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Abstract

On-line, spatially localized information about internal network performance can greatly
assist dynamic routing algorithms and traffic transmissionprotocols. However, it is imprac-
tical to measure network traffic at all points in the network.A promising alternative is to
measure only at the edge of the network and infer internal behavior from these measure-
ments. In this paper we concentrate on the estimation and localization of internal delays
based on end-to-end delay measurements from a source to receivers. We propose a sequen-
tial Monte Carlo (SMC) procedure capable of tracking nonstationary network behavior and
estimating time-varying, internal delay characteristics. Simulation experiments demonstrate
the performance of the SMC approach.

1 Introduction

In large-scale networks, end-systems cannot rely on the network itself to cooperate in charac-
terizing its own behavior. This has prompted several groupsto investigate methods for inferring
internal network behavior based on “external” end-to-end network measurements [1, 5, 8, 9,
10, 15, 29, 31, 33] or, conversely, estimating source-destination traffic intensities from internal
measurements [32, 34, 35]; both problems are often referredto asnetwork tomography.

Optimizing communication network routing and service strategies requires knowledge of the
queueing delay at different points in the network. However,it is impractical to directly measure
packet delays at each and every router for many reasons [29].Measuring end-to-end (source to
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receivers) delays using timestamps [2, 26] is relatively easy and inexpensive in comparison. Con-
sequently, it is natural to consider the following inverse problem: from end-to-end measurements
can we resolve the delay experienced at internal points in the network? This is somewhat anal-
ogous to the medical tomography problem, and hence the namenetwork tomography. Recently,
sequential Monte Carlo methods have received considerableattention in the statistics and signal
processing literatures [4, 12, 13, 18, 24, 28]. In this paper, we propose a novel Monte Carlo
methodology based on sequential importance sampling [7, 14, 28] that not only addresses the
basic (stationary) network tomography problem, but also directly tackles the more challenging
and realistic problem of tracking time-varying network delay behavior.

The basic idea is quite straightforward. Consider a networkconsisting of a single source,
sending packets to several receivers. Standard network routing protocols produce a tree-
structured topology1 for the network in this case, with thesourceat the root and thereceivers
at the leaves. A small network with four receivers is depicted in Figure 1, below. The nodes
between the source and receivers represent internalrouters. Connections between the source,
routers, and receivers are calledlinks. Each link between routers may be a direct connection, or
there may be “hidden” routers (where no branching occurs) along the link that are not explicit in
our representation.

1

2 3

4 5 6 7

receivers

source

Figure 1:Tree-structured network topology. A binary tree (each parent node has two children nodes) is
shown here, but in the general case the tree is non-binary.

Suppose two closely time-spaced (back-to-back) packets are sent from the source to two
different receivers. The paths to these receivers traversea common set of links, but at some point
the two paths diverge (as the tree branches). The two packetsshould experience approximately

1We assume that the topology isknownandfixed throughout this paper. In practice routing tables are updated
every several minutes. Extensions of our methods that account for changes in topology (oververycoarse time scales)
are possible, but not considered here.
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the same delay on each shared link in their path. This facilitates the resolution of the delays
on each link. More precisely, the goal of the network tomography problem considered in this
paper is to estimate the probability distribution of the delay on each link, based on the end-to-
end packet pair measurements. To illustrate the idea in its simplest form, suppose that we send
many packet pairs to receivers at the end of links 4 and 5 in Figure 1 and measure the delays
experienced by each packet. Each measurement consists of a pair of delays, one being the delay
to the receiver at 4 and the other the delay to the receiver at 5. From these measurements, collect
events where the delay measured at the receiver at 5 is zero (or, more generally, the minimum
possible delay). Now, assuming that the delay is the same forboth packets on the common links
(1 and 2 in this case), any “additional” delay observed to thereceiver at 4 can be attributed to
link 4 alone. We can then build a histogram estimate of the delay distribution for link 4. This
simple idea can be extended to obtain estimators for the delay distributions on all links [10, 29].

