ECE 830 Fall 2010 Statistical Signal Processing

instructor: R. Nowak , scribe: J. Jiao

Addendum: The EM Algorithm

In many problems MLE based on observed data X would be greatly simplified if we had additionally
observed another piece of data Y.Y is called the hidden or latent data.

Example 1 X ~ N(H0,I) can be modeled as:

Yixi = 0+W;
Xn><1 == ankY+W2

such that HWy + Wy ~ N(0,1).

If we just have X, then we must solve a system of equations to obtain the MLE. If the dimension is large,
then computing the MLE is quite expensive(i.e. the inversion is at least O(max(nk?, k%))). But if we also
have Y, then the MLE can be computed with O(k) as we know 0 =Y.

Example 2
iid
z; '~ pN(po,0g) + (1 = p)N (1, 07)

i ud Bernoulli(p) = p' 7% (1 — p)¥i
xz|yz:l ~ N(MhUlZ)

Given {(x;,y;) 1, we have:
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MLE’s are easy to compute here. However, if we only have {z;}!;, the computation of MLE is a
complicated, non-convex optimization, where we can apply EM algorithm to compute. The application of
EM algorithm in this situation is shown in Example 4.

Main Idea

Let L(0) = logp(x]f) and also define the complete data log-like:
Le(0) = log p(x,y|6) = log p(y|x|0)p(x|0)
= log p(y|x[6) + log p(x|6) = log p(y|=|0) + L(6)
Suppose our current guess of 8 is () and that we would like to imporve this guess. Consider

p(y|z[0™)

L(0) = L(OW) = Le(0) ~ L(0) + log 200
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Now take expectation of both sides with respect to y ~ p(y|z|6*)), we have:

L(0) = L(0") = By [Le(0)] — By [Lo(60))] + D(p(yl[0D)|[p(y216))
As D(p(y|=|0®)||p(y|z|0)) > 0, we have the following inequality:

L(0) = L(0") > By [L.(0)] — Ey[L.(0"))] = Q(6,6) — Q(6"),61")

Note: Q(6,0") = Epyjzjor) [log p(z,y[0)] is the expectation of complete data log-likelihood.
We choose #(+1) as answer of the following optimization problem:

plt+1) — arg mGaX Q(0, e(t))

The relationship between log p(x, ), Q(#,6®)), #* and +1) are showed in the following graph:

Q6,0®) logp(x|6)

O o) gt+1)

Figure 1: Graphical show of EM algorithm

The process of EM algorithm is as follows:
Init: t = 0, /(9 = 0 or random value
Loop:
E step: Compute
Q(97 e(t)) = ]Ep(y\z|0(t)) [logp(x, y|0)]
M step:
oY) = arg max Q(6,0W)

End
The E-step and M-step repeat until convergence.
Properties of EM algorithm:

1. log p(x]|0®) < logp(z|0M) < ...
2. It converges to stationary point(e.g. local max)

Example 3 Original model X = HO + W :
Complete model:

Y = 60+W; Wi N./\/'(O,Oészxk)
X = HpyxY +Wo Wao~ N0, Inxn — o*?HHT)
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Then we construct the complete log-likelihood:

logp(z,y|0) = logp(z|y|0) + logp(y|0)
)
= constcmtfM
202

1
= ﬁ(QﬂTy — 070 — y"y) + constant

1
= 2—2(29Ty —070) + constant
a

As the part left after taking away the constant is proportional toy, so we only need to calculate Ep(ylzlom) [y]-
Introduce Z1 =Y, Zo = X — HY, then we have the joint distribution of Z1, Zs as:

Zy| _ 0] [a*Iixk 0
{22] =N M ’ [ 0 Inxn —aQHHT})

A Lk X _ H Inxn Zl
S we Know y| = Ika 0 Z2

X HO| [ILyxn o?H
[Y} NN([ 0 } ’ [a2HT aQIkX;J)

Make a linear transformation, we have:

}, we know:

X ~ N ( Ho Lnxn 0 )
Y —a?HTX 0—a?HTHO|’| 0 oIy, —o*HTH

So we have:
Ep(ylaonly] = a® H @+ 00 — o’ HTHIO =y

As Q(0,00) = 515 (20Ty™® — 079) + constant, set %—% =0, we have:
gl+1) — 0
It is easy to calculate the stationary point in this iteration, let 0D = 0®)  we have:
Ostationary = (H'H)'H 2
which is the answer we are familiar with.

Example 4 Suppose:

X15X27"'7Xn < Zp]N(:ujvo—jz)

j=1
We have:
m 1 7(707:7;;_7')
plz,yl0) =10, Y pj———e 7 1y
i ; j /727'(0']‘ yi=j
Thus,
n m » 7(%:*#;‘)2
j =
log p(x,y0) = > ) log( 2j e P )ly=
i=1 j=1 o

n m (z;—pj

Py T 202
Ep(y\mw(t))[logp(xa y|9)] = Z Z log( . 46 B )Ep(y\ww(t))[]'yi:j]
J

i=1 j=1
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(wi—pj)?
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Q(0,0") ZZp“) yi = ) og(pS" N (4; 5, 02))

i=1 j=1

Denote p) (y; = j) = we have the expression of Q(6,0M):

= ZZp(t ; = J) log(N (243 pj, 0 j)) + constant

=1 j=1
Set % =0, we have:
L) X P (yi = j)mi
! i1 PD(yi = j)
n t+1 .
(a(t+1))2 _ Zi:1($i - ,U;' ))Zp(t)(yi =7)
) =

> i P (yi = j)



