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Abstract

Wireless sensor networks provide an attractive approach to spatially monitoring environments. Wire-
less technology makes these systems relatively flexible, but also places heavy demands on energy con-
sumption for communications. This raises a fundamental trade-off: using higher densities of sensors
provides more measurements, higher resolution and better accuracy, but requires more communications
and processing. This paper proposes a new approach, called “backcasting,” which can significantly re-
duce communications and energy consumption while maintaining high accuracy. Backcasting operates
by first having a small subset of the wireless sensors communicate their information to a fusion center.
This provides an initial estimate of the environment being sensed, and guides the allocation of additional
network resources. Specifically, the fusion center backcasts information based on the initial estimate to
the network at large, selectively activating additional sensor nodes in order to achieve a target error level.
The key idea is that the initial estimate can detect correlations in the environment, indicating that many
sensors may not need to be activated by the fusion center. Thus, adaptive sampling can save energy
compared to dense, non-adaptive sampling. This method is theoretically analyzed in the context of field
estimation and it is shown that the energy savings can be quite significant compared to conventional
approaches. For example, when sensing a piecewise smooth field with an array of100 × 100 sensors,
adaptive sampling can reduce the energy consumption by roughly a factor of10 while providing the
same accuracy achievable if all sensors were activated.

1 Adaptive Sampling

Wireless networks of spatially distributed sensors are emerging as a fundamental new tool for monitoring
environments. The longevity of such networks depends crucially on the wise and frugal use of energy. High
spatial densities of sensors are desirable for achieving high resolution and accurate estimates of the envi-
ronmental conditions, but high densities also place heavy demands on bandwidth and energy consumption
for communication. This paper proposes an adaptive two-step approach that can significantly reduce energy
consumption while maintaining high accuracy. In the first step, called thepreviewstep, an initial estimate
of the environment is formed using a subset of the sensor nodes. Based on the initial estimate, additional
sensors are selectively activated in the second step, called therefinementstep, to improve the accuracy of
the preview estimate. The key idea is that the initial estimate can detect correlations in the environment,
indicating that many sensors may not be required to achieve a desired level of accuracy. Thus, adaptive
sampling can save energy compared to dense, non-adaptive sampling, and can be used to calculate accurate
field estimates while only activating a fraction of the available sensors. We refer to the overall process as
backcasting to emphasize the role of feedback in network resource allocation.

We propose a general technique that could prove useful in a variety of sensor network applications.
The practicality and benefits of adaptive sampling will depend on the specific application. The basic idea
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might be implemented as follows. Consider a sensor network withn sensors distributed uniformly over a
square meter region. The sensors collect data reflective of environmental conditions in a local area about
each sensor. At one extreme, the environmental conditions are constant across the region, and at the other,
the conditions vary rapidly from point to point. Assume that each measurement contains a small amount
of zero-mean noise. Given alln data, the best estimate of the field has an expected mean squared error
(MSE) that behaves liken−ν for some0 < ν ≤ 1. For example, the best case,ν = 1, occurs when the
environmental conditions are constant (apart from random noise). In practice, one doesn’t know whether
the environmental conditions are nearly constant or rapidly varying, so it is difficult to predict how the MSE
will behave. However, suppose that a subset of sensors, saypn, 0 < p < 1, is called upon to make an initial
estimate. Information from these sensors is transmitted to a fusion center, at a lower energy and bandwidth
cost than transmitting from alln sensors. The MSE of this estimate will behave like(pn)−ν . This estimate
might be “good enough” ifν is close to one andp isn’t too small. On the other hand, sinceν is unknowna
priori and because the field may be inhomogeneous, the fusion center may determine that more information
is needed from additional sensor nodes. To obtain additional information, the fusion center can backcast
information about the initial estimate to the network. Based on this information, additional sensors in the
network may then be activated as necessary and participate in the process to improve the estimate of the
environment being sensed. For example, the information transmitted from the fusion center could be the
initial estimate or it may simply be a “wake-up” signal to certain additional sensors that will then activate
and forward their information. This procedure can reduce the total number of communications and the
number of sensors that are activated, thereby reducing the energy consumption of the network.