Suppose the network is stationary over the observation period, the delays are identical on
shared links, and the true delay distributions are strictlypositive. Then, based on the multicast
analysis made in [29], one can show that the true distributions can be uniquely identified from
such end-to-end measurements (as the number of measurements tends to infinity). A natural esti-
mator in this case is the maximum likelihood estimator (MLE). In previous work, we developed
an Expectation-Maximization (EM) algorithm to compute theMLE [10]. More generally, the
dynamics of the network may be changing over time, and the delay distributions themselves are
no longer static. In this case, we must model the dynamics andtrack the network behavior. In
Section 4, we propose a stochastic model of the network dynamics. The available observations
are a highly non-linear function of the system. As a result, the extended Kalman filter is not
suitable for the task, and we propose a sequential Monte Carlo algorithm instead. The algorithm
is capable of tracking the time-varying delay distributions. We also show, through simulation
experiments, that the sequential Monte Carlo method’s performance can be significantly better
than that of the EM algorithm.

The problem and approach in this paper differ considerably from previous network tomog-
raphy work in several key respects.

1. The problem considered here is that of inferring internal network behavior characteris-
tics from “external” end-to-end measurements. This is quite different from the source-
destination estimation problem [32, 34, 35].

2. The internal delay inference method in [29] is closest in spirit to our problem. However, that
method employs multicast probing, which is not supported bymany networks due to its
scalability limitations. Perhaps a more significant limitation of the multicast approach is
that it may not provide an accurate characterization of the normal (unicast) traffic often of
most interest, because routers treat multicast packets differently than unicast packets [15].
In contrast, our methods are based on unicast measurements,which can be made on any
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network and which, of course, directly provide informationabout unicast traffic2.

3. Our approach is based on a Bayesian formulation of the network tomography problem, build-
ing on our earlier likelihood-based methods [8, 9, 10, 33]. In contrast, the multicast ap-
proach in [29] employs an estimator based on empirical probabilities.

4. Our sequential method is specifically designed for trackingtime-varying behavior, whereas
the method in [29] is only appropriate for stationary cases.The problem of estimating
time-varying source-destination traffic intensities frominternal measurements was exam-
ined in [34], but that task is quite unrelated to inference ofinternal delays addressed in this
paper.

The paper is organized as follows. In Section 2 we detail the measurement process and our
observation model. In Section 3 we propose a stochastic dynamical model for nonstationary
communication networks. This model underpins our sequential Monte Carlo (SMC) inference
algorithm, developed in Section 4. In Section 5, we evaluatethe performance of the SMC al-
gorithm with simulated network experiments. Discussion and conclusions are provided in Sec-
tion 6.

2 Measurements and Observation Model

We collect measurements of the end-to-end delays from source to receivers, and we index the
packet pair measurements by� � �� � � � � �

. For the� -th packet pair measurement, let� � �� 	
and �
 �� 	 denote the two end-to-end delays measured. The ordering

�
and � is completely

arbitrary. In this paper, we do not consider the case in whichone or both of the packets is dropped
(lost). We simply discard packet pairs in which a loss occurs. However, it is possible to extend
our approach to include losses as well. The delays are quantized such that the quantized delay
on each link falls in the range� � �� � � � �  time units. There are several options for choosing the
quantization level, and perhaps the most natural is to quantize the range between the minimum
and maximum observed path delay according to a desired levelof accuracy. Other possibilities
are suggested in [29]. An indication of the nature of commonly encountered delay distributions
is provided in Figure 2, which depicts the end-to-end (quantized) delay histograms from recorded
measurements of the Internet3.

To describe our observation model, let us first consider the case of a stationary network
in which the delay characteristics are not time-varying. Associated with each individual
link/router in the network is a probability mass function (pmf) for the queuing delay. Let

2As pointed out in [15], it should be possible to extend the method in [29] to the unicast case.
3The measurements shown in Figure 2 were made using a tool called netdyn[2]. A large number of packet

pairs, with inter-packet spacing of approximately 1 ms, were sent to a remote host. Each packet was 64 bytes in
size and the time spacing between packet pair transmissionswas approximately 500 ms. The paths involved in these
measurements included approximately 10 separate links.
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Figure 2:Delay histograms from two different Internet measurement sessions. Measurements were made
using thenetdyntool [2].

