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Abstract

On-line, spatially localized information about internakwork performance can greatly
assist dynamic routing algorithms and traffic transmisgi@iocols. However, it is imprac-
tical to measure network traffic at all points in the netwofkpromising alternative is to
measure only at the edge of the network and infer internaddieh from these measure-
ments. In this paper we concentrate on the estimation araization of internal delays
based on end-to-end delay measurements from a source iverscé&Ve propose a sequen-
tial Monte Carlo (SMC) procedure capable of tracking natisteary network behavior and
estimating time-varying, internal delay characterist@snulation experiments demonstrate
the performance of the SMC approach.

1 Introduction

In large-scale networks, end-systems cannot rely on thganktitself to cooperate in charac-
terizing its own behavior. This has prompted several graapsvestigate methods for inferring
internal network behavior based on “external” end-to-eetivork measurements [1, 5, 8, 9,
10, 15, 29, 31, 33] or, conversely, estimating source-dastin traffic intensities from internal
measurements [32, 34, 35]; both problems are often reféoradnetwork tomography
Optimizing communication network routing and servicetsigées requires knowledge of the
queueing delay at different points in the network. Howeitas, impractical to directly measure
packet delays at each and every router for many reasonsNBHsuring end-to-end (source to
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receivers) delays using timestamps [2, 26] is relativeyeand inexpensive in comparison. Con-
sequently, it is natural to consider the following inverseljfem: from end-to-end measurements
can we resolve the delay experienced at internal pointseimétwork? This is somewhat anal-
ogous to the medical tomography problem, and hence the namerk tomographyRecently,
sequential Monte Carlo methods have received considesadiiglation in the statistics and signal
processing literatures [4, 12, 13, 18, 24, 28]. In this paper propose a novel Monte Carlo
methodology based on sequential importance sampling [728Wthat not only addresses the
basic (stationary) network tomography problem, but alseatlly tackles the more challenging
and realistic problem of tracking time-varying networkalebehavior.

The basic idea is quite straightforward. Consider a netveorksisting of a single source,
sending packets to several receivers. Standard netwotiingoprotocols produce a tree-
structured topologyfor the network in this case, with trsourceat the root and theeceivers
at the leaves. A small network with four receivers is depidte Figure 1, below. The nodes
between the source and receivers represent inteongtrs Connections between the source,
routers, and receivers are calligtks. Each link between routers may be a direct connection, or
there may be “hidden” routers (where no branching occus)gathe link that are not explicit in
our representation.

source

receivers

Figure 1:Tree-structured network topology. A binary tree (each panede has two children nodes) is
shown here, but in the general case the tree is non-binary.

Suppose two closely time-spaced (back-to-back) packetsemt from the source to two
different receivers. The paths to these receivers trawecsenmon set of links, but at some point
the two paths diverge (as the tree branches). The two pashketdd experience approximately

We assume that the topology ksownand fixed throughout this paper. In practice routing tables are wgablat
every several minutes. Extensions of our methods that at¢ouchanges in topology (oveerycoarse time scales)
are possible, but not considered here.



the same delay on each shared link in their path. This fatgkt the resolution of the delays
on each link. More precisely, the goal of the network tompbyaproblem considered in this
paper is to estimate the probability distribution of theagebn each link, based on the end-to-
end packet pair measurements. To illustrate the idea iniglast form, suppose that we send
many packet pairs to receivers at the end of links 4 and 5 inrEid and measure the delays
experienced by each packet. Each measurement consistanfda gelays, one being the delay
to the receiver at 4 and the other the delay to the receiverkiobn these measurements, collect
events where the delay measured at the receiver at 5 is zgnmd@ee generally, the minimum
possible delay). Now, assuming that the delay is the samofthrpackets on the common links
(1 and 2 in this case), any “additional” delay observed tordeiver at 4 can be attributed to
link 4 alone. We can then build a histogram estimate of thayddlstribution for link 4. This
simple idea can be extended to obtain estimators for the digdé&ributions on all links [10, 29].

