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Abstract—In many practical applications, one is given a subset
Ω of the entries in a d × N data matrix X, and aims to
infer all the missing entries. Existing theory in low-rank matrix
completion (LRMC) provides conditions on X (e.g., bounded
coherence or genericity) and Ω (e.g., uniform random sampling
or deterministic combinatorial conditions) to guarantee that if
X is rank-r, then X is the only rank-r matrix that agrees with
the observed entries, and hence X can be uniquely recovered by
some method (e.g., nuclear norm or alternating minimization).

In many situations, though, one does not know beforehand the
rank of X, and depending on X and Ω, there may be rank-r
matrices that agree with the observed entries, even if X is not
rank-r. Hence one can be deceived into thinking that X is rank-
r when it really is not. In this paper we give conditions on X
(genericity) and a deterministic condition on Ω to guarantee that
if there is a rank-r matrix that agrees with the observed entries, then
X is indeed rank-r. While our condition on Ω is combinatorial,
we provide a deterministic efficient algorithm to verify whether
the condition is satisfied. Furthermore, this condition is satisfied
with high probability under uniform random sampling schemes
with only O(max{r, log d}) samples per column. This strengthens
existing results in LRMC, allowing to drop the assumption that
X is known a priori to be low-rank.

I. INTRODUCTION

In many modern applications, one has a large multivariate
dataset that has been severely corrupted by missing values.
Fortunately, in many situations, the underlying dataset is of
intrinsic low dimension, so the missing values may be inferred
from the observed ones. Hence the growing interest on low-
rank matrix completion (LRMC), which, as the name suggests,
aims to infer the missing entries in a partially observed low-
rank data matrix [1]. Applications of this problem arise in a
wide variety of practical scenarios, such as face recognition
[2], recommender systems and collaborative filtering [3] and
network topology estimation [4].

Given a d ×N data matrix X, and a matrix Ω indicating
the locations of its observed entries, existing theory in LRMC
has mainly focused on the following problem:

Problem 1. (⇒) Determine conditions on X and Ω to
guarantee that if X is a rank-r matrix, then X is the only
rank-r matrix that agrees with X on Ω.

Examples of the conditions on X include bounded coher-
ence [1, 5–12] and genericity [13–15]. Coherence is a param-
eter indicating how aligned are the columns in a matrix with
respect to the canonical axes; typically the lower coherence the
better. Genericity essentially asks that the columns of X are
drawn independently according to an absolutely continuous
distribution with respect to the Lebesgue measure on an r-
dimensional subspace in general position (see Figure 1 for
some intuition).

Examples of the conditions on Ω include uniform random
sampling [1, 5–11], biased random sampling according to
the coherence of X [12], and deterministic combinatorial
conditions [15].

There even exist a wide variety of practical methods that
will provably complete subsampled low-rank matrices with
high probability. Examples include nuclear norm minimization
[1, 5–9, 12], alternating minimization [11], and methods based
on singular value decomposition [9, 10, 16–18].

In many situations, though, one does not know a priori
whether the given dataset is low-dimensional. To build some
intuition, consider the full-data case. Imagine we are given a
data matrix X, and we want to determine whether it is low-
rank. One thing we can do is compute its singular values. If
only a few of them are nonzero, then we can be sure that X
is indeed low-rank.

But if data is missing, we can no longer compute singular
values. One thing we can do is suppose that X is rank-1, and
try to find a rank-1 matrix that agrees with the observed data.
Of course, if there exists no such matrix, then X cannot be
rank-1, and we know that rank(X) ≥ 2. We can iteratively
repeat this process until we find a rank-r matrix that agrees
with the observed entries. At this point we know rank(X) ≥ r.
Nonetheless, depending on X and Ω, it is possible to find a
rank-r matrix that agrees with X on Ω even if X is not rank-
r. In other words, we could be deceived into thinking that
X is rank-r, when it truly is of higher rank. This raises the
following question: can we determine whether X is truly rank-
r, based on a proper subset of its entries?