� � � �� � �� � � � �� � �� � denote the probabilities of a delay of� � �� � � � �  time units, respectively,
on link �. Given the packet pair measurements� 	 �� � �� 	� �
 �� 	�, we are interested in maxi-
mum likelihood estimates (MLEs) of
 	 �� � �, the collection of all delay pmfs. The likelihood
of each delay measurement is parameterized by a convolutionof the pmfs in the path from the
source to receiver. The coupling of the pmfs of each link results in a likelihood function that
cannot be maximized analytically. The joint likelihood� �� �
 	 of all measurements is equal to a
product of the individual likelihoods. The maximization ofthe joint likelihood function requires
numerical optimization, and the EM algorithm is an attractive strategy for this purpose. In previ-
ous work, we have developed EM algorithms for network tomography, to estimate both internal
losses [8] and internal delays [10].

In nonstationary networks, the queuing behavior varies over time, and the notion of a delay
distribution is not well defined. Nonetheless, time functions such as the expected delays across
each link are very much of interest. To put such notions on firmer ground, we define the time-
varying delay distribution of window size at measurement� as:

� � �� � � � 	 �
�


��
������ � ���� ����� �

�
(1)

with �� ��	 being the (unobserved) delay experienced at queue� by measurement packets� and

���� ����� � is the indicator function for the event��� ��	 � � �. Let� � �� 	 �� � �� � � � 	� denote the
time-varying probabilities of a delay on link�. The window size may be selected on the basis
of known or assumed dynamics of the network.

Before moving on, let us comment briefly on the assumption that back-to-back packets are
delayed by roughly the same amount on each shared link in their paths. If the delays are iden-
tical on shared links, then the difference between the two delay measurements can be attributed
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solely to the delays experienced on unshared links in the twopaths. This is the key to resolving
the delays on a link by link basis. However, in practice the two packets may experience slightly
different delays on shared links due to the fact that one packet precedes the other in the queues
and additional packets may intervene between the two. The nature of this delay differential is
exposed in Figure 3, which shows the histogram of the difference between the end-to-end delays
of two closely-spaced packets sent to the same Internet receiver. This histogram is constructed
from the back-to-back packet pair measurements along the same connection considered in Fig-
ure 2 (a). Ideally, the delays should be identical, but we seea small discrepancy between the two.
The second packet in the pair typically experiences a slightly greater delay. However, recall that
the ordering of the packets was arbitrary in our recording process. In effect then, the discrep-
ancies between the delays on shared links adds a zero mean error to the difference between the
two end-to-end measurements. We clearly see the symmetric zero-mean nature in the empirical
data shown in Figure 3. This “noise” produces a smoothing (orblurring) in the inferred delay
pmfs. Nonetheless, because the errors are zero mean, we can still use the estimated delay pmfs
to obtain reasonable estimates of the expected delay on eachlink. Thus, our methodology can
provide important information, even when the delays on shared links are not identical.

−0.03 −0.02 −0.01 0 0.01 0.02
Time in seconds
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Figure 3:Difference between end-to-end delays of packet pair sent tosame receiver. Ideally the differ-
ence should be identically zero, since the two packets traverse the same links, but in practice we observe
a small error. Measurements were made using thenetdyntool [2].

3 A Dynamical Model for Nonstationary Communication Networks

We now consider the problem of estimating time-varying delay distributions as defined in (1).
We first formulate a model describing the evolution of the network delay dynamics. Finally, we
describe a sequential Monte Carlo procedure for dynamic estimation.

The queuing delay experienced by a measurement packet on each link in the network is due
to other packets in the queue(s) of the associated router(s). We assume a network in which
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each link is a direct connection between two routers and associate the delay on each link with a
dedicated output queue at the router from which it emerges (i.e.,each outgoing link has its own
dedicated queue). Each of these queues has a buffer size


with Markovian services at rate�.

Coupled with a homogeneous (constant rate) Poisson arrivalprocess, this model is the standard
M/M/1/K queue model [25]. The extension to heterogeneous networks (differing service rates
and queue sizes) is straightforward. We assume that we make measurements (send packet-pairs)
at a rate of� �� where� � � �

is a constant. This ensures that there is sufficient time for
the queues to relax between measurements, resulting in approximately statistically independent
measurements.

