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Abstract

This article presents a new spatio-temporal method for M/EEG source recon-

struction based on the assumption that only a small number of events, localized in

space and/or time, are responsible for the measured signal. Each space-time event

is represented using a basis function expansion which reflects the most relevant (or

measurable) features of the signal. The basis function expansion effectively mod-

els sources which span local regions of cortex and occupy specific frequency bands

and/or time windows. This model of neural activity leads naturally to a Bayesian

likelihood function which balances the model fit to the data with the complexity

of the model, where the complexity is related to the number of included events. A

novel Expectation-Maximization algorithm which maximizes the likelihood function

is presented. The new method is shown to be effective on several MEG simulations

of neurological activity as well as data from a self-paced finger tapping experiment.
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1 Introduction

The ill-posed nature of the M/EEG inverse problem is widely recognized (Bail-

let et al., 2001) and unique solutions are usually obtained by placing prior

expectations on the nature of the brain activity associated with the measured

data. In this paper we present an approach for solving the inverse problem

that assumes the underlying brain activity is due to a small number or sparse

set of space-time events. Each space-time event corresponds to activity that is

concentrated in space and time. Sets of spatial and temporal basis functions

are employed to represent the activity due to each space-time event. We seek

to explain the measured data in terms of a small number of space-time events.

This objective leads to a convex optimization problem, which we solve via a

novel expectation-maximization (EM) algorithm.

Common approaches to the M/EEG inverse problem may be classified as ei-

ther parametric or imaging methods (Baillet et al., 2001). Parametric or scan-

ning methods use a small number of dipoles (Scherg and von Cramon, 1985),
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multipoles (Mosher et al., 1999; Nolte and Curio, 2000), or cortical patches

(Limpiti et al., 2006; Wagner et al., 2002, 2000) and scan over locations to find

the best set of sources to represent the data. Examples of scanning methods

include MUSIC (Mosher et al., 1992), beamforming (Van Veen et al., 1997),

and maximum likelihood estimation (Dogandžić and Nehorai, 2000). One per-

sistent challenge for scanning methods is choosing the number of sources in

the solution.

The method proposed in this paper may be classified as an imaging technique.

Imaging methods tessellate the brain using a large number of dipoles and

attempt to simultaneously solve for all dipole amplitudes. This leads to the

following linear model:

Y = HX + N (1)

where Y is an M x T matrix of spatial-temporal measurements from M sen-

sors at T time points, H is an M x 3D (or M x D in the case of known

dipole moment orientation) lead field matrix relating sensor measurements to

D discrete dipole locations (voxels) on the cortex, X is the 3D x T signal

matrix representing the unknown time courses and orientations of each dipole

on the cortical surface, and N is a matrix of additive noise. The goal of imag-

ing techniques is to estimate each element of X simultaneously given Y and

H. Typically M is on the order of several hundred, while D exceeds several

thousand, so Eq. (1) is severely underdetermined. Furthermore, the effective

rank of H is often significantly less than M .

The problem of nonuniqueness with imaging techniques is often reduced by
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use of a Bayesian prior to favor some solutions over others. The prior is incor-

porated as a penalty term in a cost function which is minimized to estimate

the neural activity. Under the assumption of white noise, these cost functions

take the form:

‖y −Hx‖2
2 + λf(x) (2)

We use vectors y and x in Eq. 2 since the optimization, in most previous

work, is solved separately at each time point, and solutions are often found

only at specific time points selected by the user. The first term of Eq. (2)

ensures that solutions explain the data well, while f acts as a penalty term.

The constant λ balances the contribution of both terms. Note that Eq. (2)

can be viewed as regularized inversion of the lead field matrix H. A common

choice of penalty is simply f(x) = ‖Wx‖2
2, which corresponds to a Gaussian

prior on x. In its simplest form, the minimum norm estimate (MNE) of cor-

tical activity uses W = I and is equivalent to Tikhonov regularization. To

eliminate a bias toward deep sources, W can be a diagonal matrix whose el-

ements are the norm of the corresponding column of H (Baillet et al., 2001).

We refer to this choice of W as the lead field normalizing matrix since the

matrix H̃ = HW−1 consists of columns whose norm is one. The MNE has

the simple closed form solution x̂ = (HTH + λWTW)−1HTy, but tends to

severely blur activity across the cortex. The well known LORETA technique

sets W to an approximation of the Laplacian operator (Pascual-Marqui et al.,

1994). Like the MNE, LORETA gives blurry, low resolution reconstructions of

neuronal activity. In an effort to reduce the spatial blurring of the MNE and

LORETA, the FOCUSS algorithm reinforces strong sources while deempha-
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sizing weak ones by iteratively updating W. The diagonal elements of W are

set equal to the estimated power of each source given by the previous solution

(Gorodnitsky and Rao, 1997). FOCUSS does produce more focal estimates,

but is sensitive to the initialization of W as well as to noise (Baillet et al.,

2001). Both LORETA and FOCUSS can incorporate lead field normalization

into W as well.

Another method aimed at producing focal solution to the inverse problem

is the minimum current estimate (MCE) (Matsuura and Okabe, 1995, 1997;

Uutela et al., 1999). In this case, the penalty in Eq. (2) is f(x) = ‖Wx‖1

with W either the identity or the lead field normalizing matrix. This penalty

corresponds to an exponential prior on x. Recently `1 norm regularization has

received much attention in many fields because of its ability to recover sparse

solutions (i.e., solutions in which most components are zero) using computa-

tionally tractable methods; `1 regularized estimates are solutions of convex

optimization problems. The criticism of `1 regularization is that it produces

solutions which are “spiky” in space and inconsistent with physiological ex-

pectations. A more recent twist on `1 regularization in MEG is the VESTAL

approach (Huang et al., 2006). Here dipole orientations are not fixed, but

constrained to an octant via W, a diagonal sign matrix. Singular value de-

composition of both the lead field matrix H and the data matrix Y are used to

stabilize the solution and mollify the “spiky” nature of minimum `1 solutions.

Researchers have also proposed `p norm regularization with 0 < p < 1 and

1 < p < 2 as well (Auranen et al., 2005; Jeffs et al., 1987). The optimization

problem is not convex for 0 < p < 1. In general these optimization problems

are more difficult to solve than p = 1, 2.

The “space-time sparse” (STS) regularization we present here is closely re-
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lated to `1 minimization. The STS approach seeks a solution composed of a

small number of “space-time events” (STEs) which we define below. STS dif-

fers from existing `1 approaches in that each STE is represented by a group of

basis functions. We use spatial basis functions to represent extended activity

on the cortex and also eliminate the need to disambiguate neighboring dipolar

sources, and temporal basis functions to confine signals to specific frequency

bands of interest and limit their duration. The use of basis functions allows

variation in the activity of the implicit dipoles involved in a single STE. Use of

spatial and temporal bases in the STS regularizer effectively combines the spa-

tial and temporal aspects of the neural activity estimation problem. The STS

formulation automatically determines both where and when significant activ-

ity occurs. Hence, the detection of STEs eliminates the need for users to specify

times in the measured signal where significant activity is believed to exist. We

present STS regularization as well as a novel Expectation-Maximization (EM)

algorithm for solving the resulting optimization problem. A simple criterion

for guiding the selection of an appropriate regularization parameter λ is in-

corporated into the optimization procedure. The effectiveness of the method

is illustrated on simulations as well as human subject data from a self-paced

finger tapping experiment.