To demonstrate the considerable potential of adaptive sampling, we focus on one well-studied applica-
tion, the estimation of a spatial field. In previous work, we proposed and developed a field estimation algo-
rithm based on multiscale partitioning methods [1, 2]. The algorithms are quite practical and map nicely onto
a sensor network architecture. Moreover, we demonstrated theoretically that our methods nearly achieve the
best-case MSE/Energy trade-offs. However, there was an implicit assumption in our earlier results: only
one-way communication from the sensor nodes to a desired destination was allowed. If one changes that
crucial assumption by allowing for two-way communication (to and from the fusion center), then the basic
trade-offs between the accuracy and energy consumption change in a dramatic way. In fact, it is possible to
significantly decrease the total and per-sensor energy consumption of the network while maintaining a low
MSE using adaptive sampling.

2 Wireless Sensing of Fields

There are two fundamental limitations in the estimation problem. First, the accuracy of a field estimate
is limited by the spatial density of sensors in the network and by the amount of noise associated with
the measurement process. Second, energy constraints may limit the complexity of the estimate that is
computed and ultimately communicated to a desired destination. The trade-off between accuracy and energy
consumption can be characterized as follows.

Assume thatn sensor nodes are arranged on an
√

n×
√

n square lattice (assuming a planar, square field).
Suppose that the field being sensed is smooth or piecewise smooth. That is, the field varies smoothly from
point to point, with the possible exception of a boundary or edge between two smooth regions (like the case
depicted in Figure 1). Each sensor makes a measurement of the field at its location which is contaminated
with a zero-mean Gaussian noise. The error can model a variety of potential uncertainties including sensor
noise, small environmental disturbances, and quantization effects. It is known that under these assumptions
the expected MSE cannot, in general, decay faster thanO(n−ν), for some0 < ν ≤ 1 that depends on the
smoothness of the regions and whether or not boundaries are present in the field [3–5]. That is, no estimator
(based on centralized or distributed processing) can exceed this convergence speed-limit.
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To quantify the energy required to compute and transmit a field estimate of this accuracy, we assume a
simple multihop communication protocol. We calculate the total energy consumptionE(n) according to:

E(n) = b(n)× h(n)× e(n), (1)

whereb(n) is the number of bits that must be transmitted,h(n) is the average number of hops each bit must
traverse, ande(n) is the energy required to send one bit over one hop. Note all quantities depend onn,
the number of sensors in the network. As the density of sensors increases, bothb(n) andh(n) generally
increase, whilee(n) tends to decrease due to the decrease in distance between sensor nodes. According to
this measure of energy, even simple calculations require communications that consume at leastO(e(n) · n)
units of energy. For example, consider computing the average values between the nearest neighboring
sensors in the network. This requires the transmission ofO(n) bits, each over one hop. Such a trivial
operation appears to be necessary for almost any imaginable field estimation process. Thus, the total energy
required to compute and transmit the field estimate is at leastO(e(n) · n), or O(e(n)) units of energy per
sensor. Note that, here and throughout the paper, we assume that local processing and computation at each
sensor requires a negligible amount of energy in comparison to sensor activation and communications.

The expected MSE decay is at mostD(n) = O(n−ν) and the energy consumption is at leastE(n) =
O(e(n) ·n). In our earlier work [1, 2] we showed that hierarchical, multiscale algorithms can nearly achieve
the best MSE using minimal energy. These algorithms employed only one-way multihop communication
from the sensor nodes to a fusion center. In this paper, it is shown that the proposed two-step estimation
method can be used to improve on our earlier results. Specifically, it is possible to nearly achieve the best
MSE, and the expected energy consumption is reduced toO(e(n) ·n3/4), orO(e(n) ·n−1/4) per sensor. This
is possible through data-adaptive sampling of the field, as opposed to dense, non-adaptive sampling. The
reduction in energy requirements can significantly extend the lifetime of a sensor network. For example,
when sensing a piecewise smooth field with an array of100×100 sensors, adaptive sampling can reduce the
energy consumption by roughly a factor of10 while providing the same accuracy achievable if all sensors
were activated.