Suppose the network is stationary over the observatioroghethe delays are identical on
shared links, and the true delay distributions are strigtigitive. Then, based on the multicast
analysis made in [29], one can show that the true distribatican be uniquely identified from
such end-to-end measurements (as the number of measusdsraiy to infinity). A natural esti-
mator in this case is the maximum likelihood estimator (MLIB)previous work, we developed
an Expectation-Maximization (EM) algorithm to compute tieE [10]. More generally, the
dynamics of the network may be changing over time, and theyddiktributions themselves are
no longer static. In this case, we must model the dynamicgracl the network behavior. In
Section 4, we propose a stochastic model of the network dgsarhe available observations
are a highly non-linear function of the system. As a resti, éxtended Kalman filter is not
suitable for the task, and we propose a sequential Mont@ @kybrithm instead. The algorithm
is capable of tracking the time-varying delay distribuonNe also show, through simulation
experiments, that the sequential Monte Carlo method'sopmidnce can be significantly better
than that of the EM algorithm.

The problem and approach in this paper differ consideratog fprevious network tomog-
raphy work in several key respects.

1. The problem considered here is that of inferring internaloek behavior characteris-
tics from “external” end-to-end measurements. This iseqdifferent from the source-
destination estimation problem [32, 34, 35].

2. The internal delay inference method in [29] is closest imisfm our problem. However, that
method employs multicast probing, which is not supportedriayy networks due to its
scalability limitations. Perhaps a more significant lirtida of the multicast approach is
that it may not provide an accurate characterization of trenal (unicast) traffic often of
most interest, because routers treat multicast packéesetitly than unicast packets [15].
In contrast, our methods are based on unicast measuremdnts, can be made on any



network and which, of course, directly provide informatatout unicast traffic

3. Our approach is based on a Bayesian formulation of the nktiwarography problem, build-
ing on our earlier likelihood-based methods [8, 9, 10, 38]cdntrast, the multicast ap-
proach in [29] employs an estimator based on empirical foiiibes.

4. Our sequential method is specifically designed for trackinge-varying behavior, whereas
the method in [29] is only appropriate for stationary cas€be problem of estimating
time-varying source-destination traffic intensities frotternal measurements was exam-
ined in [34], but that task is quite unrelated to inferencentdrnal delays addressed in this
paper.

The paper is organized as follows. In Section 2 we detail tkasurement process and our
observation model. In Section 3 we propose a stochasticnaigah model for nonstationary
communication networks. This model underpins our segakktonte Carlo (SMC) inference
algorithm, developed in Section 4. In Section 5, we evaltiaeperformance of the SMC al-
gorithm with simulated network experiments. Discussiod eonclusions are provided in Sec-
tion 6.

2 Measurements and Observation M odel

We collect measurements of the end-to-end delays from sdorceceivers, and we index the
packet pair measurements by= 1, ..., M. For them-th packet pair measurement, {gt(m)
and y2(m) denote the two end-to-end delays measured. The ordéremgd 2 is completely
arbitrary. In this paper, we do not consider the case in whighor both of the packets is dropped
(lost). We simply discard packet pairs in which a loss occtitewever, it is possible to extend
our approach to include losses as well. The delays are geansiuch that the quantized delay
on each link falls in the rang& 1, . .., K time units. There are several options for choosing the
quantization level, and perhaps the most natural is to (geatite range between the minimum
and maximum observed path delay according to a desired déescuracy. Other possibilities
are suggested in [29]. An indication of the nature of commamicountered delay distributions
is provided in Figure 2, which depicts the end-to-end (gaad) delay histograms from recorded
measurements of the InterAet

To describe our observation model, let us first consider #ee @f a stationary network
in which the delay characteristics are not time-varying. sdsated with each individual
link/router in the network is a probability mass functiorm@ for the queuing delay. Let

2As pointed out in [15], it should be possible to extend thehmdtin [29] to the unicast case.