The remainder of the paper is organized as follows. In Materials and Methods,

we first introduce the concept of spatial-temporal basis function expansions

of X in Eq. (1) and use the basis functions to define STEs. Next, we present

the STS regularization technique for solving the inverse problem, as well as an

EM algorithm for solving the STS regularized least squares problem. The Re-

sults section describes several MEG simulations, including a set of randomized

source simulations, and application of STS to MEG recordings of a subject
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performing self-paced finger tapping. We conclude with a discussion of the

STS method and possible extensions.

The following notation is used throughout. Matrices and vectors are repre-

sented by upper and lower case boldface letters, respectively. Matrix inversion

is represented by superscript −1, while transposition is represented by super-

script T . Classic vector p norms are denoted ‖ · ‖p, and ‖ · ‖F denotes the

Frobenius norm of a matrix. We denote the Kronecker product using the ⊗
operator while vec () concatenates columns of a matrix to produce a column

vector. For a review of algebra involving ⊗ and vec (), see Brewer (1978).

2 Materials and Methods

2.1 Spatio-Temporal Dictionaries for the Inverse Problem

The STS approach to the M/EEG inverse problem relies on representing the

cortical signal X as a linear combination of physiologically meaningful basis

functions from carefully crafted spatial and temporal dictionaries. In general,

a spatio-temporal expansion of X can be written:

X = SΘTT (3)

where the columns of S are a dictionary containing spatial bases, the columns

of T are a dictionary containing temporal bases, and the (i, j)th element of

coefficient matrix Θ specifies the contribution associated with the ith spatial

basis modulated by the jth temporal basis. If both S and T are invertible

then there is a one-to-one mapping between Θ and X, that is Θ = S−1XT−T .
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However, S and T may be chosen to intentionally restrict the signal to lie

in specific spatial and/or temporal subspaces in order to incorporate prior

expectations into the solution of the M/EEG inverse problem.

Given a spatio-temporal expansion in the form of Eq. (3), many methods can

be used to solve the reformulated problem for Θ. In particular, regularized

least squares problems analogous to Eq. (2) can be formulated with some

function of Θ as the regularization term. However, the power of a spatio-

temporal expansion comes from the ability to design the bases and the penalty

term concurrently. Incorporating prior expectations into both the dictionaries

and the criterion for choosing Θ offers potential for improved quality solutions.

Our approach assumes that M/EEG signals are the result of a small number

of space-time events (STEs) which occur over limited time spans and occupy

contiguous, local areas of cortex. This assumption is reflected in the following

spatio-temporal expansion:

X = SΘTT =



S1 S2 . . . SI







Θ1,1 Θ1,2 . . . Θ1,I

Θ2,1 Θ2,2 . . . Θ2,J

...
...

. . .
...

ΘI,1 ΘI,2 . . . ΘI,J







TT
1

TT
2

...

TT
J




=
I∑

i=1

J∑

j=1

SiΘi,jT
T
j (4)

Here the spatial and temporal dictionaries, as well as the coefficient matrix,

have been partitioned into space-time events. The columns of each submatrix

Si are an orthogonal basis for measurable activity spanning a local region

of cortex. Likewise, the columns of each Tj are an orthogonal basis for a
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temporal subspace, such as a frequency band or time interval. Cortical activity

that lies in the vector space defined by a single spatial submatrix Si and a

single temporal submatrix Tj defines a single STE and is represented by the

coefficients in Θi,j. We seek parsimonious sets of spatial and temporal bases to

describe candidate STEs and formulate a criterion for finding solutions that

involve a small number of non-zero Θi,j.

This philosophy is not limited to a specific set of STEs. The temporal bases in

Tj may be chosen using wavelets, Gabor functions, Fourier bases, etc., to span

time intervals and bandwidths consistent with the temporal charactersitics of

the signals of interest. Spatial bases Si for events that activate a limited area

of cortex include cortical patches (Limpiti et al., 2006; Wagner et al., 2002)

and multipolar expansions (Mosher et al., 1999; Nolte and Curio, 2000). The

spatial bases are selected consistent with the spatial attributes of interest.

Our examples in this paper employ spatial event bases derived from cortical

patches. This approach results in event bases that are locally supported and

particularly parsimonious. We describe our basis construction procedure here

to exemplify several key attributes of appropriate bases. Assume the ith cor-

tical patch contains a collection of dipoles whose lead fields and amplitudes

are concatenated into a patch lead field matrix Hi and amplitude vector αi,

respectively. Hence, the signal yi measured at the sensors due to the ith patch

is yi = Hiαi. The bases representing events in this patch should only describe

the space of possible activity distributions αi that contribute to the measure-

ment. To this end, take the singular decomposition of Hi = UΣVT where

the columns of U and V are the left and right singular vectors, respectively,

and Σ is a diagonal matrix of singular values ordered from largest to small-

est. Typically Hi is low rank (Limpiti et al., 2006) so a small number of the
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singular values are significant.

The columns of V are a natural basis for the patch signal αi. Suppose αi = vk

where vk is the kth column of V. The corresponding signal measured at the

sensor is:

yi = ukσk (5)

where uk is the kth column of U and σk is the kth largest singular value. Since

each uk is unit norm, the strength of the measured signal is given by σk, and

we see that spatial bases vk associated with small singular values make small

contributions to the measured signal. Given the typically low signal to noise

ratio of M/EEG, the measurable spatial component of an STE from the ith

patch is adequately represented by the right singular vectors corresponding to

significant singular values. Hence, we construct the spatial basis Si from the

“significant” right singular vectors associated with the ith patch.
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Fig. 1. Normalized singular values associated with 393 patch lead field matrices.

The singular values decay rapidly in every patch.

Figure 1 depicts the singular values for all 393 lead field matrices correspond-

ing to patches of geodesic radius 20 mm tiling both hemispheres of a subject
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with 50% overlap. The lead fields are computed for the 275 channel CTF MEG

system. Note that in each case the 7th and higher singular values are an order

of magnitude smaller than the largest singular value. Furthermore, the first

two or three singular values are five times larger than the higher order singu-

lar values. Figure 2 illustrates the spatial pattern associated with several right

singular vectors for a typical patch by depicting each element of vk at the cor-

responding dipole location. The singular vectors associated with the largest

singular values tend to represent low resolution features within the patch and

the level of detail or fine structure represented by a singular vector increases

as the corresponding singular values decrease. Selecting the number of signifi-

cant singular values and vectors thus involves a tradeoff between representing

the details of the spatial distribution of activity within the patch and having

adequate SNR to estimate the detail. Similar tradeoffs exist with other ap-

proaches to choosing spatial bases. For example, the contributions of higher

order terms in a multipole expansion also decay rapidly, so the SNR dictates

the number of terms that can be reliably estimated and used as spatial bases.