3 Hierarchical Field Estimation

In our previous analysis of the accuracy-energy tradeoff in sensor networks, we proposed a hierarchical
approach to estimation and communication based on platelets [1]. Our adaptive sampling approach will
also be based on platelet-based estimation, and therefore we review it here. The sensor measurements can
be viewed as sampling the field over a partition ofn nested sub-squares of sidelength1/

√
n, as shown in

Figure 1(a). In principle, this initial partition can be generated by arecursive dyadic partition(RDP) as
follows. First divide the domain into four sub-squares of equal size. Repeat this process again on each
sub-square. Repeat this1/2 log2 n times. This gives rise to acompleteRDP of resolution1/

√
n (the square

partition of the sensing domain shown in Figure 1(a)). The RDP process can be represented with a quadtree
structure. The quadtree can be pruned back to produce an RDP with non-uniform resolution, as shown in
Figure 1(b).

For each RDP, there is an associated quadtree structure (generally of non-uniform depth corresponding
to the non-uniform resolution of most RDPs). The leafs of each quadtree represent dyadic (sidelength equal
to a power of two) square regions of the associated partition. For a given RDP and quadtree, each sensor
node belongs to a certain dyadic square. We consider these squares “clusters” and assume that one of the
sensors in each square serves as a “clusterhead,” which will assimilate information from the other sensors in
the square, as shown in Figure 2.

Let P denote a certain RDP and define the estimator of the field on each square of the partition to be
the least-squares fit of a planar model (e.g.,platelet) to the measurements in the square. With this in mind,
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Figure 1: Recursive dyadic partitions. (a) A wireless sensor network sampling a two-dimensional field and
a complete recursive dyadic partition of the field. Dots indicate sensor locations and squares indicate the
extent of each sensor’s measurement. (b) A pruned recursive dyadic partition of the field in (a).

Figure 2: Hierarchical communication in a wireless sensor network. On the top, the first level of commu-
nication involves clusters of four individual sensors transmitting their measurements to their clusterhead. In
the center, the next level of communication is depicted, in which each clusterhead from the previous level
communicates with its clusterhead (using a multihop protocol). On the bottom, the final level of communi-
cation is depicted, in which the clusterheads from the previous level send their estimates to a fusion center
(upper left-hand corner). To the right of each field, the corresponding tree is depicted.

4



Figure 3: Hierarchical field estimation. On the top, an array of noisy field measurements is shown, and to its
right the corresponding unpruned RDP. In the center, the field estimate after one level of pruning is shown
with its corresponding pruned tree. On the bottom, the final field estimate is show with the final tree.
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a complexity penalizedestimator is defined as follows. Let̃f(P ) denote a model of the field (based on the
least-squares platelet fits on each square ofP ). The empirical measure of performance is the sum-of-squared
errors betweeñf(P ) and the datax = {xi,j}:

R(f̃(P ), x) =

√
n∑

i,j=1

(
f̃i,j(P )− xi,j

)2
(2)

wherei, j denotes the location in the field. This measure is proportional to the negative log likelihood given
our assumption of zero-mean Gaussian measurement error in each sensor;i.e.,

xi,j ∼ N (fi,j , σ
2),

wheref is the true field andσ2 is the noise variance of each sensor measurement.
For fixed partitionP , the choice of̃f(P ) that minimizesR(f̃(P ), x) is simply given by the least-squares

fits on each square, as discussed above. Now define the complexity penalized estimator as

f̂n = arg minef(P ):P∈Pn

R(f̃(P ), x) + σ2(log n)|P |, (3)

whereP denotes all possible partitions (prunings),|P | denotes the number of squares in the partitionP . It
is well known that the optimization in (3) can be solved using a bottom-up tree pruning algorithm [4, 6, 7].
The hierarchy of clusterheads facilitates this process in the sensor network. At each level of the hierarchy,
the clusterhead receives the fits from the four clusterheads below it, and compares the total cost of these
estimates (sum-of-squared errors plus penalties) with the total cost of the least-squares estimate on the
larger square associated with the clusterhead. An example of the estimation and pruning process is depicted
in Figure 3.