*The measurements shown in Figure 2 were made using a toedeatdyn[2]. A large number of packet
pairs, with inter-packet spacing of approximately 1 ms,eveent to a remote host. Each packet was 64 bytes in
size and the time spacing between packet pair transmissiasgpproximately 500 ms. The paths involved in these
measurements included approximately 10 separate links.
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Figure 2:Delay histograms from two different Internet measuremess®ns. Measurements were made
using thenetdyntool [2].

pi = {pio-..,pi,x} denote the probabilities of a delay @f1, ..., K time units, respectively,
on link . Given the packet pair measuremempts: {y;(m),y2(m)}, we are interested in maxi-
mum likelihood estimates (MLEs) @f = {p;}, the collection of all delay pmfs. The likelihood
of each delay measurement is parameterized by a convolotitre pmfs in the path from the
source to receiver. The coupling of the pmfs of each linkltesn a likelihood function that
cannot be maximized analytically. The joint likelihod@ |p) of all measurements is equal to a
product of the individual likelihoods. The maximizationtbg joint likelihood function requires
numerical optimization, and the EM algorithm is an attraestrategy for this purpose. In previ-
ous work, we have developed EM algorithms for network toraphy, to estimate both internal
losses [8] and internal delays [10].

In nonstationary networks, the queuing behavior varies tree, and the notion of a delay
distribution is not well defined. Nonetheless, time funeticuch as the expected delays across
each link are very much of interest. To put such notions oneirground, we define the time-
varying delay distribution of window sizB at measurement, as:

m
pij(R,m) = % > 1= 1)
[=m—R+1
with z;(1) being the (unobserved) delay experienced at qidyemeasurement packetsand
14, (1)=y is the indicator function for the evefit;(I) = j}. Letp; r = {p;;(R,m)} denote the
time-varying probabilities of a delay on link The window sizeR may be selected on the basis
of known or assumed dynamics of the network.
Before moving on, let us comment briefly on the assumptiohlihak-to-back packets are
delayed by roughly the same amount on each shared link inglé#is. If the delays are iden-
tical on shared links, then the difference between the tiaydmeasurements can be attributed
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solely to the delays experienced on unshared links in theplatles. This is the key to resolving
the delays on a link by link basis. However, in practice the packets may experience slightly
different delays on shared links due to the fact that one gigmiecedes the other in the queues
and additional packets may intervene between the two. Theeaf this delay differential is
exposed in Figure 3, which shows the histogram of the diffeecbetween the end-to-end delays
of two closely-spaced packets sent to the same Interneiveec&his histogram is constructed
from the back-to-back packet pair measurements along the sannection considered in Fig-
ure 2 (a). ldeally, the delays should be identical, but weass®all discrepancy between the two.
The second packet in the pair typically experiences a $jigjieater delay. However, recall that
the ordering of the packets was arbitrary in our recordingcess. In effect then, the discrep-
ancies between the delays on shared links adds a zero meatoette difference between the
two end-to-end measurements. We clearly see the symmetoerzean nature in the empirical
data shown in Figure 3. This “noise” produces a smoothinglaring) in the inferred delay
pmfs. Nonetheless, because the errors are zero mean, walicasesthe estimated delay pmfs
to obtain reasonable estimates of the expected delay onlie&chThus, our methodology can
provide important information, even when the delays onesthéinks are not identical.

Probability

15l

-0.03 -0.02 <001 0 001 0.2
Time in seconds

Figure 3:Difference between end-to-end delays of packet pair sesditoe receiver. Ideally the differ-
ence should be identically zero, since the two packetsitsaube same links, but in practice we observe
a small error. Measurements were made usingétdyntool [2].

3 A Dynamical Model for Nonstationary Communication Networ ks

We now consider the problem of estimating time-varying gelsstributions as defined in (1).
We first formulate a model describing the evolution of thenmek delay dynamics. Finally, we
describe a sequential Monte Carlo procedure for dynamimason.

The queuing delay experienced by a measurement packet briam the network is due
to other packets in the queue(s) of the associated routeW{® assume a network in which
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each link is a direct connection between two routers andcésteothe delay on each link with a
dedicated output queue at the router from which it emergesdach outgoing link has its own
dedicated queue). Each of these queues has a buffefswith Markovian services at rate.
Coupled with a homogeneous (constant rate) Poisson aptisagss, this model is the standard
M/M/1/K queue model [25]. The extension to heterogeneous/arks (differing service rates
and queue sizes) is straightforward. We assume that we me&surements (send packet-pairs)
at a rate ofC;uK whereC; > 1 is a constant. This ensures that there is sufficient time for
the queues to relax between measurements, resulting imapyately statistically independent
measurements.