2.2 Space-Time Sparse Regularization

The motivation behind Space-Time Sparse (STS) regularization is the as-

sumption that the activity of interest is a collection of a small number of

space-time events which occur over limited time spans and occupy local areas

of cortex. This assumption, combined with appropriate spatial and temporal

dictionaries, implies that the true underlying signal should have Θi,j = 0 for

the majority of pairs (i, j). To encourage such a sparse solution, we seek to

solve an optimization problem which balances measurement error with the
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(a) (b)

(c) (d)

Fig. 2. Color cortical activity pattern for singular vectors vk of a representative

patch. (a) v1, largest singular value. (b) v3, third largest singular value. (c) v5,

fifth largest singular value. (d) v7, seventh largest singular value. The activity pat-

terns associated with larger singular values tend to represent low resolution features

within the patch, while those associated with smaller singular values represent fine

structure.

number of nonzero blocks Θi,j. One way to do this is to penalize the least

squares problem based on the number of STEs. That is, solve:

min
Θ
‖Y −HSΘTT‖2

F + λ
∑

i,j

1{Θi,j 6=0} (6)
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where 1{E} is the indicator function of event E and the parameter λ > 0 bal-

ances error with the complexity (or non-sparsity) of the solution. Equation (6)

represents a highly nonconvex problem requiring an exhaustive search of all

possible combinations of active blocks Θi,j. Exhaustive search is computation-

ally prohibitive even for relatively small problems. Thus we seek a suitable

proxy for the regularizer
∑

i,j 1{Θi,j 6=0}.

The regularization term in Eq. (6) can be viewed as the `0 pseudonorm of

a vector whose entries are the `p norms of each block, ‖vec (Θi,j) ‖p, for any

p > 0. The nonconvex nature of the problem is due to the `0 pseudonorm.

Many recent results have suggested that relaxing the nonconvex `0 pseudonorm

of a vector to the convex `1 norm in regularized least squares problems provides

a very good approximation to the desired regularization (Candes and Tao,

2005; Donoho, 2006; Tropp, 2006). In the spirit of these results, we relax the

`0 block penalty to an `1 block penalty:

min
Θ
‖Y −HSΘTT‖2

F + λ
∑

i,j

‖vec (Θi,j) ‖p (7)

We still must select an appropriate p to capture the magnitude of the contri-

bution of each block. Setting p ≥ 1 results in a convex optimization problem.

The “obvious” choices for a convex optimization are p = 1, 2, or ∞. If p = 1,

then the block structure of Eq. (4) is lost and the penalty in Eq. (7) be-

comes ‖vec (Θ) ‖1. This encourages a solution which is sparse in the number

of nonzero coefficients in Θ, but not necessarily sparse in terms of the number

of STEs. We prove in (Bolstad et al., 2007) that when one STE is present, the

p = 2 case with lead field normalization (see Section 2.6) provides a higher

probability of activating the correct STE than the p = ∞ case. Using p = 2 in
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Eq. (7) and noting that ‖vec (Θi,j) ‖2 = ‖Θi,j‖F leads to estimate X̂ = SΘ̂TT

where:

Θ̂ = arg min
Θ
‖Y −HSΘTT‖2

F + λ
∑

i,j

‖Θi,j‖F (8)

This objective function is convex since it is a sum of convex functions. At least

one minimizer exists since the objective function is positive (i.e., bounded

below) and convex for all Θ. The next section describes a novel EM algorithm

for finding Θ̂.

2.3 Expectation-Maximization Algorithm

The gradient of
∑

i,j ‖Θi,j‖2 is discontinuous so classical gradient-based mini-

mization approaches to Eq. (8) can not be used without modification. Instead,

we have developed an Expectation-Maximization (EM) algorithm which treats

the objective of Eq. (8) as a negated Bayesian log-likelihood function where

the penalty can be interpreted as the logarithm of a prior distribution on Θ.

EM finds the maximum a posteriori (MAP) estimate of Θ. The approach de-

scribed here is a generalization of the EM algorithm developed by Figueiredo

and Nowak (2003). The pioneering work on EM was published by Dempster,

Laird, and Rubin (Dempster et al., 1977).

The EM algorithm monotonically increases the Bayesian likelihood

p(Y|Θ)p(Θ) over Θ. Assuming white Gaussian noise and the density p(Θ) ∝
exp {− λ

2σ2

∑
i,j ‖Θi,j‖F}, the negated Bayesian log-likelihood is proportional

to
‖Y−HSΘTT ‖2F

2σ2 + λ
2σ2

∑
i,j ‖Θi,j‖F . Multiplying through by 2σ2, we see that

the EM algorithm is monotonically decreasing the function ‖Y−HSΘTT‖2
F +
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λ
∑

i,j ‖Θi,j‖F , which is the objective of Eq. (8).

The key aspect of solving an estimation problem via the EM algorithm is

to identify a so-called “hidden data set” which, if known, would make the

problem easy to solve. EM alternates between solving the easy problem given

an estimate of the hidden data and updating the estimate of the hidden data.

We identify hidden data Z for the STS problem based on the decomposition:

Z=Θ + αN1 (9)

Y =HSZTT + N2 (10)

Here the noise matrix N of Eq. (1) is decomposed into two independent ran-

dom matrices N1 and N2 with distributions vec (N1) ∼ N (0, I ⊗ I) and

vec (N2) ∼ N (0, σ2I− α2TTT ⊗HSSTHT ). The scalar α2 must satisfy α2 <

σ2‖TTT‖−1‖HSSTHT‖−1 so that a valid covariance matrix exists for N2.

With this decomposition, estimating Θ given Z amounts to a classic denois-

ing problem (Donoho, 1995) in which the density of the desired signal Θ is

characterized by the penalty function
∑

i,j ‖Θi,j‖F . Equation 10 is then used

to update the estimate of Z.

The EM algorithm alternates between an Expectation Step (E-Step) and

a Maximization Step (M-Step). The E-Step calculates the Q-function:

Q(Θ|Θ̂(k−1)) ≡ E[log p(Y,Z|Θ)|Y, Θ̂(k−1))] where the expectation is over Z

and Θ̂(k−1) is the estimate from the previous iteration. The M-Step maximizes

Q(Θ|Θ̂(k−1)) + log p(Θ) over Θ to produce Θ̂(k) 2 . This produces a series of

2 In ML estimation, the M-Step is to maximize the Q-function alone; however,

in the case of MAP estimation, the log likelihood of Θ is included as well (see

(Dempster et al., 1977)).
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iterates Θ̂(k) which are guaranteed to converge to a stationary point provided

that Q(A|B) is continuous in both A and B (Wu, 1983).

In the E-Step, we calculate the Q-function using the measured data and the

estimate Θ̂(k−1):

Q(Θ|Θ̂(k−1)) = E[log p(Y,Z|Θ)|Y, Θ̂(k−1))]

= K − ‖Θ− Ẑ(k)‖2
F

2α2
(11)

where K is not a function of Θ and:

Ẑ(k) = E[Z|Y, Θ̂(k−1)]

= Θ̂(k−1) +
α2

σ2
STHT (Y −HSΘ̂(k−1)TT )T (12)

Thus, specifying Q(Θ|Θ̂(k−1)) amounts to calculating Ẑ(k) using Eq. (12).