Now, in the nonstationary setting, we model all other packetarrivals at a given queue using a
time-varying (inhomogeneous) Poisson arrival process andassume that the bandwidth� of this
process is limited such that

� �
�

�� ��
�

(2)

This implies aquasi-stationarity; the dynamics of the system are evolving at a rate slow enough
that we can discretize at the measurement rate (specificallywhere the measurements are made)
and study the discretized system. Moreover, each measurement essentially encounters a classical
M/M/1/K queue. We complete our model by imposing a random walk structure on the log-
intensity of the traffic arrivals:

��� � � �� 	 � ��� � � �� 	 	 
 �� 	� (3)

where� denotes the� -th measurement, and
 �� 	 is zero-mean Gaussian noise of variance� 
� �� 	. The model described thus far induces delay pmfs at each measurement time of the form

� � �� �� 	 � 
�� �� 	� (4)

where � �� 	 is the ratio of the arrival rate
� � �� 	 and service rate on the�-th link. Such pmfs are

exponentially increasing or decreasing, for � �� 	 � �
and � �� 	 � �

, respectively. This implies
that the mode is either at delay� or delay


. Note that this model can provide an excellent fit to

the delay histogram depicted in Figure 2 (a).
In real networks, however, the delay pmfs can display modes at other points due to the non-

Poissonian nature of traffic and due to the fact that each linkmay include multiple “hidden”
routers. A straightforward extension of the model above canhandle these situations. We intro-
duce an additional dynamical (continuous) parameter� � for each link and define the delay pmf
as

� � �� � 
�� �� � �� �

(5)

which places the mode of the pmf near� �. The parameter� � evolves according to a continuous
random walk (with reflection at� and


). In Figure 4 we illustrate the fit between the delay
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distribution from Figure 2 (b) and mixtures of pmfs of the form� � �� � � ��� �� �� ��� � �, � � � � 
.

It is not hard to see that if we choose
 	 �

distinct values for�, then the resulting vectors� � � �� � �� � � � � �� � �� � are linearly independent, thus forming a basis for� �� � . Therefore, any
pmf can be represented as a linear combination of these vectors, as the example in Figure 4(c)
shows.
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Figure 4:Fitting a the network delay histogram of Figure 2 (b) (boxes)with mixtures of pmfs of the form	 
 ��  � ��� �� �� ��� 
 �, � � � � � (stems). (a) Fit using a single pmf. (b) Fit using a mixture offour pmfs.
(c) Fit using a mixture of 16 pmfs.

4 Sequential Monte Carlo Tracking of Time-Variation

4.1 Basic Problem

We would like to track the internal delay distributions overtime. More specifically, based on our
measurements we wish to estimate the time-varying delay distribution defined in (1). We will
focus on the posterior mean as our estimator. The posterior mean estimate of� � �� � � � 	 can be
written as: �� � �� � � � 	 �� �� ���  !" #$� �% #$� �

& ��
������ � ���� ����� �'

�
�


��
��� ��� �

� ��� ��	 � � �� � (� 	

�
�


��
��� ��� � ) � ��� ��	 � � �� ��	 � * � 	 � �* � �� � (� 	 +* � � (6)

where� ��	 	 �� � ��	 � �
 ��	�, * � is a vector composed of the traffic intensities on all links attime�, and� � (� is a vector composed of the measurements at times
�� � � � � � . As before�� ��	 is the

(unobserved) delay on link� at time�, and,���� � (� 	 ��� �� -  	 �	 � � � � � �� �� 	�.
8



The evaluation of this estimator is very difficult. It requires an integration over the density� �* � �� � (� 	, which cannot be solved analytically. It is necessary to adopt numerical integration
techniques. Moreover, we need to calculate the estimate at each time� . It is important that
we form our estimate

�� � �� � � � 	 without redoing all the calculations involved in generating the
estimate at time� - �

. Otherwise we are not only wasting considerable computations, but we
render a real-time implementation of our procedure impossible. These considerations necessitate
the adoption of a sequential algorithm.