The performance of the proposed estimators can be studied in terms of (minimax) lower bounds and
upper bounds on the MSEs. Upper bounds on the error can be established using the Li-Barron bound [8]
and Nowak and Kolaczyk’s generalization of this bound [9]. Specifically,

MSE(f̂n, f) = minef(P ):P∈Pn

2
n

R(f̃(P ), f) +
4σ2|P | log n

n
, (4)

where the first term is the approximation error and the second term is the estimation error.
In this paper, we focus on one class of piecewise smooth fields. We assume that the field is twice-

continuously differentiable everywhere except near possible boundaries (or “edges”) where the field changes
sharply. Boundaries, if they indeed are present, are assumed to be 1-d curves with box-counting dimension
one in the 2-d plane of the field. For this class of functions, it is known that the minimax MSE rate is
bounded below byO(n−1/2) in the presences of a boundary andO(n−2/3) in the absence of a boundary.
If it is assumed that the boundary is present and aC2 curve, then the minimax MSE rate is bounded below
by O(n−2/3). It can be shown that solving the optimization in (3) yields a partition which balances the
approximation error and estimation error terms in the bound on the MSE in (4), resulting in a final bound
of O((log n/n)−1/2) in the presence of a boundary andO((log n/n)−2/3) in the absence of a boundary.
The error decays more slowly in the presence of a boundary because theO(

√
n) sensors near the boundary

cannot aggregate their measurements with those of their neighbors.
The energy required to form̂fn can be studied in terms of how the number of sensors affects per sensor

energy consumption. To illustrate, let us begin with the most simple case, a constant field. Since the field is
constant, with high probability the measurements will be aggregated at each level of the hierarchy [2]. This
means that at scalej (wherej = 0 is the finest scale)O(n/4j) bits must be transmitted to the clusterheads
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at the next scale. Because clusterheads are farther apart at coarser scales, each such transmission would
requireO(2j) hops. Therefore, the total energy required for the estimation process is

E = O

e(n)
log4 n−1∑

j=0

2jn/4j


= O (e(n) · n) .

Now consider the more complex case of a piecewise smooth field. If the field being estimated consists of
twice-continuously differentiable (denotedC2) smooth regions separated by boundaries, then at scalej,
O(n/4j +

√
n) bits need to be transmitted up the hierarchy. The

√
n term results from the fact thatO(

√
n)

sensors sense the boundaries and therefore cannot aggregate their measurements with their neighbors. Thus
these boundary measurements need to be passed up the hierarchy at every level. Each transmission requires
O(2j) hops, and so the total energy required for this estimation is again

E = O

e(n)
log4 n−1∑

j=0

2j(n/4j +
√

n)


= O

(
e(n) · (n + 2log4 n√n)

)
= O (e(n) · n) .

The analysis above shows that the communication energy cost of our previous algorithms is roughly the
same, whether the field is very simple or relatively complex in nature. Adaptive sampling, as we will show,
allows us to achieve the same high accuracy, but reduces the energy cost in two ways. First, by adaptively
sampling the field, fewer sensors are activated (sensor activation can be a huge energy drain; keeping sensors
asleep is highly desirable). Second, since fewer measurements are collected, the number of communications
required to achieve an accurate estimate is reduced.

4 Backcasting

Detailed derivations of the theoretical results described in this section are found in the Appendix. We assume
the field being sensed is supported on one square meter (referred to as the unit square), and that a total of
n wireless sensors have been deployed uniformly over the square (but not necessarily activated). The steps
involved in each stage are detailed below:

Preview: The goal of this stage is to provide a coarse estimate of the field being sensed. Specifically, the
field is estimated up to a resolution ofn−1/2 square meters. The unit square is partitioned inton1/2

“subsquares”, each of sidelengthn−1/4. In each subsquare,n1/4 sensors (of the totaln1/2 available
in the subsquare) are activated, one of which is designated as the “clusterhead” for the subsquare.
This providesn1/4 measurements per subsquare, as demonstrated in Figure 4(a). Also, the activated
sensors can be aligned, spaced aboutn−1/2 meters apart, to form a multihop communication path
from one side of the subsquare to another. Thus,n3/4 “preview” sensors are activated in total. These
sensors are used to form an initial estimate of the field using a hierarchical platelet estimation method
described above, as shown in Figure 4(b). The estimate generated by these preview sensors is passed
to the fusion center. With high probability, this partition will be composed of small squares in regions
close to any boundary present in the field and larger squares in smoother regions of the field. This
stage requiresO(e(n)·n3/4) units of energy, andO(n3/4) sensors must be on to facilitate the multihop
communications.
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Figure 4: Backcasting procedure. (a) Initial, low resolution RDP. (b) Preview. (c) Adaptive sensor activation.
(d) Estimation refinement.