The M-Step is a generalization of the M-Step for an `1 penalized least squares

problem (see Figueiredo and Nowak (2003)) since the penalty in Eq. (8) is a

generalization of the `1 norm. We seek to solve the following problem:

Θ̂(k) = arg max
Θ

Q(Θ|Θ̂(k−1)) + log p(Θ)

= arg min
Θ




‖Θ− Ẑ(k)‖2

F

2α2
+

λ

2σ2

∑

i,j

‖Θi,j‖F



 (13)

This is the maximum a posteriori estimate of Θ given Ẑ(k) assuming p(Θ) ∝
exp(− λ

2σ2

∑
i,j ‖Θi,j‖F ). The key feature facilitating the solution of Eq. (13)

is the separability of the problem into blocks corresponding to the blocks of

Eq. (4):
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‖Θ− Ẑ(k)‖2
F

2α2
+

λ

2σ2

∑

i,j

‖Θi,j‖F =
∑

i,j

‖Θi,j − Ẑ
(k)
i,j ‖2

F

2α2
+

λ

2σ2
‖Θi,j‖F (14)

We solve Eq. (13) by finding the Θi,j that minimizes ‖Θi,j−Ẑ
(k)
i,j ‖2

F +α2λ
σ2 ‖Θp,q‖F

for every pair (i, j). The single block problem for the (i, j)th block is rewrit-

ten in simplified notation using z = vec
(
Ẑ

(k)
i,j

)
and θ = vec (Θi,j) as f(θ) =

‖θ − z‖2
2 + α2λ

σ2 ‖θ‖2. Since f(θ) is strictly convex, it has a unique minimizer

θ∗. We show in Appendix A that:

θ∗ =





(1− α2λ
2σ2‖z‖2 )z, if ‖z‖2 > α2λ

2σ2

0, otherwise

(15)

Thus we summarize the EM algorithm as:

For k = 1, 2, . . .,

Ẑ(k) = Θ̂(k−1) + cSTHT (Y −HSΘ̂(k−1)TT )T

Θ̂(k) = arg min
Θ



‖Θ− Ẑ(k)‖2

F + cλ
∑

i,j

‖Θi,j‖F



 (16)

where c = ‖TTT‖−1‖HSSTHT‖−1 since we choose α2 at the upper bound

α2 = σ2‖TTT‖−1‖HSSTHT‖−1.

As described in (Wu, 1983), continuity of the Q function and the existence of a

lower bound to Eq. (8) implies convergence to a stationary point. Since Eq. (8)

is convex, the only stationary point is the global minimum, so Θ̂(k) converges

to the global minimizer. Various stopping criteria may be used to terminate

the algorithm, such as lack of sufficient change in the objective function or
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satisfaction of the subgradient condition, i.e., the subdifferential of Eq. (8) at

Θ̂ contains 0 within a set tolerance.

An advantage of our EM algorithm approach is that it provides an easy means

to calculate solutions Θ̂(λ) for a wide variety of λ. Since a small change in

λ doesn’t typically produce a large change in Θ̂(λ), the solution Θ̂(λ1) can

be used to initialize the algorithm when solving for Θ̂(λ2). If λ2 ≈ λ1, then

this initialization point will be close to Θ̂(λ2). Furthermore, we show in Ap-

pendix B that Θ̂(λ) = 0 for λ ≥ λMAX , where:

λMAX = 2‖max
i,j

ST
i HTYTj‖2 (17)

depends on the data Y. Thus, we solve for a range of λ by setting Θ̂(λMAX) =

0, and then solve for λ = (1−ε)λMAX using 0 as the initial guess Θ̂(0). Next we

use Θ̂((1− ε)λMAX) as a starting point to find Θ̂((1−2ε)λMAX) and continue

in this manner until we arrive at the desired λ. Selection of λ is discussed in

the next section.

2.4 Penalty Weight Parameter Selection

The quality of the estimate Θ̂ given by Eq. (8) depends on the penalty weight

parameter λ. Intuitively, large λ corresponds to heavy reliance on the prior and

gives a very sparse (or all zero) estimate, while small λ corresponds to heavy

reliance on the noisy data and gives solutions with activity spread all over the

cortical surface. Clearly, both of these extremes are undesirable. In general,

user expertise may provide the best results for selecting λ, and in many cases

it may be desirable to consider a range of solutions from multiple values of
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λ. However, automatic selection of λ is necessary for objective performance

evaluation and to provide a starting point for user based selection.

We have developed a simple heuristic to automate selection of λ based on the

number of nonzero Θi,j, that is, the cardinality of Â(λ) = {(i, j)|Θ̂i,j(λ) 6=
0}. The intuition behind our heuristic is the following. Suppose no signal

is present, Y = N, and we solve Eq. (8). Since white noise is spread roughly

equally through all subspaces, no single block Θi,j can account for a significant

portion of the measured data Y. Thus, as λ decreases, the number of blocks

in Â(λ) increased rapidly to reduce the error term in Eq. (8). In contrast,

when a signal described by a small number of STEs is present, the signal

portion of the measured data can be explained by the corresponding blocks,

and initially the cardinality of Â(λ) increases relatively slowly as λ decreases.

Once the number of active blocks is able to explain the signal component of

the data, then additional blocks attempt to represent noise and the number

of active blocks will increase rapidly as λ is decreased further. This behavior

is illustrated in Fig. 3. Note that the number of STEs increases rapidly as λ

decreases for the noise only case, while it initially increases very slowly when

signal components are present.
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Fig. 3. Characteristic behavior of the number of STEs identified by STS vs. λ/λMAX .
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These observations suggest a simple strategy analogous to the L-curve method

of regularization in which we select the value of λ where the number of STEs

begins to increase rapidly with further decrease in λ. We implement one such

strategy by fitting the cardinality of Â(λ), which we denote ]A(λ), with two

curve segments: a linear function for large λ and quadratic function for small

λ. The linear function connects the points (λMAX , 0) and (λ, ]A(λ)). The

quadratic function is uniquely defined by two fixed endpoints since it is purely

quadratic (i.e., has no linear term). The endpoints used for the quadratic are

(λ, ]A(λ)) and (0, ]Â(0)), where ]Â(0) is a rough estimate of ]A(0) found by

dividing the rank of the forward model by the number of bases in each block.

This is the number of active blocks required to produce an estimate which fits

any measured data exactly. We vary λ to find the value that minimizes the

squared error between ]A(λ) and the piecewise approximation. This value of

λ is used to identify the point at which the transition between fitting signal

and noise occurs.

This method of λ selection requires that ]A(λ) be calculated for small enough

λ such that the characteristic shape of Fig. 3 is observed before applying the

heuristic. Two examples of the heuristic λ selection are shown in Fig. 4. These

two examples, as well as the additional examples in the following section,

suggest that the λ selected with this heuristic is typically smaller than the

“optimal” λ. Hence, this heuristic provides a good lower bound.

2.5 Application to Non-white Noise

A key assumption behind the STS method as presented so far is that the signal

is contaminated with white noise. This is rarely the case in real problems.
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Fig. 4. Example of heuristic applied to 0 dB simulated data with (a) 1 STE and (b)

2 STEs.

We accommodate colored noise by first whitening the data with the noise

covariance matrix. Suppose the noise in Eq. (1) is distributed N ∼ N (0,RN).

Taking the matrix square root RN = R
1/2
N R

T/2
N , the whitened data is:

Yw = R
−1/2
N Y = R

−1/2
N HX + R

−1/2
N N = HwX + Nw (18)

where Nw ∼ N (0, I). STS is applied to the whitened system. In practice RN is

usually unknown, so whitening requires that RN be estimated from available

data.