Now, in the nonstationary setting, we model all other paekevals at a given queue using a
time-varying (inhomogeneous) Poisson arrival processagsdme that the bandwidih of this
process is limited such that

1

B< .
2C1/LK

(2)

This implies aguasistationarity; the dynamics of the system are evolving @te slow enough
that we can discretize at the measurement rate (specifivallye the measurements are made)
and study the discretized system. Moreover, each measnt@ssentially encounters a classical
M/M/1/K queue. We complete our model by imposing a randomkvaitucture on the log-
intensity of the traffic arrivals:

log Aj(m) = log A\;(m) + €(m), 3

wherem denotes then-th measurement, andm) is zero-mean Gaussian noise of variance
o2(m). The model described thus far induces delay pmfs at eachumezasnt time of the form

pij(m) o pl(m), (4)

wherep;(m) is the ratio of the arrival rat&;(m) and service rate on theth link. Such pmfs are
exponentially increasing or decreasing, fpfm) > 1 andp;(m) < 1, respectively. This implies
that the mode is either at del@yor delay K. Note that this model can provide an excellent fit to
the delay histogram depicted in Figure 2 (a).

In real networks, however, the delay pmfs can display motleghar points due to the non-
Poissonian nature of traffic and due to the fact that eachriiak include multiple “hidden”
routers. A straightforward extension of the model abovelwamdle these situations. We intro-
duce an additional dynamical (continuous) parametdor each link and define the delay pmf
as

pij o pP T, (5)
which places the mode of the pmf negr The parametes; evolves according to a continuous
random walk (with reflection a and K). In Figure 4 we illustrate the fit between the delay
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distribution from Figure 2 (b) and mixtures of pmfs of therfop; ; o 0.75770%1 0 < < K.

It is not hard to see that if we chood€ + 1 distinct values fori, then the resulting vectors
pi = [pio,---,pik) are linearly independent, thus forming a basis®drt!. Therefore, any
pmf can be represented as a linear combination of thesersee®the example in Figure 4(c)

shows.

Probability
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Figure 4:Fitting a the network delay histogram of Figure 2 (b) (boxeih mixtures of pmfs of the form
pi; o< 0.751170054 0 < j < K (stems). (a) Fit using a single pmf. (b) Fit using a mixturéoair pmfs.
(c) Fit using a mixture of 16 pmfs.

4 Sequential Monte Carlo Tracking of Time-Variation

4.1 Basic Problem

We would like to track the internal delay distributions otiere. More specifically, based on our
measurements we wish to estimate the time-varying delayilaison defined in (1). We will
focus on the posterior mean as our estimator. The posteeanrastimate gj; ;(R,m) can be

written as:

pij(R,m) :=

m

Ep(zm—R-H!m‘YI:m) [ Z

l=m—R+1
1

1

l=m—R+1

10 (l)=j}]

= 3 w0 = ilyim)
l=m—R+1

R > /p(zi(l):j|y(l)a’\l)p()‘l‘}’l:m)d)\l, (6)

wherey(1) = [y1(1),y2(1)], A; is a vector composed of the traffic intensities on all link&rae
[, andy.,, is a vector composed of the measurements at times , m. As beforez; (1) is the
(unobserved) delay on linkat timel, andz,,_r11:m = [zi(m — R+ 1),..., zi(m)].
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The evaluation of this estimator is very difficult. It reqesran integration over the density
p(Ni|y1:m), Which cannot be solved analytically. It is necessary tgpadomerical integration
techniques. Moreover, we need to calculate the estimatacht &mem. It is important that
we form our estimat@; ;(R, m) without redoing all the calculations involved in genergtihe
estimate at timen — 1. Otherwise we are not only wasting considerable computstibut we
render a real-time implementation of our procedure imgbassil hese considerations necessitate
the adoption of a sequential algorithm.