In general, the answer to this question is no. For instance,
suppose we observe all but the top-left entry of X, which will
be denoted by x11. Further suppose that for every j = 1, . . . ,N ,
all the observed entries of the jth column of X are equal to
some constant cj ≠ 0. This suggests that X is rank-1.

Without any assumption on X, x11 could take any value.
The rank of X will be 1 if and only if x11 = c1, and 2
otherwise. But since x11 is unknown, we cannot know which
is the case.

On the other hand, suppose in addition that the columns
of X are drawn independently according to an absolutely
continuous distribution with respect to the Lebesgue measure
on some underlying subspace (maybe 1-dimensional, but we
do not know). This condition essentially asks that the columns
of X are drawn generically from some subspace (see Figure 1
for some intuition). If the underlying subspace is of dimension
> 1, then the probability that any two columns of X are linearly
dependent is zero. Since all the observed entries of the jth

column are equal to cj , it follows that columns 2, . . . ,N are



linearly dependent. Then with probability 1, the underlying
subspace is 1-dimensional, and X is rank-1.

Of course, establishing conditions on X is not enough. For
instance, consider the same scenario as before, but suppose
instead that we observe none of the entries in the first row
of X. Then there exist infinitely many rank-1 matrices that
agree with the observed entries. It is possible that X is one
of these matrices, but it is also possible that X is really rank
2. In this case, because of the observed locations, we cannot
know whether X is rank-1, even if we assume that its columns
are generic or ideally coherent. We thus have the following
converse of Problem 1:

Problem 2. (⇐) Determine conditions on X and Ω to
guarantee that if there is a rank-r matrix that agrees with
X on Ω, then X is indeed rank-r.

In this paper we study Problem 2. Our main result shows
that if X is a generic matrix observed on Ω satisfying a
deterministic combinatorial condition, and there is a rank-r
matrix that agrees with X on Ω, then X is indeed rank-r with
probability 1. While our condition on Ω is combinatorial, we
provide a deterministic efficient algorithm to verify whether
this condition is satisfied. Furthermore, we show that this
condition is satisfied with high probability if X is observed
on as little as O(max{r, log d}) entries per column, selected
uniformly at random. This strengthens existing results in
LRMC, allowing to drop the assumption that X is known a
priori to be low-rank.

Organization of the paper
In Section II we formally state the problem and our main

results. In Section III we discuss the importance of Problem 2,
and why we should care. In Section IV we present our efficient
algorithm to verify whether our combinatorial conditions on
Ω are satisfied, and we prove our statements in Section V.

II. MODEL AND MAIN RESULTS

Let X be a d ×N data matrix, and Ω be the d ×N matrix
with binary entries indicating the observed locations of X:
the (i, j)th entry of Ω will be 1 if the (i, j)th entry of X
is observed, and zero otherwise. We say that a matrix agrees
with X on Ω if it is equal to X on all the nonzero locations
of Ω.

As mentioned in Section I, since data is missing, we can
no longer compute the singular values of X to determine its
rank. Instead, we can try to find a rank-1 matrix that agrees
with X on Ω. If there exists no such matrix, then X cannot
be rank-1, and we know that rank(X) ≥ 2. We can iteratively
repeat this process until we find a rank-r matrix that agrees
with X on Ω. At this point we know rank(X) ≥ r, and we
want to determine whether rank(X) = r. Depending on X
and Ω, it is possible to find a rank-r matrix that agrees with
X on Ω even if rank(X) > r.

We thus want to establish conditions on X and Ω to
guarantee that if rank(X) ≥ r, and there is a rank-r
matrix that agrees with X on Ω, then rank(X) = r.

Fig. 1. Each column in a rank-r matrix X corresponds to a point in an r-
dimensional subspace S⋆. In these figures, S⋆ is a 2-dimensional subspace
(plane) in general position. In the left, the columns of X are drawn generically
from S⋆, that is, independently according to an absolutely continuous distri-
bution with respect to the Lebesgue measure on S⋆, for example, according
to a gaussian distribution on S⋆. In this case, the probability of observing a
sample as in the right, where all columns lie in a line inside S⋆, is zero.