2.6 Lead Field Normalization

Lead field normalization is employed to eliminate bias toward sources closer

to the sensors. After whitening the data and expanding the signal with STS

basis functions, our signal model is:
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Yw = HwSΘTT + Nw (19)

We normalize the lead fields using diagonal matrix W whose entries equal the

`2 norm of the corresponding column of HwS. Thus we have:

Yw = HwSW−1WΘTT + Nw (20)

and the EM algorithm solves for Θ′ = WΘ. Here the columns of the matrix

HwSW−1 are unit norm due to normalization. The columns of T may be

normalized as well, though typically the Tj are constructed so that TT
j Tj = I

and thus normalization of T is not necessary.

2.7 Debiasing

If it is known a priori which blocks of Eq. (4) are nonzero and which are zero,

then a minimum norm solution to the inverse problem takes the form:

min ‖Y −HSΘTT‖2
F + γ‖Θ‖2

F (21)

s.t. Θi,j = 0, ∀(i, j) /∈ A

where the set of nonzero or “active” blocks are denoted by A = {(i, j)|Θi,j 6=
0}. This problem can be solved in closed form by building an appropriate

matrix from the columns of HS and T corresponding to active blocks. The

minimum norm criterion ensures a unique solution even if this matrix is nu-

merically rank deficient. Note that the blurring normally associated with min-

imum norm solutions is not as problematic here since we are restricting the

solution to active blocks.
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The STS regularized problem is designed to select a space-time sparse solution

from the set of all solutions with comparable residual noise, and thus the

nonzero blocks of the solution to Eq. (8) are an estimate of the active set: Â =

{(i, j)|Θ̂i,j 6= 0} ≈ A. This estimate can be used as the active set in Eq. (21)

to produce a refined estimate of Θ. This process is referred to as debiasing in

`1 regularized inverse problems since it removes some of the bias introduced by

the penalty term in Eq. (8). The debiasing step may be performed without lead

field normalization. Also, different bases expansions for the active blocks may

be used in debiasing than those used for the original STS regularization. The

debiasing step is not necessary for the STS regularization approach, especially

if source localization is the primary goal.

3 Results

We illustrate specific examples of STS reconstruction in this section. We begin

by comparing the STS approach to standard `1 regularization on a “brain”

with simplified geometry to illustrate the benefits of the STS approach. Next,

we describe the method we use for whitening multi epoch data in more realis-

tic scenarios. We then demonstrate STS reconstruction on realistic, simulated

MEG signals. These simulations show that the method works well even though

the decomposition in Eq. (4) might not exactly match the signal and when the

noisy data is whitened using an estimated noise covariance matrix. We also il-

lustrate the characteristics of the regularization parameter selection heuristic

described in Section 2.4. Finally, we apply STS reconstruction to measure-

ments collected during a self-paced finger tapping experiment.
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3.1 Two Dimensional Example

Simultaneous space and time `1 regularized inversion of Eq. (1) is computa-

tionally intractable for typical cortical surface tesselations, so, we replace the

realistic cortical surface with a planar surface consisting of 397 dipoles. We cal-

culate MEG lead fields generated by these dipoles for the sensor configuration

shown in Fig. 5(a). The spatial STS basis functions consist of the cortical patch

bases described in Section 2.1 with three bases per patch and 50% overlap.

We use seven overlapping time windows of 50 ms, each with seven temporal

basis functions spanning 0 – 40 Hz for the temporal STS bases. We simulate

a space-time sparse signal consisting of three active STEs. Figure 5(b) – 5(e)

shows the spatial activation pattern of the signal as well as the simulated

measurements.

White noise is added to these measurements at three SNRs: -5, 0, and 5

dB. In all our simulations, we define SNR = ‖HX‖2
F /E{‖N‖2

F}. Figure 5(c)

illustrates a representative noisy data set with SNR = 0 dB. At each noise level,

we simulate ten trials and calculate the STS solution and the `1 regularized

inversion of Eq. (1) using penalty ‖vec (X) ‖1. The debiased STS solution is

calculated with a fixed, non-optimal λ = 0.5λMAX . The lowpass temporal

bases used in the STS approach automatically filter out high frequency noise

from the signal estimate. To give the `1 approach the same advantage, we

first project the measured data Y onto the subspace spanned by T. Next, we

minimize ‖Y − HX‖2
F + λ‖vec (X) ‖1 over a large range of λ and calculate

de-biased estimates X`1(λ). We then select the clairvoyant λ which minimizes

the mean squared error: X`1 = minλ ‖X`1(λ) − Xtrue‖2
F where Xtrue is the

true signal X. Thus we are comparing the best possible `1 estimate (in a
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Fig. 5. Two dimensional example. The cortical geometry is restricted to a plane to

visualize differences between STS and `1 approaches. (a) Location of plane relative

to MEG sensors. (b) Butterfly plot of noise free simulated measurements. (c) Ex-

ample of noisy data for SNR=0 dB. (d) Spatial activation pattern at 50 ms. (e)

Spatial activation pattern at 147 ms.

mean squared error sense) to an STS estimate with arbitrary regularization

parameter.

The STS reconstruction outperforms optimal `1 reconstruction at all noise

levels. The mean squared error optimal `1 estimate is the all zero solution,

X`1 = 0, for all trials due to the low rank lead field matrix and high noise

level. The MSE is simply ‖X‖2
F = 131. The STS estimate, on the other hand,

produced estimates with average MSEs of 12.3 for the -5 dB case, 8.05 for the
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(a) (b)

(c) (d)

Fig. 6. Comparison of the STS and `1 regularized inversion (with debiasing) on a

simplified cortical geometry. (a) STS, 50 ms (b) STS, 147 ms (c) `1, 50 ms (d) `1,

147 ms.

0 dB case, and 3.53 for the 5 dB case. Figure 6 compares the STS estimate

to an `1 estimate with a hand-picked λ for SNR = 5 dB. Figure 6 shows near

perfect reconstruction using the STS approach, while the `1 reconstruction

(with λ = .2λMAX)) produces estimates which are spiky (too focal) with

incorrect magnitude.
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3.2 Whitening Multi Epoch Data

The remaining results in this paper are based on whitening the data us-

ing the sample covariance matrix estimated from a multi epoch data set.

Other methods, such as using resting state or prestimulus measurements, may

be used if multiple epochs are not available. Suppose we have Q epochs of

data Y(1),Y(2), . . . ,Y(Q). Assuming that the signal repeats in each epoch, we

remove the mean from each epoch to approximate Q realizations of noise:

Ñ(q) = Y(q) −Q−1 ∑Q
q′=1 Y(q′). M/EEG data is typically lowpass filtered dur-

ing data collection and thus successive time samples in the Ñ(q) are not in-

dependent. Hence, we select a subset of R time points, i.e., columns, from

each realization Ñ(q) which are separated by the coherence time of the low

pass filter. Denote these columns by ñ(q,r), r = 1, 2, . . . , R. The spatial sample

covariance matrix of the noise is then estimated as:

R̂N = (QR)−1
∑
q,r

ñ(q,r)(ñ(q,r))T (22)

We use R̂N in Eq. (18) to approximately whiten the spatial component of the

noise. Note that the noise is not temporally white since the data is typically

lowpass or bandpass filtered. However, noise coloration due to temporal fil-

tering may be neglected because the temporal bases comprising T typically

span the same bandwidth as the filtered data. In the results presented here

we ignore possible temporal noise correlation within the processing band.
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3.3 Space-Time Basis Function Selection for Examples

In the remaining examples we illustrate the attributes of our STS reconstruc-

tion approach using STEs defined by cortical patches and fixed time intervals

having a common bandwidth. As noted previously there are many possible

ways to define STEs. We choose patches on the cortical surface extracted from

an MRI of the subject. Both hemispheres are tiled with patches of geodesic

radii of either 10 mm or 20 mm. Note that geodesic distances calculated us-

ing the edges of triangles representing the surface are greater than the true

geodesic distance. Figures 7 and 10 illustrate typical patches. We choose three

spatial bases per patch for each STE since the majority of measurable activity

in any patch is represented by the first three singular vectors, as indicated in

Fig. 1.