In the dynamic system we defined in Section 3, the available observations� � (� are a highly
non-linear function of the evolving parameters

* � (� . Standard sequential tracking methods such
as the Kalman filter are not applicable; our attempts at linearisation (e.g., the extended Kalman
filter) also result in very poor tracking. In previous work [13, 14, 24, 28], it has been observed
that sequential Monte Carlo (SMC) procedures can perform well when facing such highly non-
linear tracking problems. The estimation algorithm we develop in this section is based on the
SMC methodology.

We begin by briefly outlining the Monte Carlo nature of the technique. Because the integral
in (6) can not be calculated analytically, we approximate the estimator using Monte Carlo inte-
gration. To do this, we must sample from� �* � �� � (� 	, which itself is not easily accomplished. An
alternative approach is to performimportancesampling. Let

* � (� denote the trajectories of the
traffic intensities on all links over the time interval� � � � � � � . The basic idea here is to generate�

draws of
* � (� from animportance distribution�� , that has the same support as� �* � (� �� � (� 	

but from which we can sample more easily. We need to sample theentire trajectory
* � (� rather

than just
* � because the trajectories are highly coupled (evaluating� �* � �� � (� 	 requires difficult

marginalisation). Each draw represents an independent sample path of the network’s dynamical
evolution and thus independently explores part of the sample space. We use these draws (orpar-
ticles) to compute the desired Monte Carlo integration as follows.We can re-write the integration
as,

) � ��� ��	 � � �� ��	 � * � 	
� � �* � (� �� � (� 	�� �* � (� �� � (� 	 � �� �* � (� �� � (� 	 +* � �

Then, the Monte Carlo estimate is���� � � ��� ��	 � � �� ��	 � * �� �� 	 �� �� �� �
(7)

where� �� �� � � �* �� �� (� �� � (� 	 	 �� �* �� �� (� �� � (� 	 and �� �� �� � � �� �� 
���� � � ���� � �. In order to

evaluate this Monte Carlo estimate, we must determine both the weight� �� �� (up to a propor-
tionality constant) and the value of� ��� ��	 � � �� ��	 � * �� �� 	 for each of the

�
particles. We have� �* �� �� (� �� � (� 	 � � �� � (� �* �� �� (� 	 � �* �� �� (� 	. As the measurements are independent, the likelihood
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in this expression can be decomposed as� �� � (� �* �� �� (� 	 � � �� � (� � �� ��	 �* �� �� 	, where each fac-
tor in the product is a convolution of pmfs that can be evaluated efficiently using FFTs. The� �* �� �� (� 	 term can be determined from the dynamics of the system (3).

Evaluating� ��� ��	 � � �� ��	 � * �� �� 	 involves the application of an upward-downward algo-
rithm [16]. This algorithm propagates the knowledge of (1) the zero delay at the source and
(2) the delays� ��	 at the two receivers throughout the tree, exploiting the independence of the
conditional pmfs to calculate marginal distributions at each node.

4.2 Sequential Importance Sampling

The MC integration approach described above requires us to generate entire trajectories
* � (� at

each time� , and then to calculate the associated weight. This is computationally demanding
and highly wasteful. At time� , we want to perform the integration without redoing calcula-
tions made at time� - �

. This is achieved by forming the trajectory
* �� �� (� without modifying

the previous trajectory
* �� �� (� � �, which is possible if the importance sampling distributionhas a

Markovian structure. At time�, we sample from the initial distribution�� �* � 	. At time � ,

we sample from�� �*� �* �� �� (�� � � � � (� 	 , and form the time-� particle� by appending
* �� �� to* �� �� (�� �. The weight of particle� at time� can then also be updated recursively:

� �� �� � �� �� �� � �� �� �� 	 �* �� �� 	 � �* �� �� �* �� �� � �	�� �* �� �� �* �� �� (�� � � � � (� 	
�

We form our approximate estimator, denoted�� � �� � � � 	, by replacing the true integrals in (6) by
their Monte Carlo approximations (7).