In the dynamic system we defined in Section 3, the availabdemfationsy.,, are a highly
non-linear function of the evolving parametexg,,,. Standard sequential tracking methods such
as the Kalman filter are not applicable; our attempts at tisation (e.g., the extended Kalman
filter) also result in very poor tracking. In previous work3[114, 24, 28], it has been observed
that sequential Monte Carlo (SMC) procedures can perforthwieen facing such highly non-
linear tracking problems. The estimation algorithm we digyén this section is based on the
SMC methodology.

We begin by briefly outlining the Monte Carlo nature of thehigique. Because the integral
in (6) can not be calculated analytically, we approximatedktimator using Monte Carlo inte-
gration. To do this, we must sample frgrt\;|y1.,, ), which itself is not easily accomplished. An
alternative approach is to perforimportancesampling. Let\.,,, denote the trajectories of the
traffic intensities on all links over the time interv@l. .., m. The basic idea here is to generate
N draws of)\g.,,, from animportance distributionr,,, that has the same supportzgo..; |y1:m)
but from which we can sample more easily. We need to samplertties trajectory\.,, rather
than just\; because the trajectories are highly coupled (evaluatidg|y:.,) requires difficult
marginalisation). Each draw represents an independentlegrath of the network’s dynamical
evolution and thus independently explores part of the sasphce. We use these drawsyiar-
ticles) to compute the desired Monte Carlo integration as folldwe.can re-write the integration
as,

. p(AO:m‘yl:m) :|
zi(l) = D) | —————=| m(Xo: m) d\;.
[ et = sluo, 20 | 2O | g () i
Then, the Monte Carlo estimate is

N

37 p(z(l) = dly@), A7) @, 7)

v=1

-1
wherew(?) — p()\g?)n|y1:m)/nm()\gfr)n|y1:m) and @) = w® [Zﬁ;lwﬁf}] . In order to

evaluate this Monte Carlo estimate, we must determine ltmh/vteightw,(ﬁ) (up to a propor-
tionality constant) and the value ptz;(1) = j|y(1), )\l(”)) for each of theV particles. We have
p(/\(()?r)n|y1;m) o p(yl:m|)\g?,)n)p(/\((f)n). As the measurements are independent, the likelihood



in this expression can be decomposeqb(@a:mp\g?n) =T p(y(l)|>\l(”)), where each fac-
tor in the product is a convolution of pmfs that can be evadagfficiently using FFTs. The
p()\((f,)n) term can be determined from the dynamics of the system (3).

Evaluatingp(z;(l) = j|y(l),)\l(“)) involves the application of an upward-downward algo-
rithm [16]. This algorithm propagates the knowledge of (ig zero delay at the source and
(2) the delaygy(l) at the two receivers throughout the tree, exploiting theepahdence of the
conditional pmfs to calculate marginal distributions atteaode.

4.2 Sequential Importance Sampling

The MC integration approach described above requires usrtergte entire trajectories.,, at
each timem, and then to calculate the associated weight. This is caatipotlly demanding
and highly wasteful. At timen, we want to perform the integration without redoing caleula

tions made at timen — 1. This is achieved by forming the trajectoA”) without modifying

the previous trajectoryx((f)nfl, which is possible if the importance sampling distributloas a
Markovian structure. At timé, we sample from the initial distributiomg(Xg). At time m,

we sample fromrm(,\m|)\((ff2n_1,y1:m) , and form the timen particlev by appendingxﬁﬁ) to
)‘(()?r)nfl' The weight of particles at timem can then also be updated recursively:

) Pm)AL) pA AL )

(v) —
w, = w,
" m Wm(AT(:I])P‘(()?n—DYLm)

We form our approximate estimator, denofgd(R,m), by replacing the true integrals in (6) by
their Monte Carlo approximations (7).

The dynamics of the model proposed in Section 3 involve aagandalk of log A,,. In
this paper, we employ the prior distributi@\,,|\,,—1) as the importance function (as adopted
in [21] and many subsequent works). In this scenario, we imaeed to calculate the likelihood
to determine the update in the weights:

wl®) = @)y ply(m)|AY) . ®
The weight update factor at each time step is the likelihpog,|A$). This can be efficiently
calculated using.,,, FFTs, wheren,, is the number of unique links traversed by the two packets
involved in them-th measurement. We discuss the complexity of our algorithmore detalil
later in this section. Since we are dealing with discret&itigtions, our weight update factor (8)
is bounded above by, which implies that at any time:, every importance weight is bounded
by 1.