The temporal events divide the total time extent of interest into seven time

windows that overlap by 50%. The bases for each of these seven events are

wavelet bases that span the same frequency band as the signal. We have found

that wavelet bases result in smooth transitions at the window edges. We use

32 wavelets per time interval, so the number of coefficients associated with

each STE is 96.

3.4 Simulated Example 1

We test the STS approach using simulated data from a 275 channel CTF

MEG system. The simulated cortical signal consists of three STEs: activation

of a patch in both the left and right primary auditory cortex with a slight

offset in time followed by a patch of activity in the motor cortex. All three
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simulated patches have geodesic radii of roughly 10 mm. The measurements

are simulated using Eq. (1), with N consisting of colored noise drawn from a

N (0, I⊗R) distribution where R was calculated from the prestimulus portion

of an MEG experiment. The noise level was set to achieve an average SNR of

-6 dB. Figure 7 illustrates the time courses and spatial extents of the three

space-time events, as well as the noisy measurements.
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Fig. 7. Simulated three source scenario. True source location and spatial extent of

sources at times (a) 12, (b) 30, and (c) 116 ms. (d) True source time courses. (e)

Simulated signals in noise for SNR = -6 dB.

After whitening the data using the estimated noise covariance matrix as de-

scribed in Section 2.5, we apply STS reconstruction to the simulated signal

using the basis functions described in Section 3.3 assuming 20 mm geodesic
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radii patches and wavelet temporal bases spanning windows of 64? ms. This

results in 393 spatial patches with 3 bases each and 7 overlapping time win-

dows with 32 bases each for a total of 2751 candidate STEs. Note that the

basis functions used to perform STS reconstruction differ from the actual spa-

tial and temporal characteristics of the signal. The patches used in the STS

reconstruction are larger than the true signal patches and do not use the

same center locations as the true signal patches. Furthermore, the temporal

evolution of the simulated signal is not constructed from wavelet bases.
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Fig. 8. Signal estimate from de-biased STS: Reconstructed cortical activity at (a)

12, (b) 30, and (c) 116 ms. (d) Noise free sensor measurements (e) De-biased STS

reconstruction of sensor measurements.

The heuristic of Section 2.4 is used to select λ. The result of debiasing the STS
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reconstruction for this λ is shown in Fig. 8. All three STEs are recovered at

the correct locations in space and time. Activity is spread spatially around the

true location. Some of this spreading is due to the use of larger patches in the

STS reconstruction, while some spreading is inherent to the ill-posed nature of

the inverse problem. We also point out that some temporal spreading occurs

as a result of choosing fixed time windows. This is evident between 97 and 105

ms, where the motor cortex exhibits low-level activity in the reconstruction,

though the true motor activity starts at 106 ms. The fixed time window in

which the motor cortex is active begins at 97 ms.

3.5 Simulated Example 2

Next a series of simulations is conducted to test how well the STS procedure

reconstructs random combinations of STEs. We use the same basis decompo-

sition as in the first example above (393 spatial patches, 7 time windows) as

well as the same forward model; however, for these simulations three active

blocks are selected uniformly at random from the available 2751 blocks for

each trial. The coefficients of the activity for each active block are i.i.d. stan-

dard Gaussian random variables. Here there is no mismatch – the simulated

STEs are contained in the set of STEs used for reconstruction. This facili-

tates comparison of the STS reconstruction to the true signal. We also use

white noise and 0 dB SNR. Table 3.5 summarizes the results of 20 different

simulations.

False negatives are true STEs which are not identified by the STS reconstruc-

tion, while false positives are STEs identified by the STS reconstruction that

do not overlap in both space and time with a true STE. Active STEs identi-
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Table 1

Number of false negative and false positive STEs for each simulation in Example 2

using the heuristic λ selection from Sec. 2.4 and the optimal λ. Each trial contained

three randomly selected true STEs out of 2751 potential STEs.

Trial Heuristic λ Optimal λ

False Positives λ/λmax False Positives λ/λmax

1 2 .09 1 .40-.62

2 5 .08 0 .32-.35

3 2 .07 0 .17-.25

4 3 .08 3 .18

5 4 .10 0 .41-.74

6 1 .06 0 .14-.15

7 2 .09 0 .22-.8

8 1 .07 0 .13-.19

9 8 .09 1 .34-.68

10 6 .08 1 .18-.19,.21-.26

11 12 .08 1 .20-.24

12 10 .08 2 .32-.55

13 2 .07 0 .10-.22

14 1 .08 0 .25

15 5 .08 1 .16-.29,.31

16 3 .08 1 .22-.23,.28-.30

17 5 .09 0 .29-.66

18 2 .08 0 .32-.44

19 10 .07 3 .38-.43

20 6 .07 3 .23-.25
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fied in the STS reconstruction which overlap true STEs in space and time are

ignored. For the columns labeled “Heuristic λ,” we select λ using the heuristic

described in Section 2.4. In all trials, the λ selected by the heuristic had no

false negatives. This suggests that the heuristic may be used as a lower bound

to aid user selection of λ. The range specified as “Optimal λ” are those values

of λ that achieve no false negatives with the minimum number of overlapping

and false positive STEs. This “optimum” value of λ is chosen based on knowl-

edge of the true source activity and is included to illustrate characteristics of

the heuristic λ and the STS algorithm. Figures 9 and 10 depict the true and

reconstructed activity for trials 6 and 11 using the heuristic λ. Trial 6 is one

of the best trials (1 false positive) while Trial 11 is one of the worst (12 false

positives). In Trial 6, the heuristic λ selection produces a single false positive,

but in the de-biased reconstruction this patch has low amplitude (Fig. 9(f)).

In trials 9-12 and 19, the heuristic λ performs significantly worse than the

optimal, which suggests there may be value in considering more sophisticated

schemes for selecting λ. The results of Trial 11, shown in Fig. 10, indicate that

although there are a significant number of false positives, the excess activity

is in the general vicinity of the true activity.

Conducting simulations with random STEs provides some insight into how

STS performs for a variety of signal conditions. In general, the STS approach

does a good job identifying active space-time patches of cortical activity. The

optimal λ performs very well for all trials with only three or fewer false pos-

itives. These false positives are typically spatial patches very close to true

sources, but not overlapping them. In some cases when activity occurs on the

interhemispheric fissure, STS identifies activity on the opposite hemisphere,

immediately across from the true source. Such errors in spatial localizations
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(a) (b) (c)

(d) (e) (f)

Fig. 9. True signal and de-biased STS reconstruction of Trial 6 with heuristic λ.