The dynamics of the model proposed in Section 3 involve a random walk of
��� *� . In

this paper, we employ the prior distribution� �*� �*� � � 	 as the importance function (as adopted
in [21] and many subsequent works). In this scenario, we merely need to calculate the likelihood
to determine the update in the weights:� �� �� � �� �� �� � � � �� �� 	 �* �� �� 	 . (8)

The weight update factor at each time step is the likelihood� ��� �* �� �� 	. This can be efficiently
calculated using�� FFTs, where�� is the number of unique links traversed by the two packets
involved in the� -th measurement. We discuss the complexity of our algorithmin more detail
later in this section. Since we are dealing with discrete distributions, our weight update factor (8)
is bounded above by

�
, which implies that at any time� , every importance weight is bounded

by
�
.
The disadvantage of using the prior as the importance function is that the exploration of the

state-space has the potential to be inefficient, as knowledge of the current observation is not
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used to guide the search. In Section 6, we discuss ways in which the sampling strategy can be
improved; in practice, we observe that these approaches canproduce slightly better performance.

Degeneracy is a major issue in the application of sequentialimportance sampling. The mul-
tiplicative update applied to the weight at each time means that some importance weights may
quickly tend to zero, and the number of particles contributing to the estimator is greatly re-
duced. This effect increases the variability of the estimator (compared to the variance one would
have with the full

�
particles contributing). We will say more on estimator variance in Sec-

tion 4.4. The procedure ofresamplingaims to generate an unweighted approximation of the
weighted particle distribution. When performed at time� , the procedure associates with each
particle� a number of offspring

� �� �� , such that
���� � � �� �� � �

. The procedure thus obtains a
new set of particles, each of which has weight

�	� , and ensures that the number of significant
weights remains close to

�
. There are numerous techniques for performing resampling.The

most popular is sampling importance resampling (SIR), introduced in [20]. SIR involves jointly

drawing �� �� �� ���� � according to a multinomial distribution of parameters
�

and � �� �� �� ���� �.
Other techniques include residual resampling [22, 28], andstratified resampling [6, 24], which
is adopted in this paper.

This resampling process does introduce some additional computational overhead in the for-
mation of our approximate estimator at time� . Technically, it necessitates calculating the
marginal smoothing distributions� �* � �� � (� 	 for � � � -  	 � � � � � . This can be done using
the two-filter formula of [24], forward filtering–backward smoothing [14, 23], or the backwards
simulation procedure [19].

In simulations, we observe that if we use the approximation (replace�� �� �� by �� �� �� )���� � � ��� ��	 � � �� ��	 � * �� �� 	 �� �� �� �
(9)

for the summation in (7), then we achieve similar performance. We adopt this approximation in
the algorithm we outline below:

Particle Filter for Delay Distribution Estimation

At time m:
Sequential Importance Sampling step

� For � � �� �����
, sample�* �� �� � � �*� �* �� �� � � 	 and set�* �� �� (� � �* �� �� (�� � � �* �� �� �.
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� For � � �� �����
, evaluate the importance weights�� �� �� :� �� �� � � �� ��	 � �* �� �� � (10)

�� �� �� �
& ���� � � ���� '� � � �� �� (11)

Selection step

� Apply stratified resampling [24] to obtain
�

new particles�* �� �� (� � � � �� � � � �� �, each

with weight
�	� .

Estimation step

� For all � � � :

1. Evaluate� ��� �� 	 � � �� �� 	� * �� �� 	 using the upwards-downwards probability prop-
agation algorithm [16].

2. Estimate�� � �� � � � 	 from:

�� � �� � � � 	 �� �


��
��� ��� �

���� � � ��� ��	 � � �� ��	 � * �� �� 	 �� �� �� �

4.3 Computational Complexity Analysis

The computational complexity of the sequential importancesampling technique is� �� 	 per
measurement. Sampling from the prior distribution is straightforward and is of constant com-
plexity for each particle. Updating the weights at each timestep requires�� FFTs, where��
is the number of unique links traversed by the two packets in measurement� . The complex-
ity of this procedure is� ��� ���  	 per particle, where


is the maximum number of delay

units per link. The majority of resampling procedures, including the stratified resampling pro-
cedure we adopt, can be implemented in� �� 	 operations. The chief overhead involved in the

the algorithm is the application of the up-down algorithm toevaluate� ��� �� 	 � � �� �� 	� * �� �� 	.
For this step, the computational expense is� ��� 
 	 per particle. As this is the dominant ex-
pense, the computational overhead of the approximate algorithm outlined above is� �� 
� 	
per measurement, where� is the average number of unique links involved in each measurement.