Refinement: The fusion center sends an “activation” message to the preview clusterheads in only the small-
est squares of the preview partition (i.e., those remaining subsquares that were not aggregated due to
the presence of a boundary). This communication requiresO(e(n) · n3/4) units of energy. Each such
clusterhead then activates alln1/2 sensors within its subsquare in order to fine-tune the partition in
boundary-containing regions, as shown in Figure 4(c). The activation requiresO(e(n) · n1/2) energy
per subsquare. Assuming that the boundary is aC2 curve, onlyO(n1/4) preview subsquares will
contain the boundary and require fine-tuning. Thus, the total energy consumed adaptively activating
more sensors isO(e(n) · n3/4).

Each of theO(n1/4) smallest preview subsquares now containsn1/2 activated sensors sampling the
underlying field. These sensors are used to generate a refined estimate of the field in these subsquares,
using a local recursive dyadic partitioning scheme, as shown in Figure 4(d). This requires a total
O(e(n) · n3/4) units of energy. The clusterheads must then communicate the refined estimates to the
fusion center, which requiresO(e(n) ·n) units of energy using multihop communications via then3/4

sensors activated in the preview step. The energy requirement for this last step can be significantly
reduced when the boundary is smooth. Specifically, instead of transmitting the full fine-tuned partition
to the fusion center, it is possible to simply fit a line to the boundary estimate and transmit the boundary
and platelet coefficients. This reduces the energy expenditure toO(e(n) ·n3/4) units, since only a few
parameters must be communicated from the clusterheads to the fusion center.

The following theorem summarizes the performance of the proposed method.
Theorem: Assume there is a wireless sensor network ofn sensors arranged on a uniform grid over a field
composed of smooth (twice continuously differentiable) regions separated by (twice continuously differen-
tiable) boundaries. Then, using the hierarchical adaptive sampling method described above, the field can
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Field n MSEn MSEp MSEr Energy Savings
Boundary 256× 256 6.26× 10−4 6.06× 10−3 1.32× 10−3 0.2031
Boundary 64× 64 1.09× 10−3 1.47× 10−2 2.48× 10−3 0.6875

No Boundary 256× 256 3.95× 10−5 1.94× 10−4 1.94× 10−4 0.0625
No Boundary 64× 64 2.17× 10−4 2.17× 10−4 2.17× 10−4 0.3125

Table 1: Error and energy savings for wireless sensor networks of various sizes with and without adaptive
sampling.

be estimated with an MSE ofD(n) = O((log2 n/n)1/2) using an average ofE(n) = O(e(n) · n3/4) units
of energy.
This result is derived in the Appendix.

The MSE above is the same as that which we achieved for a piecewise smooth field using alln sensors
andO(e(n) ·n) units of energy [2]. Thus, using adaptive sampling we reduce the amount of energy required
by a factor ofn1/4.

This has important implications for the deployment of a practical system. Using the proposed method,
a system developer should be able to determine how many sensors to engage in order to achieve a desired
accuracy. It is known in advance that the presence of a boundary will dominate the error, but the location
of the boundary is unknown. Thus the sensors should be distributed evenly across the field. If no boundary
is present, then the subset of sensors activated in the preview stage is sufficient to achieve the target error.
If a boundary is present, then the preview stage will determine the approximate location of the boundary
and adaptively activate more sensors in order to achieve the target error. To illustrate the significance of
this gain, we consider estimating a field withn = 10, 000 sensors. Then the total energy expenditure with
adaptive sampling isO(e(n) · 103) energy units instead of theO(e(n) · 104) energy units required without
adaptive sampling. Similar gains are seen in terms of activation energy. Thus, a system of10, 000 sensors,
each equipped with batteries to provide one year of continuous operation, could remain operational up to 10
years using adaptive sampling.

5 Experimental Results

We simulated the proposed method in four different situations presented below (Figure 5 through Figure 8).
In each case, we show the preview partition superimposed over the noisy field, the preview estimate, and the
final refined estimate. Also, for comparison we show the field estimate obtained using alln sensors. The
cases depicted in Figures 5 and 6 involve fields with a boundary. Notice that the visual quality and the MSEs
of the adaptive sampling estimate are comparable to those obtained using alln sensors. In Figures 7 and
8, the field does not contain a boundary and the preview and refined estimates are identical (no additional
nodes are activated after the preview stage, as expected).