(a) Location of true source activity between samples 1 and 64. (b) Location of

source activity between samples 161 and 224. (b) Location of source activity be-

tween samples 193 and 256. (d) De-biased STS reconstruction of activity at sample

30. (e) De-biased STS reconstruction of activity at sample 200. (f) De-biased STS

reconstruction of activity at sample 200 illustrating the false positive patch.

are a result of the low rank, noisy M/EEG inverse problem.

The majority of the simulations reported in Table 3.5 involve temporal over-

lap of spatially distinct STEs; only Trials 8, 13, and 17 contain STEs with

no temporal overlap. In most cases, distinct STEs overlap by 50% in time. In

Trials 1, 10, 11, 19, and 20, however, two distinct STEs occupy the exact same

time window. Hence, the STS reconstruction is able to identify simultaneously

occurring, spatially distinct sources. If two STEs overlap in time and are spa-

tially close, false positives tend to occur between them, though the amplitudes

of the false positive STEs are typically small compared to the true sources.
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(a) (b)

(c) (d)

Fig. 10. Excess spatial spreading associated with heuristic λ being smaller than

optimal in Trial 11. (a) Location of true source activity between samples 161 and

224. (b) Location of source activity between samples 193 and 256. (c) De-biased

STS reconstruction of activity at sample 200. (d) De-biased STS reconstruction of

activity at sample 250.

3.6 Self-Paced Finger Tapping Experiment

We also applied STS to MEG measurements of a subject performing self-paced

finger tapping. The data were collected with a Magnes 3600 whole head system

at a sampling rate of 678 Hz and band pass filtered to lie between 2 and 40

Hz. The measured data were grouped into 80 epochs of 755 ms duration (512

samples) referenced to the tap at time 0 detected via a switch closure. These
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epochs were then used to perform whitening on the average of all epochs as

described in Section 3.2. The averaged sensor measurements before and after

whitening are shown in Fig. 11. Cortical patches of 20 mm geodesic radii are

used to construct the spatial bases Si. Each of the seven temporal events span

189 ms (128 samples).
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Fig. 11. Recorded MEG from self-paced finger taping. (a) Averaged data. (b)

Whitened average data.

The de-biased reconstruction shown in Fig. 12 is calculated using the heuristic

of Section 2.4 to select λ. The estimate of activity begins about 200 ms pre-tap

and persists through the end of the measurement period. The earliest activity

occurs in the left motor cortex, which corresponds with the action of initiating

the finger tap. The next region to become active spans the somatosensory

and posterior parietal cortex. The somatosensory activity likely reflects the

sensation of pushing down the switch. The posterior parietal cortex is involved

in spatial relationships, body image, and movement planning (Bear et al.,

2001). The parietal lobe activity begins at low levels about 100 ms before the

switch closes and continues throughout the measurement period. It is possible

that the early onset of activity in the parietal lobe is a result of temporal

spreading throughout an active time window. Beginning at about 0 ms the
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STS reconstruction includes a small patch on the left frontal lobe. Some weak

activity is also identified in the right hemisphere, primarily in the parietal lobe.

This is consistent with earlier studies’ finding that the right parietal cortex

plays a role in spatial processing (Culham et al., 2006).

(a) (b) (c)

(d) (e) (f)

Fig. 12. De-biased STS reconstruction of self-paced finger taping with heuristic λ.

(a) -105 ms. (b) -31 ms. (c) 28 ms. (d) 80 ms. (e) 176 ms. (f) 264 ms.

4 Discussion

The STS approach searches for a small number of STEs spanning an extended

area of cortex and limited time duration which best explain the measurements.

By minimizing the number of events rather than the number of active dipoles,

STS solutions avoid “spiky” spatial and temporal artifacts typical of `1 meth-

ods. The basis function representation of each event reduces the number of
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parameters by only representing activity that is measurable at the M/EEG

sensors. Thus, our approach incorporates the inherent limitations of the for-

ward problem to formulate a more tractable inverse problem. The temporal

basis functions naturally constrain the solution based on features of interest,

such as the time-frequency characteristics. Use of both spatial and temporal

bases allows STS to automatically determine both where and when significant

activity occurs. The STS criterion involves the weighted combination of the

squared fitting error and a penalty designed to encourage solutions consisting

of a small number of STEs. The resulting cost function is convex and is min-

imized with a novel EM algorithm. The EM algorithm efficiently identifies a

parameterized family of solutions that balance sparsity against squared error.

We propose choosing the penalty weight by evaluating the number of STEs in

the solution as the weight decreases from the maximum value. The number of

STEs increases relatively slowly as the weight decreases when unrepresented

signal components are present, and then increases very rapidly as the weight

decreases when the STEs in the solution begin to represent noise. Hence, the

weight value at which the number of STEs begins to increase rapidly is a good

choice. We present one automated approach for finding this value of rapid

increase based on fitting linear and quadratic terms to the number of STEs.

Our simulations indicate that this method produces a good lower bound on

the weight since it generally selects more STEs than would be identified with

the oracle or optimal weight. Erring on the side of a few extraneous STEs is

preferable to missing true sources of activity, especially since post processing

debiasing generally assigns small amplitudes to extraneous STEs.

The STS approach differs significantly from recent work on `1 regularized least

squares. In most existing `1 approaches, the regularization term penalizes every
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active dipole via ‖vec (X) ‖1 or, if applied in the context of a basis expansion

(Eq. (4)), penalizes every active coefficient via ‖vec (Θ) ‖1. In contrast, STS

gives a smaller penalty to active coefficients in the same block than to active

coefficients in different blocks. The results of this difference are threefold.

First, given our criteria for choosing spatial and temporal bases for each STE,

it favors solutions which are connected spatially and vary smoothly over time

as opposed to the “spiky”, disconnected results often seen in standard `1

minimization. Second, it allows a wider range of activity within a block for

only a small additional penalty. Third, it promotes solutions consisting of a few

active spatio-temporal blocks, rather than a few active coefficients or dipoles.

The mesostate model recently proposed by Daunizeau and Friston (2007) also

treats cortical activity as a collection of a small number of events, or meso-

sources, which are identified through a Variational Bayesian (VB) inversion.

The mesostate approach differs in a number of ways from the STS approach.

First, the maximum number of meso-sources must be known a priori. In (Dau-

nizeau and Friston, 2007), this number is between one and eight. Second, the

VB inversion “switches off” mesostates with little or no evidence. The STS

approach, on the other hand, works by “switching on” STEs with strong ev-

idence from a large number of candidate STEs. Third, each meso-source is

described by a mean time course and spatial location. Dipoles comprising a

meso-source are modeled as perturbations of this mean activity. An STE, on

the other hand, describes any measurable activity occurring in a local region

of space and time, and thus is not limited to representation of average activity.