We will show that this will be the case if Ω satisfies
condition C1 below, and X satisfies the following assumption:

(A1) The columns of X are drawn independently accord-
ing to an absolutely continuous distribution with re-
spect to the Lebesgue measure on an r⋆-dimensional
subspace in general position.

A1 essentially asks that X is a generic rank-r⋆ matrix. To
better understand this, let Gr(r⋆,Rd) denote the Grassman-
nian manifold of r⋆-dimensional subspaces in Rd. Observe
that each d×N rank-r⋆ matrix X can be uniquely represented
in terms of a subspace S⋆ ∈ Gr(r⋆,Rd) (spanning the columns
of X) and an r⋆ × N coefficient matrix Θ⋆. Let νG denote
the uniform measure on Gr(r⋆,Rd), and let νΘ denote the
Lebesgue measure on Rr

⋆
×N . Equivalent to A1, our statements

hold for almost every (a.e.) rank-r⋆ matrix X, with respect to
the product measure νG × νΘ.

Our condition on Ω builds on the results in [15], which show
that a set of entries in X observed in the right locations, will
determine, up to finite choice, the r-dimensional subspaces
that may explain the columns in X. The key insight of our
paper is that any additional column observed on r + 1 entries
can be used to verify consistency: if rank(X) > r, such
additional column will agree with none of the candidate r-
dimensional subspaces, and equivalently, no rank-r matrix can
agree with X on Ω. This is precisely the contrapositive of the
statement we are looking for.

Let us now introduce the constraint matrix Ω̆, as defined in
[15], that will allow us to easily express our condition on Ω.

Definition 1 (Constraint Matrix). Let k1,j , k2,j , . . . , k`j ,j de-
note the indices of the `j observed entries in the jth column of
X. If `j ≤ r, define Ωj as the empty matrix. Otherwise, define
Ωj as the d× (`j −r) matrix, whose ith column has the value
1 in rows k1,j , k2,j , . . . , kr,j and kr+i,j , and zeros elsewhere.
Define the constraint matrix Ω̆ as Ω̆ ∶= [Ω1 ⋯ ΩN ].



For example, if k1 = 1, k2 = 2, . . . , k`j = `j , then

Ωj =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

I

0
´¹¹¹¹¹¹¸¹¹¹¹¹¶
`j−r

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

} r
⎫⎪⎪⎪⎬⎪⎪⎪⎭
`j − r

}d − `j ,

where 1 denotes a block of all 1’s and I the identity matrix.
The key insight behind this construction is that observing

more than r entries in a column of X places constraints on
the r-dimensional subspaces that can explain it. For example,
if we observe r+1 entries of a particular column, then not all
r-dimensional subspaces will be consistent with the entries.
If we observe more entries, then even fewer subspaces will
be consistent with them. In effect, each observed entry, in
addition to the first r observations, places one constraint that
an r-dimensional subspace must satisfy in order to be con-
sistent with the observations. The matrix Ω̆ encodes all these
constraints. C1 below is a simple, combinatorial condition on
Ω̆ that guarantees that if rank(X) > r, then the observed
entries will produce inconsistent constraints, implying that no
r-dimensional subspace can explain X, or equivalently, that
no rank-r matrix can agree with X on Ω.

Given a matrix, let n(⋅) denote its number of columns and
m(⋅) the number of its nonzero rows. With this, we are ready
to present our condition on Ω:

(C1) The constraint matrix Ω̆ contains a column ω, in
addition to r disjoint matrices {Ω̆τ}rτ=1, each of size
d × (d − r), such that for every τ :

(C2) Every matrix Ω′ formed with a subset of the
columns in Ω̆τ satisfies

m(Ω′) ≥ n(Ω′) + r. (1)

In words, C2 asks that every subset of n columns of Ω̆τ

has at least n + r nonzero rows.

Example 1. The following sampling satisfies C2.

Ω̆τ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

I

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

} r
⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
d − r.