The disadvantage of using the prior as the importance famdsi that the exploration of the
state-space has the potential to be inefficient, as knowledghe current observation is not
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used to guide the search. In Section 6, we discuss ways irhvilncsampling strategy can be
improved; in practice, we observe that these approachegrodunce slightly better performance.
Degeneracy is a major issue in the application of sequantiabrtance sampling. The mul-
tiplicative update applied to the weight at each time mehas4ome importance weights may
quickly tend to zero, and the number of particles contrilmtio the estimator is greatly re-
duced. This effect increases the variability of the estimétompared to the variance one would
have with the fullN particles contributing). We will say more on estimator gade in Sec-
tion 4.4. The procedure aksamplingaims to generate an unweighted approximation of the
weighted particle distribution. When performed at time the procedure associates with each
particlev a number of offspringVT(n”), such thatzfjvz1 NT(,;’) = N. The procedure thus obtains a
new set of particles, each of which has weigjiv, and ensures that the number of significant
weights remains close ty. There are numerous techniques for performing resamplitige
most popular is sampling importance resampling (SIR)pthiced in [20]. SIR involves jointly

drawing{M(,f)}N according to a multinomial distribution of parametéysand {ﬁﬁﬁ) .
Other techniques include residual resampling [22, 28], stratified resampling [6, 24], which
is adopted in this paper.

This resampling process does introduce some additionapatational overhead in the for-
mation of our approximate estimator at time Technically, it necessitates calculating the
marginal smoothing distributions(A;|y1.,) for! € m — R+ 1...m. This can be done using
the two-filter formula of [24], forward filtering—backwardneothing [14, 23], or the backwards
simulation procedure [19].

In simulations, we observe that if we use the approximaﬁeplace{ﬁ%) by {El(”))

N

3 pla(l) = dly@), A" @, ©)

v=1

for the summation in (7), then we achieve similar perforneant/e adopt this approximation in
the algorithm we outline below:

Particle Filter for Delay Distribution Estimation

At timem:
Sequential Importance Sampling step

(v)

m

e Forv =1,..., N, sampleX

0:m—1>""m

~ p(Am A ) and setry, 2 (A(v) ;\(v)).

11



e Forv =1,...,N, evaluate the importance Weighiigj):

uf) o p(y0)|X) (10)
N —1

oW — [zw;?] e a
s=1

Selection step

e Apply stratified resampling [24] to obtaiv new particles()\((f,)n;u =1,...,N ) each
with weight1/N.

Estimation step

e Foralli,j:

1. Evaluatep(z;(m) = j |y(m),)\$ﬁ)) using the upwards-downwards probability prop-
agation algorithm [16].

2. Estimatep; ;j(R,m) from:
1 m N
Pig®Rm) == 3 3 pla) =y, A7) @,

"R
l=m—R+1v=1

4.3 Computational Complexity Analysis

The computational complexity of the sequential importasampling technique i®(N) per
measurement. Sampling from the prior distribution is glitiorward and is of constant com-
plexity for each particle. Updating the weights at each tstep requires.,,, FFTs, wheren,,
is the number of unique links traversed by the two packetseasurementn. The complex-
ity of this procedure i$)(n,, K log K) per particle, wherd( is the maximum number of delay
units per link. The majority of resampling procedures, udehg the stratified resampling pro-
cedure we adopt, can be implementedifV) operations. The chief overhead involved in the
the algorithm is the application of the up-down algorithnet@aluatep(z;(m) = jly(m), )\ﬁ,’{)).
For this step, the computational expens®is:,, K?) per particle. As this is the dominant ex-
pense, the computational overhead of the approximateitdgooutlined above i€)(LK2N)
per measurement, whefeis the average number of unique links involved in each measent.

If we avoid the approximation (9) by calculating (at measueatm) the marginal smoothing
distributionsp(X\;|y1:m) forl € m—R+1...m, then we introduce a substantial additional com-
putational overhead. Of the available options, using tinedied filtering—backward smoothing
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procedure [14, 23] minimizes the additional computatiomgiense, but even in this case it is
O(RN?) per measurement. For reasonable valuek df~ 40), L (~ 10) and R (~ 300), and

a suitable number of particlev(=100-2000), this is by far the dominant computational over-
head.