The MSEs for each case are presented Table 1. The MSE of the preview estimate is denoted MSEp,
the final refined estimate’s MSE is denoted MSEr, and the MSE of the estimator based on alln sensors is
denoted MSEn. In the cases containing boundaries, we see that MSEr is reduced by roughly a factor of
O(n1/4) compared to MSEp, as theoretically predicted in the appendix. This is due to the increase in spatial
resolution near the boundary after the refinement step. An empirical calculation of the energy reduction,
compared to activating alln sensors, is also listed in Table 1. The energy reduction is simply the fraction of
the number of activated sensors relative to the total numbern.
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(a) (b)

(c) (d)

Figure 5: Estimation of a piecewise smooth field withσ2 = 1/10 and256 × 256 sensors. (a) Preview
partition superimposed over noisy field. (b) Estimate using alln sensors without adaptive sampling (MSE=
6.26× 10−4). (c) Preview estimate (MSE= 6.06× 10−3). (d) Final estimate (MSE= 1.32× 10−3).

(a) (b)

(c) (d)

Figure 6: Estimation of a piecewise smooth field withσ2 = 1/10 and 64 × 64 sensors. (a) Preview
partition superimposed over noisy field. (b) Estimate using alln sensors without adaptive sampling (MSE=
1.09× 10−3). (c) Preview estimate (MSE= 1.47× 10−2). (d) Final estimate (MSE= 2.48× 10−3).
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(a) (b)

(c) (d)

Figure 7: Estimation of a smooth field withσ2 = 1/10 and 256 × 256 sensors. (a) Preview partition
superimposed over noisy field. (b) Estimate using alln sensors without adaptive sampling (MSE= 3.95×
10−5). (c) Preview estimate (MSE= 1.94× 10−4). (d) Final estimate (MSE= 1.94× 10−4).

(a) (b)

(c) (d)

Figure 8: Estimation of a smooth field withσ2 = 1/10 and64× 64 sensors. (a) Preview partition superim-
posed over noisy field. (b) Estimate using alln sensors without adaptive sampling (MSE= 2.17 × 10−4).
(c) Preview estimate (MSE= 2.17× 10−4). (d) Final estimate (MSE= 2.17× 10−4).
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6 Conclusions

This paper proposes an adaptive approach to energy conservation in sensor networks. This method operates
by first having a small subset of the wireless sensors communicate their information to a fusion center. This
provides an initial estimate of the environment being sensed, and guides the allocation of additional network
resources. The basic idea is potentially applicable to a wide variety of sensor networking problems, but to
demonstrate its potential we focused on one particular case.

We analyzed the potential of adaptive sampling in the context of field estimation. We assume the field
being sensed is supported on one square meter, and that a total ofn wireless sensors were deployed uni-
formly over the square. Adaptive sampling, in this case, involves a two step process: 1.n3/4 sensors are
activated to produce a coarse estimate of the field at the fusion center; 2. based on the coarse estimate, the
fusion center determines which regions of the field may contain boundaries or sharply varying behavior, and
activates up toO(n3/4) additional sensors in those regions; the additional sensors provide a finer resolution
estimates in those regions and the refined estimates are communicated to the fusion center. Theoretical anal-
ysis demonstrates that the final estimate has an MSE ofD(n) = O(n−1/2), and each stage requiresO(n3/4)
communication hops. The MSE is of the same order that is achievable using alln sensors andO(n) commu-
nication hops. Thus, adaptive sampling provides the same level of overall accuracy, but requires a factor of
roughlyn1/4 fewer activated nodes and communication hops. The resulting savings in energy consumption
can be substantial. Simulated experiments confirm the theoretical predictions.

Note that in the proposed scheme, the sensors used in the preview stage must always remain activated
and clusterheads expend more energy communicating than other sensors. This energy bottleneck potentially
limits the lifetime of the system. The effect can be alleviated, however, by periodically changing which
sensors are designated preview sensors and clusterheads and evenly distributing energy consumption among
all the sensors in the network.

Also note that our assumption that the sensors lie on a uniform grid is merely a convenient mechanism
for analysis and not a necessary component of the proposed method; it is sufficient to assume that locations
of the sensors are distributed uniformly at random. This is relevant to many applications in which the
sensors may be placed randomly throughout a region. In such scenarios, the network must incur an initial
energy expenditure setting up the communication hierarchy, and it may be necessary to activate additional
sensors in some regions to facilitate multihop communications, depending on the strength of the transmitters.
However, sensor placement does not affect the overall performance of the network as the number of sensors
grows large.