While condition C2 is combinatorial, we show in Section IV
that one can easily verify whether this condition is satisfied by
checking the dimension of the null-space of a sparse matrix.
This is summarized in Algorithm 1, which in turn provides a
practical criteria to verify whether X is indeed rank-r.

The paper’s main result is the following theorem, which
gives an answer to Problem 2. It states that for almost every

matrix X with rank(X) ≥ r (thus establishing conditions on
X, namely genericity), if Ω satisfies condition C1 and there
is a rank-r matrix that agrees with X on Ω, then X is indeed
rank-r. The proof is given in Section V.

Theorem 1. Let A1 hold. Suppose rank(X) ≥ r and Ω
satisfies C1. If there exists a rank-r matrix that agrees
with X on Ω, then rank(X) = r with probability 1.

In a nutshell, Theorem 1 states that if X is generic, and
there is a rank-r matrix that agrees with X in the right places,
then X must be rank-r with probability 1.

Furthermore, the next theorem states that sampling patterns
satisfying C1 appear with high probability under uniform ran-
dom sampling schemes with only O(max{r, log d}) samples
per column. The proof is given in Section V.

Theorem 2. Let 0 < ε ≤ 1 be given. Suppose r ≤ d
6

,
N > r(d−r), and that each column of Ω has at least ` nonzero
entries, distributed uniformly at random and independently
across columns, with

` ≥ max{12 (log(d
ε
) + 1) , 2r} . (2)

Then with probability at least 1 − ε, Ω will satisfy C1.

In a nutshell, Theorem 2 implies that if X is generic, and
there is a rank-r matrix that agrees with X on enough entries
selected uniformly at random, then X must be rank-r.

III. WHY SHOULD WE CARE?

In many modern applications one is given an incomplete
data matrix, and aims to infer its missing entries. If the intrinsic
dimension of the complete (yet unknown) dataset is too large
for the number of observed entries, nothing can be done to
infer the missing entries. Fortunately, in many situations the
rank of the complete data matrix is very low, whence the whole
matrix can be inferred from a small fraction of its entries.

The importance of Problem 2 is that in many situations we
do not know a priori the rank of the complete data matrix
X. In such case, all we can do is suppose that the matrix is
rank-r, and try to find a rank-r matrix that agrees with the
observed data. If we find such a matrix, our hope is that it
is X. But it is possible that it is not, even if it is the only
rank-r matrix that agrees with the observed data. Theorem 1
states that if X is generic, and Ω satisfies C1, then this will
not be the case. Furthermore, Theorem 2 implies that if X is
generic, and there is a rank-r matrix that agrees with X on
O(max{r, log d}) entries per column, selected uniformly at
random, then X must be rank-r.

These are incredibly good news! This implies that if our
data matrix is known to be generic (as is often the case),
and Ω satisfies C1 (which will happen with high probability
according to Theorem 2), then we do not have to worry about
being deceived into thinking that our data is rank-r, when it
truly is not.



Theorem 2 is particularly relevant because a large portion
of the theory and methods for LRMC operate under uni-
form random sampling schemes with O(r log d) observations
per column. We often used these methods without knowing
whether X is truly low-rank, hoping (but not knowing) that it
truly is. Theorem 2 strengthens these results for data matrices
that are both generic and of bounded coherence (as is often
the case). In such case, now we know that if we run any of
these methods, and find a rank-r matrix that agrees with the
observed data, then the underlying matrix is truly rank-r.

IV. SOLVING PROBLEM 2 IN PRACTICE

Theorem 2 states that samplings with O(max{r, log d})
observations per column drawn uniformly at random will
satisfy C1 with high probability.