4.4 Convergence Analysis

When we use the prior distribution as the importance fungtihe importance weights are
bounded above by and continuous. The weights at tifieare bounded by, and at any time
m, the multiplicative weight update factor (8) involves a quot of convolved discrete prob-
abilities; it is easy to check that is bounded abovelbySince we make use of the stratified
resampling scheme and the importance distribution doesdlemend on the empirical distribu-
tion (the distribution of the particles), the assumptions And 2—A of [11] are satisfied, making
Theorem 1 of [11] applicable for our algorithm. The theorenplies that the mean-squared
error between the sequential Monte Carlo estimgtg R, m) and the posterior mean estimate
pi,j (R, m) approaches zero as the number of particles increases, i.e.:

IS0 e Pz (D) = Gy (@), 20|
N 9

E [5.4(R,m) = Big(R;m)?] < Crpm

whereCRg ,,, does not depend aN.

5 Experiments

To assess the performance of our algorithms we simulate &ttald) the four-receiver network
depicted in Figure 1. In all experiments shown here we hav¢gheemaximum delay on each
link K = 15 and used 500 particles. However, we have conducted testsiahthe number of

particles ranged between 200 and 5000, and observed sjrifformance over the entire range.

Experiment 1: We generate 1000 packet-pair measurements from statideday distributions
on each link. Figure 5 (a) depicts the true delay distrimgion links2, ..., 7 along with the
estimated posterior means computed by the SMC algorithm. cBmparison, Figure 5 (a)
depicts the results obtained using the EM algorithm progp@s¢10]). This same experiment is
repeated in 50 independent trials. Figure 6 (a) shows tleeexpected delay for each link and
the expected delay computed from the estimated posterian mpfs.

Experiment 2. We perform 50 independent trials of the scenario in Expeamninie but this
time introduce small, random discrepancies (errors of up timme units) between the delays
on shared links. Figure 6 (b) depicts the true average delagdch link and the average delay
computed from the estimated pmfs (note the agreement wghr€&i6 (a), indicative of the
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robustness of our methods to such errors). The estimatdédrippanean pmfs (not shown here)
are also very close to the true delay pmfs, similar in quaitthose shown in Figure 6 (a).

Experiment 3: We generate 3000 packet-pair measurements from timengadélay distri-
butions. The temporal dynamics are governed by (3). Figutepicts the true and estimated
posterior mean pmfs on links 1, 2, and 7 at two different tintegure 8 plots the true and esti-
mated expected delay (both based on windowed average)ksn2j 4, and 7 as a function of
time.

0.4 0.4 0.4 0.4
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0 o OM 0 ) -1 ? ? 0 ?llelaTtss
0.4 0.4 0.4 0.4
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ofrrrerreeeritfin  LLIT sa00 Oﬁ:&%ﬁ‘;ﬁm ol eTs foo
0o 5 10 15 0 5 10 15 0 5 10 15 0 5 10 15
(a) (b)

Figure 5:True (solid) and estimated (stem) delay pmfs for links 2 afib® 1), 4 and 5 (row 2), and 6
and 7 (row 3) using the (a) sequential MC method developedsnpaper and (b) EM algorithm [10].

6 Discussion

6.1 Experimental Results

Several conclusions can be drawn from the experimentaltsestirst, it is clear from the results
of Experiment 1 that the SMC procedure described here cansiffnificant improvements over
the MLE approach [10]. Experiment 2 demonstrates that dima#or is quite robust to signifi-

cant deviations from the assumption that the delays on dhiales are identical, although we do
observe a slightly larger variance in our estimates (seer€ig). This is important in practice
since, as evident in Figure 3, real Internet measuremehtbiegmall delay deviations on shared
links. While the basic delay model (4) is quite adequate mesgasesq.f. Figure 2 (a)), Exper-

iment 3 demonstrates that the generalized model correspptal (5) enables the tracking and
estimation of a much broader class of delay distributionkis Too is very relevant to practice
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Figure 6:Estimation of average delays on each link for (a) identieddys on shared links and (b) small

delay discrepancies on shared links. Boxes indicate tteedmerage delay on each link (1-7). Error
bars denote the one-standard-deviation confidence in&frtlae estimated average delay (using the EM
algorithm).

because the delay distributions in the Internet often haweernomplicated characteristics.f(
Figure 2 (b)).