The error and energy analysis of each stage of the proposed procedure is detailed in this appendix. For
the purpose of this discussion, we assumen sensors arranged on a

√
n ×

√
n uniform grid over a square

meter, and that the field being sensed is aC2-smooth surface which contains a boundary. (Estimation of a
field not containing a boundary will be discussed at the conclusion of this appendix.) We assume that any
boundary present is aC2 curve, and thus would affectO(n1/2) of the sensors. For simplicity of presentation,
we omit log terms in the following analysis.

A Preview

The goal of this stage is to provide a coarse estimate of the field being sensed. Specifically, the field is
estimated up to a resolution ofn−β square meters, for some0 < β < 1. (In the body of the paper, we
usedβ = 1/2. We will demonstrate that this is the optimal choice later in this section.) The unit square
is partitioned intonβ smaller “subsquares”, each of sidelengthn−β/2. In each subsquare,nγ (γ ≤ 1 − β)
sensors are activated, one of which is designated as the “clusterhead” for the subsquare. This providesnγ

measurements per subsquare. Also, the activated sensors are aligned, spaced aboutn−1/2 meters apart, to
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form a multihop communication path from one side of the subsquare to another. Thus,nβ+γ sensors are
activated in this stage and are calledpreview sensors.

The hierarchical estimator described above will aggregate squares away from the boundary up to some
level of the estimation determined by the smoothness of the surface. For example, measurements of a
constant or linear field would be aggregated until the partition consisted of one large square, while measure-
ments of a less smooth field would be aggregated until the underlying field is too nonlinear for aggregation.
Measurements from sensors near the boundary, however, would seldom be aggregated with their neighbors
and would continue to be transmitted up the hierarchy to the fusion center.

The approximation error of platelets on aC2 surface decays like1/m2, wherem is the number of
platelets, and the estimation error decays likem/nβ+γ . Note that these errors correspond to the terms of
the minimax upper bound on the MSE in (4), and that this bound is minimized by choosingm ∼ n(β+γ)/3;
i.e., the RDP associated with the preview sensors will be pruned in regions away from the boundary until
approximatelym ∼ n(β+γ)/3 regions remain in the partition, resulting in an MSE in these regions of
1/m2 ∼ n−2(β+γ)/3. Since the field estimate for these regions will not be updated in the refinement stage,
we must chooseβ andγ such thatβ + γ = 3/4 to ensure that the associated MSE decays liken−1/2. This
rate only holds for regions away from the boundary; the error in boundary regions at this stage is higher. To
see this, note that the boundary passes throughO(nβ/2) subsquares, which cover a total area ofO(n−β/2),
and that a platelet fit to the measurements in one of these subsquares exhibits a bias ofO(1) because of the
probable presence of a boundary. Thus these regions contribute a total ofO(n−β/2) to the MSE at this stage,
which dominates the error in the smooth regions of the field. The effect of the refinement stage is to drive
the error in the boundary regions down to the target rate ofO(n−1/2), as detailed in the next section.

Note that it is possible that some subsquares near the boundary could be aggregated erroneously with
their neighbors. For large enoughn, an erroneously pruned subsquare is composed of two smooth regions,
and because the subsquare was pruned, we know that the area of one of the two smooth regions is small
with respect to the total area of the subsquare. However, worst-case analysis reveals that the bias induced
by this area can force the error to decay more slowly than the desiredn−1/2. We propose a technique that
overcomes this difficulty while requiring only minimal extra energy. Note that erroneous prunings occur
when the boundary of the two regions is closely aligned with the uniform RDP just one level of resolution
coarser than the unpruned preview RDP,i.e., the uniform RDP containingnβ/4 subsquares. The basic idea
is then to perform two preview stages – one as described above, and the other on a version of the partition
which is shifted by one subsquare of lengthn−β/2 in each coordinate. This ensures that the boundary is
detected with high probability in one of the two preview stages. A cluster erroneously pruned in one of the
preview stages would not be pruned in the other preview stage. In the refinement stage we refine any of the
preview clusters that are left unpruned in either the first or second preview steps.

