 0, θ(0) = 0 or random value
Loop:

E step: Compute
Q(θ, θ(t)) = Ep(y|x|θ(t))[log p(x, y|θ)]

M step:
θ(t+1) = argmax

θ
Q(θ, θ(t))

End
The E-step and M-step repeat until convergence.

Properties of EM algorithm:

1. log p(x|θ(0)) ≤ log p(x|θ(1)) ≤ . . .

2. It converges to stationary point(e.g. local max)

Example 3 Original model X = Hθ +W :
Complete model:

Y = θ +W1 W1 ∼ N (0, α2Ik×k)

X = Hn×kY +W2 W2 ∼ N (0, In×n − α2HHT )
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Then we construct the complete log-likelihood:

log p(x, y|θ) = log p(x|y|θ) + log p(y|θ)

= constant− ∥y − θ∥2

2α2

=
1

2α2
(2θT y − θT θ − yT y) + constant

=
1

2α2
(2θT y − θT θ) + constant

As the part left after taking away the constant is proportional to y, so we only need to calculate Ep(y|x|θ(t))[y].
Introduce Z1 = Y , Z2 = X −HY , then we have the joint distribution of Z1, Z2 as:[

Z1

Z2

]
= N (

[
θ
0

]
,

[
α2Ik×k 0

0 In×n − α2HHT

]
)

As we know

[
X
Y

]
=

[
H In×n

Ik×k 0

] [
Z1

Z2

]
, we know:[

X
Y

]
∼ N (

[
Hθ
θ

]
,

[
In×n α2H
α2HT α2Ik×k

]
)

Make a linear transformation, we have:[
X

Y − α2HTX

]
∼ N (

[
Hθ

θ − α2HTHθ

]
,

[
In×n 0
0 α2Ik×k − α4HTH

]
)

So we have:
Ep(y|x|θ(t))[y] = α2HTx+ θ(t) − α2HTHθ(t) = y(t)

As Q(θ, θ(t)) = 1
2α2 (2θ

T y(t) − θT θ) + constant, set ∂Q
∂θ = 0, we have:

θ(t+1) = y(t)

It is easy to calculate the stationary point in this iteration, let θ(t+1) = θ(t), we have:

θstationary = (HTH)−1HTx

which is the answer we are familiar with.

Example 4 Suppose:

X1, X2, . . . , Xn
iid∼

m∑
j=1

pjN (µj , σ
2
j )

We have:

p(x, y|θ) = Πn
i=1

m∑
j=1

pj
1√
2πσj

e
−

(xi−µj)
2

2σ2
j 1yi=j

Thus,

log p(x, y|θ) =
n∑

i=1

m∑
j=1

log(
pj√
2πσj

e
−

(xi−µj)
2

2σ2
j )1yi=j

Ep(y|x|θ(t))[log p(x, y|θ)] =
n∑

i=1

m∑
j=1

log(
pj√
2πσj

e
−

(xi−µj)
2

2σ2
j )Ep(y|x|θ(t))[1yi=j ]
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=
n∑

i=1

m∑
j=1

log(
pj√
2πσj

e
−

(xi−µj)
2

2σ2
j )

p
(t)
j N (xi;µ

(t)
j , (σ

(t)
j )2)∑m

l=1 p
(t)
l N (xi;µ

(t)
l , (σ

(t)
l )2)

Denote p(t)(yi = j) =
p
(t)
j N (xi;µ

(t)
j ,(σ

(t)
j )2)∑m

l=1 p
(t)
l N (xi;µ

(t)
l ,(σ

(t)
l )2)

, we have the expression of Q(θ, θ(t)):

Q(θ, θ(t)) =

n∑
i=1

m∑
j=1

p(t)(yi = j) log(p
(t)
j N (xi;µj , σ

2
j ))

=
n∑

i=1

m∑
j=1

p(t)(yi = j) log(N (xi;µj , σ
2
j )) + constant

Set ∂Q
∂θ = 0, we have:

µ
(t+1)
j =

∑n
i=1 p

(t)(yi = j)xi∑n
i=1 p

(t)(yi = j)

(σ
(t+1)
j )2 =

∑n
i=1(xi − µ

(t+1)
j )2p(t)(yi = j)∑n

i=1 p
(t)(yi = j)