If we avoid the approximation (9) by calculating (at measurement� ) the marginal smoothing
distributions� �* � �� � (� 	 for � � � - 	 � � � � � , then we introduce a substantial additional com-
putational overhead. Of the available options, using the forward filtering—backward smoothing

12



procedure [14, 23] minimizes the additional computationalexpense, but even in this case it is
� �� 
 	 per measurement. For reasonable values of


(�

��), � (� ��) and (� ���), and
a suitable number of particles (

� �100–2000), this is by far the dominant computational over-
head.

4.4 Convergence Analysis

When we use the prior distribution as the importance function, the importance weights are
bounded above by

�
and continuous. The weights at time� are bounded by

�
, and at any time

� , the multiplicative weight update factor (8) involves a product of convolved discrete prob-
abilities; it is easy to check that is bounded above by

�
. Since we make use of the stratified

resampling scheme and the importance distribution does notdepend on the empirical distribu-
tion (the distribution of the particles), the assumptions 1–A and 2–A of [11] are satisfied, making
Theorem 1 of [11] applicable for our algorithm. The theorem implies that the mean-squared
error between the sequential Monte Carlo estimate�� � �� � � � 	 and the posterior mean estimate�� � �� � � � 	 approaches zero as the number of particles increases, i.e.:

� 
��� � �� � � � 	 - �� � �� � � � 		
 � �� ��
������� ��� � � ��� ��	 � � �� ��	 � * � 	 ��
� �

where�� �� does not depend on
�

.

5 Experiments

To assess the performance of our algorithms we simulate (in Matlab) the four-receiver network
depicted in Figure 1. In all experiments shown here we have set the maximum delay on each
link

 � ��
and used 500 particles. However, we have conducted tests in which the number of

particles ranged between 200 and 5000, and observed similarperformance over the entire range.

Experiment 1: We generate 1000 packet-pair measurements from stationarydelay distributions
on each link. Figure 5 (a) depicts the true delay distributions on links� � � � � � � along with the
estimated posterior means computed by the SMC algorithm. For comparison, Figure 5 (a)
depicts the results obtained using the EM algorithm proposed in [10]). This same experiment is
repeated in 50 independent trials. Figure 6 (a) shows the true expected delay for each link and
the expected delay computed from the estimated posterior mean pmfs.

Experiment 2: We perform 50 independent trials of the scenario in Experiment 1, but this
time introduce small, random discrepancies (errors of up to4 time units) between the delays
on shared links. Figure 6 (b) depicts the true average delay for each link and the average delay
computed from the estimated pmfs (note the agreement with Figure 6 (a), indicative of the
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robustness of our methods to such errors). The estimated posterior mean pmfs (not shown here)
are also very close to the true delay pmfs, similar in qualityto those shown in Figure 6 (a).

Experiment 3: We generate 3000 packet-pair measurements from time-varying delay distri-
butions. The temporal dynamics are governed by (3). Figure 7depicts the true and estimated
posterior mean pmfs on links 1, 2, and 7 at two different times. Figure 8 plots the true and esti-
mated expected delay (both based on windowed averages) on links 2, 4, and 7 as a function of
time.
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Figure 5:True (solid) and estimated (stem) delay pmfs for links 2 and 3(row 1), 4 and 5 (row 2), and 6
and 7 (row 3) using the (a) sequential MC method developed in this paper and (b) EM algorithm [10].

6 Discussion

6.1 Experimental Results

Several conclusions can be drawn from the experimental results. First, it is clear from the results
of Experiment 1 that the SMC procedure described here can offer significant improvements over
the MLE approach [10]. Experiment 2 demonstrates that our estimator is quite robust to signifi-
cant deviations from the assumption that the delays on shared links are identical, although we do
observe a slightly larger variance in our estimates (see Figure 6). This is important in practice
since, as evident in Figure 3, real Internet measurements exhibit small delay deviations on shared
links. While the basic delay model (4) is quite adequate in some cases (c.f. Figure 2 (a)), Exper-
iment 3 demonstrates that the generalized model corresponding to (5) enables the tracking and
estimation of a much broader class of delay distributions. This too is very relevant to practice
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Figure 6:Estimation of average delays on each link for (a) identical delays on shared links and (b) small
delay discrepancies on shared links. Boxes indicate the true average delay on each link (1-7). Error
bars denote the one-standard-deviation confidence interval of the estimated average delay (using the EM
algorithm).

because the delay distributions in the Internet often have more complicated characteristics (c.f.
Figure 2 (b)).

