ECE 532

Homework 6

Due Thursday February 24 at the beginning of class

Consider the Iris flower dataset iris.mat. The dataset contains features for three different classes of flowers:

$$
\begin{aligned}
& 0-\text { Iris Setosa } \\
& 1-\text { Iris Versicolour } \\
& 2-\text { Iris Virginica }
\end{aligned}
$$

There are 50 examples for each class in the dataset. Each example has a four dimensional feature vector:

1 - sepal length in cm
$2-$ sepal width in cm
$3-$ petal length in cm
4 - petal width in cm

These data are organized in the file iris.mat in the following format. Each row corresponds to an example. Columns $1,2,3 \quad 4$ are features for each example, and column 5 is the corresponding class label $0,1,2$.

1. Split the training data for each class into two subsets of sizes $n=25$ and $m=25$. Use the first $n=25$ examples to maximum likelihood estimates of the mean vector and covariance vector for each class. Then use the corresponding multivariate Gaussian densities with these MLEs to classify the remaining $3 m=75$ examples. Report the sample means and covariances for each class and the error performance of the trained classifier. Specifically, construct a 3×3 table of the outcomes of the classifier with entry (i, j) corresponding to the number of times a feature with true label j was classified as i.
2. How does the classifier perform as the number of training data n is varied? Specifically, construct a classifier using $n=15,20,25,30,35,40$ and test it on the remaining $3 m$ examples in each case. Plot the total probability of error as a function of n.
3. Consider a simple dimensional reduction based on discarding one of the four features. Which feature would you discard and why? Repeat the error analysis above in 2 in this reduced feature space. Plot the total error as a function of n again, and compare to the previous results using all four features.