Several block penalty methods similar to our STS approach have been pro-

posed (Malioutov et al., 2005; Tropp, 2006; Turlach et al., 2005; Yuan and

Lin, 2006), though none of them in the context of M/EEG. All of these aim
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to find solutions which are sparse spatially, but not temporally, i.e., are sparse

in only one of the dimensions. Also, all but Yuan and Lin (2006) construct

blocks containing only a single spatial basis repeated over multiple time sam-

ples. This corresponds to defining blocks based on single rows of X. Malioutov

et al. (2005) penalize the sum of the `2 norms of each row of the signal matrix

in direction of arrival (DOA) estimation for radar. Second order cone (SOC)

programming is used to perform the optimization. Both Turlach et al. (2005)

and Tropp (2006) use the sum of `∞ norms as a penalty, but again consider

only single rows of the signal matrix as blocks and do not employ a temporal

decomposition. Turlach et al. (2005) solve a constrained version of the STS

problem via an interior point method. Tropp (2006) does not specify an op-

timization algorithm, but instead provides useful analysis of the properties of

minimizers. Yuan and Lin (2006) suggest essentially fixed point iteration on

the nonlinear functions comprising the subgradient condition for a minimizer

of Eq. (8). However, they indicate that computational complexity limits their

approach to small problems. None of these earlier works consider the cost

function as a Bayesian likelihood, nor does there appear to be any published

Expectation-Maximization approach to these “block-sparse” problems.

The choice p = 2 in Eq. (7) results in a convex optimization and appears to

yield very good results. However, modifying the M-Step in Eq. (16) slightly

allows solution of Eq. (7) for other values of p as well. In this case Eq. (13) is

written:

Θ̂(k) = arg min
Θ



‖Θ− Ẑ(k)‖2

F + cλ
∑

i,j

‖vec (Θi,j) ‖p



 (23)

Exact solutions to the M-Step represented by Eq. (23) are available for the
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cases p = 0, p = 1, and p = ∞ in addition to p = 2. The Generalized

Expectation-Maximization approach (Gellman et al., 2003) can be used to

solve Eq. (23) for other values of p. Note that the case p = 0 corresponds to

the idealized problem Eq. (6). The M-Step for this case is a hard threshold:

Θ̂
(k)
i,j =





Ẑ
(k)
i,j , if ‖Ẑ(k)

i,j ‖2
F > cλ

0, otherwise

Although this implementation will find local minima of Eq. (6), there is po-

tentially a unique local minima for every combination of active blocks Θi,j,

making a global minimum very difficult to find. Thus, in practice, the p = 2

relaxation provides better results.

Using a set of spatial basis functions based on cortical patches and wavelet

temporal bases, we demonstrated the effectiveness of STS regularization on

simulated cortical signals as well as data collected from a self-paced finger

tapping experiment. These specific basis functions are not required to use

STS. Other methods for constructing the Si and Tj may also prove effective.

As one example, short time Fourier bases could be used to isolate activity in

different frequency bands over the same time window. Similarly, the spatial

bases could be defined for patches associated with anatomically meaningful

regions of the brain such as Brodmann areas.

An anatomical approach to patch design is used in the recently proposed

MiMS technique (Cottereau et al., 2007). The spatial extent of each patch is

chosen based on the local characteristics of the cortical surface. A multipo-

lar expansion of fixed order is used to represent the activity from candidate
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patch. MiMs employs a coarse to fine strategy to identify active regions. It

begins with large patches, finds a subset of active patches that best fit the

data using cross validation, subdivides active patches and repeats the patch

selection/subdivision process until a fitting criterion is satisfied. MiMS does

not address selection of temporal areas of interest.

Multiresolution spatial events can be incorporated into the STS approach

by using patches of varying size. This would allow STS to select the spatial

event whose extent best matches the true signal. However, this would result in

different numbers of coefficients for each STE. Our presentation and examples

assume that each STE involves the same number of coefficients, that is, ]Θi,j =

constant where ]Θi,j is the product of row and column dimensions for Θi,j. If

different numbers of coefficients are employed, then the penalty term of Eq. (8)

should be modified to λ
∑ √

]Θi,j‖vec (Θi,j) ‖2 to equalize the expected noise

power explained by each STE.

Among the multitude of methods for addressing the M/EEG inverse problem,

there does not appear to be a single approach suitable to all applications. Each

is tailored to a certain set of assumptions about the underlying brain activity.

The assumptions behind STS apply to wide range of experimental paradigms,

and STS complements existing techniques. Simulated and actual MEG data

suggest STS is effective at localizing cortical activity in both space and time.
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A Minimizer of Single Block Problem

We show that θ∗ given by Eq. (15) is the minimizer of f(θ) = ‖θ − z‖2
2 +

α2λ
σ2 ‖θ‖2. We need a few facts from the theory of subgradients (Rockafel-

lar, 1970). A vector g is a subgradient of a convex function f(θ) at θ0 if

f(θ) − f(θ0) ≥ gT (θ − θ0) for all θ. The set of all subgradients is called the

subdifferential. The subdifferential generalizes the gradient; if there is only one

subgradient of f(θ) at θ0, it is the gradient. A point θ∗ is the global minimizer

of a convex function if and only if 0 is a subgradient of f(θ) at θ∗.

It is easy to see that the subdifferential of ‖θ‖2 contains only the gradient

θ
‖θ‖2 when θ 6= 0, and any vector g such that ‖g‖2 ≤ 1 when θ = 0. Now

consider two cases. Case 1: Suppose ‖z‖2 > α2λ
2σ2 . Then θ∗ = (1 − α2λ

2σ2‖z‖2 )z

from Eq. (15). Since θ∗ 6= 0, the subdifferential of f(θ) at θ∗ contains only

the gradient: 2(θ∗ − z) + α2λ
σ2

θ∗
‖θ∗‖2 = − α2λ

σ2‖z‖2z + α2λ
σ2

z
‖z‖2 = 0. Thus, θ∗ is a

minimizer of f(θ) when ‖z‖2 > α2λ
2σ2 . Case 2: Suppose ‖z‖2 ≤ α2λ

2σ2 . Then θ∗ = 0

from Eq. (15). Let g∗ = 2σ2z
α2λ

and note that g∗ is a subgradient of ‖θ‖2 at 0

since ‖g∗‖2 ≤ 1. This means that 2(θ∗ − z) + α2λ
σ2 g∗ is a subgradient of f(θ)

at 0. To complete the proof, note that 2(θ∗ − z) + α2λ
σ2 g∗ = −2z + 2z = 0.

B Derivation of λMAX

We show that Θ̂(λ) = 0 for λ ≥ λMAX given in Eq. (17). We again use

the theory of subgradients (Rockafellar, 1970). We first rewrite the objec-

tive function of Eq. (8) as f(θ) = ‖y −∑
i,j(Tj

⊗
HSi)θi,j‖2

2 + λ
∑

i,j ‖θi,j‖2,

where θ is a vector concatenation of all the θi,j, θ = [ θT
1,1 θT

1,2 ... θT
2,1 ... θT

I,J ]T .

The subdifferential of f(θ) at θ = 0 contains only the vectors whose (i, j)th

43



component is −2(Tj
⊗

HSi)
T (y − 0) + λgi,j where ‖gi,j‖2 ≤ 1 for all i, j.

Let gi,j = 2
λ
(Tj

⊗
HSi)

Ty and suppose λ ≥ 2 maxi,j(Tj
⊗

HSi)
Ty. Then

‖gi,j‖2 ≤ 1 for all i, j and the subdifferential of f(θ) at 0 contains the all zero

vector, implying that θ = 0 minimizes f(θ).
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