6.2 Improved Importance Sampling

In our basic formulation developed in Section 4, we used the prior distribution in our impor-
tance sampling. The disadvantage of using the prior as the importance distribution is that the
exploration of the state-space has the potential to be inefficient, as knowledge of the current ob-
servation is not used to guide the search. Improvements in our SMC procedure may be obtained
by using theoptimal importance distribution [14, 37]. Unfortunately, in the internal delay track-
ing problem, it is extremely difficult to sample from the optimal importance distribution. We
can, however, achieve a slight improvement over the use of the prior distribution by considering
a local linearization of the optimal distribution [36].

We consider the function� �*� 	 � ��� � �*� �*�� � � � �� 		, and reparameterise using�� ���� *� .We have:

� ��� 	 � �� � �� �� 	 ��� 	 	 �� � ��� ��� � � 	 - �� � �� �� 		
� �� � �� �� 	 ��� 	 - �

�� 
 ��� - �� � � 	� ��� - ��� � 	 - �� � ��� 	 �
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Figure 7:Delay pmf estimates in nonstationary scenario using sequential Monte Carlo procedure. True
(solid) and estimated (stem) pmfs on links 1, 2, and 7 at measurements� � ���� and� � ���� for a
window size� � ���.

Using a first-order Taylor expansion about�, we have

�� � �� �� 	 ��� 	 �
�� � �� �� 	 ��	 	 � �� � �� �� 	 ��� 	

�
��

�������� ��� - � 	
If we choose� � ��� �, then we can write

� ��� 	 � �� � �� �� 	 ��� � �� � � 	 	
� �� � �� �� 	 ��� 	

�
��

������ ��� # ��� - �� � �	
- �
�� 
 ��� - �� � � 	� ��� - ��� �	 	 constant

� �� � �� �� 	 ��� � �� � � 	 	 constant- �
�� 
 ��� - �� � � - � ���� � 		� ��� - ��� � - � ��� � � 		 ,
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Figure 8:Tracking of average delay on links 2, 4, and 7 over measurement period. True (solid) and esti-
mated (dashed) expected delay versus time. Both the true andestimated expected delays were calculated
based on an� � ��� windowed average.

where

� ���� � 	 � � 
 � �� � �� �� 	 ��� 	
�
��

������ ��� # .

This functional form suggests the adoption of the importance function:� ��� ���� � � � �� 		 � � ���� � 	 � ���� � 	 � � 
 � .

Sampling from this importance function, as opposed to the prior, involves the additional overhead
of calculating� �� �� �� � � 	 for each particle� . This is a similar computational task to the calculation
of the likelihood, the chief expense being the convolution of the distributions (involving��
FFTs, where�� is the number of unique links traversed by the two packets in measurement� ).
As the probability propagation technique requires substantially more computation, this additional
overhead has little effect on the speed of the algorithm.
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6.3 Conclusions

Our experiments demonstrate the potential of sequential Monte Carlo algorithms for network
delay tomography. We find that very good estimates of the delay pmfs can be obtained from
a small number of measurements, and estimates of expected delays are very robust, even in the
presence of non-ideal delay discrepancies on shared links.The sequential Monte Carlo algorithm
appears to track slowly varying network behavior reasonably well.

Ongoing work is aimed at deeper theoretical analyses of our methods. There are several
improvements and extensions possible for our framework including tracking of hyperparameters
[27] (e.g.,variance in random walk underlying traffic intensities) andthe more sophisticated im-
portance sampling strategies such as the linearized resampling scheme proposed in Section 6.2,
the auxiliary particle filter [30], and shemes incorporating local MCMC moves [17]. We are also
conducting more realistic network simulation experimentswith thens-2 package [3].

More generally, our sequential modeling and inference framework could be adapted to dy-
namical problems arising in wireless and peer-to-peer commnication networks.
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