In many situations, though, sampling is not uniform. For
instance, in vision, occlusion of objects can produce missing
data in very non-uniform random patterns. In cases like this,
one would still like to verify whether a given matrix is rank-
r. We can do this using Theorem 1 directly. For example, we
can split Ω̆ (e.g., randomly) into disjoint matrices {Ω̆τ}rτ=1,
and verify whether each Ω̆τ satisfies C2. Of course, C2 is
a combinatorial condition, hence verifying it directly may be
computationally prohibitive, especially for large d. Fortunately,
we can easily verify whether a matrix Ω̆τ satisfies C2 by
checking the dimension of the null-space of a sparse matrix.
This is summarized in Algorithm 1, which in turn provides a
practical criteria to verify whether X is indeed rank-r.

To present this algorithm, let us introduce the matrix A that
will allow us to determine efficiently whether a sampling Ω̆τ

satisfies C2. To this end, let ωj denote the jth column of
Ω̆τ , and let U be a d × r matrix drawn according to νU, an
absolutely continuous distribution with respect to the Lebesgue
measure on Rd×r. Let Uωj denote the restriction of U to the
nonzero rows in ωj . Let aωj ∈ Rr+1 be a nonzero vector in
kerUT

ωj
, and aj be the vector in Rd with the entries of aωj

in the nonzero locations of ωj and zeros elsewhere. Finally,
let A denote the d× (d− r) matrix with {aj}d−rj=1 as columns.

Algorithm 1 will verify whether dimkerAT = r, and this
will determine whether Ω̆τ satisfies C2. The key insight
behind Algorithm 1 is that A encodes the information of the
projections of S = span{U} onto the canonical coordinates
indicated by Ω̆τ . We know from Theorem 1 in [19] that νU-
a.s., these projections will uniquely determine S if and only
if dimkerAT = r, which will be the case if and only if Ω̆τ

has d − r columns and Ω̆τ satisfies C2.
We have thus shown the following lemma, which states that

with probability 1, Algorithm 1 will determine whether Ω̆τ

satisfies C2.

Lemma 1. Let Ω̆τ be a matrix formed with d− r columns of
Ω̆. Then νU-a.s., Ω̆τ satisfies C2 if and only if dimkerAT = r.

V. PROOFS

The proof of Theorem 1 is largely based on Theorem 1
and Lemma 8 in [15], which together give a combinatorial

Algorithm 1: Determine whether Ω̆τ satisfies C2.

Input: Matrix Ω̆τ with d − r columns of Ω̆.
- Draw U ∈ Rd×r drawn according to νU.
- for j = 1 to d − r do

- aωj = nonzero vector in kerUT
ωj

.
- aj = vector in Rd with entries of aωj in the

nonzero locations of ωj and zeros elsewhere.

- A = matrix formed with {aj}d−rj=1 as columns.
- if dimkerAT = r then

- Output: Ω̆τ satisfies C2.
- else

- Output: Ω̆τ does not satisfy C2.

condition of sampling patterns that can only be completed in
finitely many ways. We combine these results in the following
lemma. Recall that Ω̆ denotes the matrix encoding all the
constraints imposed by Ω, as defined in Section II.

Lemma 2. Let A1 hold, and suppose rank(X) = r. If Ω
satisfies C3 below, then with probability 1 there exist at most
finitely many rank-r matrices that agree with X on Ω.

(C3) The constraint matrix Ω̆ contains disjoint matrices
{Ω̆τ}rτ=1, each of size d×(d−r), such that each Ω̆τ

satisfies C2.

Lemma 2 implies that if rank(X) = r and Ω satisfies C3,
then there exist at most finitely many r-dimensional subspaces
that may explain the columns of X. We now use Lemma 2 to
show that this will also be the case if rank(X) > r.

Corollary 1. Let A1 hold, and suppose rank(X) ≥ r. If Ω̆
satisfies C3, then with probability 1 there exist at most finitely
many rank-r matrices that agree with X on Ω.

Proof. If rank(X) = r, the corollary follows directly from
Lemma 2. Now suppose rank(X) > r. If there is no rank-r
matrix that agrees with X on Ω, then the corollary is trivially
true. Now suppose that there is at least one rank-r matrix Y
that agrees with X on Ω. By Lemma 2, with probability 1
there exist at most finitely many rank-r matrices that agree
with Y on Ω. It follows that there exist at most finitely many
rank-r matrices that agree with X on Ω.