6.2 Improved Importance Sampling

In our basic formulation developed in Section 4, we used tiar plistribution in our impor-
tance sampling. The disadvantage of using the prior as tperiiemce distribution is that the
exploration of the state-space has the potential to be d¢iesfti, as knowledge of the current ob-
servation is not used to guide the search. ImprovementsriSBAC procedure may be obtained
by using theoptimalimportance distribution [14, 37]. Unfortunately, in thegmal delay track-
ing problem, it is extremely difficult to sample from the opél importance distribution. We
can, however, achieve a slight improvement over the useegbitior distribution by considering
a local linearization of the optimal distribution [36].

We consider the functiol(A,;,) = log p(Am|Am—1,y(m)), and reparameterise using =
log A, .We have:

l(rm) = Inp(y(m)[tm) + I p(rm[tm—1) — Inp(y(m))
= Inp(y(m) o) — 55 (om — ¥ 1) (e = Ft) — Inp(m).
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Figure 7:Delay pmf estimates in nonstationary scenario using sdtgiémonte Carlo procedure. True
(solid) and estimated (stem) pmfs on links 1, 2, and 7 at measentsn = 1000 andm = 2000 for a
window sizeR = 200.

Using a first-order Taylor expansion abatitve have

dInp(y(m) |rm)
or,,

np(y(m) [rm) = Inp(y(m)|r) +

If we chooser = r,,,_1, then we can write

Olnp(y(m) |rm)
orp,

l(rm) = Inp(y(m)|rm =rm_1) + (*m — Tm-1)

'm=rm-1

1

952 (tm —Tm-1)" (tm — Tm_1) + constant

= Inp(y(m) |ry = rm—1) + constant
1

_ﬁ (rm —I'm—-1— ,U«(rm—l))T (rm —I'm—-1— ,U«(I'm—l)) y
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Figure 8:Tracking of average delay on links 2, 4, and 7 over measurepegind. True (solid) and esti-
mated (dashed) expected delay versus time. Both the truestimaated expected delays were calculated
based on atk = 200 windowed average.

where

_ Olply(m)le)
or,,

N(rm—l)

m=Im-1

This functional form suggests the adoption of the imporafunction:

T (tm|tm-1,y(m)) = N (tm-1 + p(rm-1),0%) .

Sampling from this importance function, as opposed to tfa,pnvolves the additional overhead
of calculatingu(r(m”ll) for each particlev. This is a similar computational task to the calculation
of the likelihood, the chief expense being the convolutidrthe distributions (involvingn,,
FFTs, wheren,, is the number of unique links traversed by the two packetséasurementn).

As the probability propagation technique requires sulbstinmore computation, this additional
overhead has little effect on the speed of the algorithm.
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6.3 Conclusions

Our experiments demonstrate the potential of sequentialt®Carlo algorithms for network
delay tomography. We find that very good estimates of theydatafs can be obtained from
a small number of measurements, and estimates of expedtg dee very robust, even in the
presence of non-ideal delay discrepancies on shared [iessequential Monte Carlo algorithm
appears to track slowly varying network behavior reasgnedall.

Ongoing work is aimed at deeper theoretical analyses of mthoas. There are several
improvements and extensions possible for our framewollkdliieg tracking of hyperparameters
[27] (e.g.,variance in random walk underlying traffic intensities) dimel more sophisticated im-
portance sampling strategies such as the linearized rdisgnsgheme proposed in Section 6.2,
the auxiliary particle filter [30], and shemes incorporgtiaocal MCMC moves [17]. We are also
conducting more realistic network simulation experimenmith the ns-2 package [3].

More generally, our sequential modeling and inference éaork could be adapted to dy-
namical problems arising in wireless and peer-to-peer coitation networks.
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