Corollary 1 shows that if rank(X) ≥ r and Ω satisfies C3,
then there exist at most finitely many r-dimensional subspaces
that may explain the columns of X. Now we will show that
any additional column observed on r + 1 entries can be used
to verify whether rank(X) = r or rank(X) > r. The main
intuition is that if rank(X) > r, the additional column will
agree with none of the candidate r-dimensional subspaces.
Equivalently, no rank-r matrix can agree with X on Ω. This
will be the contrapositive of the statement in Theorem 1.



Proof. (Theorem 1) Suppose rank(X) ≥ r and that Ω satisfies
C1. Then Ω also satisfies C3. By Corollary 1, there are at most
finitely many r-dimensional subspaces that may explain the
columns in X. Let S be one of these subspaces. In addition,
let ω denote a column in Ω̆ that is not in {Ω̆τ}rτ=1. Recall that
each column in Ω̆ corresponds to a column in Ω, which in
turn corresponds to a column in X. Let x denote the column
in X corresponding to ω.

Next suppose for contrapositive that rank(X) = r⋆ > r. This
means that the columns of X lie in an r⋆-dimensional subspace
S⋆. Observe that for νG-a.e. r⋆-dimensional subspace S⋆, the
restriction of S⋆ to ` ≤ r⋆ coordinates is R`. Let S⋆ω, Sω and
xω denote the restrictions of S⋆, S and x to the nonzero rows
in ω. Since ω has exactly r+1 nonzero entries by construction,
it follows that S⋆ω = Rr+1. In contrast, Sω is an r-dimensional
subspace of Rr+1. Recall that x is drawn according to an
absolutely continuous with respect to the Lebesgue measure
on S⋆. Equivalently, xω is drawn according to an absolutely
continuous distribution with respect to the Lebesgue measure
on S⋆ω = Rr+1. Intuitively, this means that that xω could take
any value in Rr+1. Since Sω is an r-dimensional subspace
of Rr+1, it has measure zero. It follows that almost surely,
xω ∉ Sω . This is true for all of the finitely many r-dimensional
subspaces that could explain the columns in X. It follows that
no r-dimensional subspace can explain the observed entries
of X. Equivalently, there exists no rank-r matrix that agrees
with X on Ω. This is the contrapositive of the statement in
Theorem 1.

The proof of Theorem 2 is based on Lemma 9 in [15], which
shows that sampling patterns satisfying C2 appear with high
probability under uniform random sampling schemes with only
O(max{r, log d}) samples per column. We restate this result
as the following lemma.

Lemma 3. Let the assumptions of Theorem 2 hold, and let Ωτ

be a matrix formed with d− r columns of Ω. With probability
at least 1 − ε

d
, Ωτ will satisfy C2.

Theorem 2 follows directly from Lemma 3 by applying a
union bound.

Proof. (Theorem 2) If N > r(d − r), randomly select disjoint
matrices {Ωτ}rτ=1, each formed with d− r columns of Ω. Let
Eτ denote the even that Ωτ fails to satisfy C2.

Union bounding over τ , we may upper bound the probability
that Ω fails to satisfy C1 by

r

∑
τ=1

P(Eτ) <
r

∑
τ=1

ε

d
<

r

∑
τ=1

ε

r
= ε,

where the first inequality follows by Lemma 3.

VI. CONCLUSIONS

In this paper we show that if a generic data matrix X
is observed on the locations indicated by Ω satisfying a
deterministic combinatorial condition, and there is a rank-r
matrix that agrees with the observed data, then X is indeed

rank-r with probability 1. Our condition on Ω is combinato-
rial, yet we provide a deterministic efficient criteria to verify
whether this condition is satisfied. Furthermore, we show
that this condition is satisfied with high probability if X is
observed on as little as O(max{r, log d}) entries per column,
selected uniformly at random. This strengthens existing results
in LRMC, allowing to drop the assumption that X is known
a priori to be low-rank.
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