Next we bound the energy required to generate the preview partition. There are two components to
the energy expenditure in the preview stage: (1) energy required to form initial platelet fits to thenγ mea-
surements in each of thenβ preview stage subsquares, (2) energy required to perform hierarchical platelet
estimation using the initialnβ platelet fits. To form the initial platelet fits in the preview stage subsquares,
three sufficient statistics per subsquare must be calculated. Each sufficient statistic is a weighted average of
thenγ measurements, and so all initial platelet fits can be computed withO(e(n) · nγ+β) = O(e(n) · n3/4)
units of energy.

To analyze the energy consumed while performing hierarchical platelet estimation in the preview stage,
let j index the scale of the partition; a square at scalej has sidelength2jn−β/2. Thus,j = 0 corresponds to
the smallest possible square in the preview partition, which has a sidelength ofn−β/2, andj = J ≡ β log4 n
represents the largest square in the partition,i.e., the entire field. At a given scale,j, some clusterheads
fit a platelet to all the measurements in the cluster and only need to transmit three sufficient statistics to
encode the platelet. Other clusterheads at scalej cannot fit a platelet to the measurements without incurring
excess error; in these cases the multiple-platelet estimate must be transmitted. While each clusterhead at
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a given scale only needs to transmit either a single platelet fit or a multiple-platelet estimate, we assume
for simplicity of presentation that both are transmitted at every scale to upper bound the required energy.
At scalej, O(nβ/4j + n1/4 + nβ/2) bits need to be transmitted to the next level in the hierarchy, where
the first term is the number of possible aggregated squares, the second term is the number of regions in
the pruned preview stage RDP in regions away from the boundary, and the third term is the number of
boundary squares at scalej. (Recall from earlier in this section that the preview stage RDP is pruned to have
O(m) = O(n(β+γ)/3) = O(n1/4) regions.)

Next note that these bits have to be transmitted a distance of one sidelength,2jn−β/2 meters. Each such
transmission requires2jn−β/2/n−1/2 = 2jn(1−β)/2 hops. From here, the energy consumed in the preview
stage,Ep, can be expressed as

Ep = O
(
e(n) · n3/4

+e(n) ·
J−1∑
j=0

2jn(1−β)/2

(
nβ

4j
+ n1/4 + nβ/2

)
= O

(
e(n) · n3/4

+e(n) · n(1−β)/2
J−1∑
j=0

(
nβ

2j
+

n3/4

2J−j
+

nβ

2J−j

)
= O

(
e(n) ·

(
n3/4 + n(1+β)/2

))
.

(5)

Note that forβ = 1/2, Ep = O(e(n) · n3/4); we will show later in the appendix that this is the optimal
choice forβ. Note thatβ = 1/2 impliesγ = 1/4, which ensures enough active sensors in the preview stage
to facilitate multihop communication.

B Refinement

In this stage of the estimation procedure, the fusion center receives the preview estimate of the field from
the top clusterhead and then determines which, if any, additional sensors need to be activated in order to
better estimate the boundary. It is assumed that a boundary may pass through every square of sidelength
n−β/2 in the preview partition (i.e., those squares that were not aggregated in the preview stage). The fusion
center then sends a message to the clusterhead in each such square to request additional measurements. As
there areO(nβ/2) boundary squares in the preview partition, the message will initially containO(nβ/2) bits
which must be split into four and transmitted to the next four clusterheads in the hierarchy, which requires
O(1/2 n1/2) hops. Each time the message is transmitted another level down in the hierarchy, the size of the
message is quartered and the number of hops is halved. This results in a total energy expenditure of

Er1 = O

e(n) ·
J−1∑
j=0

nβ/2

4j

n1/2

2j


≤ O

(
e(n) · n(1+β)/2

)
. (6)

Each of these clusterheads in the boundary squares then sends an activation signal to alln1−β sensors
within its square. This activation process can also be performed in a coarse-to-fine fashion, analogous to the
way the fusion center communicated to the clusterheads of the preview partition. Specifically, at the top level
the wake-up message must travel to four sensors viaO(n(1−β)/2) hops. At each successive message, the
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number of signals transmitted is quadrupled and the distance is halved, so at scalej, the energy expenditure
for one subsquare ise(n) · 4j/2j · n(1−β)/2. This must be done for each of theO(nβ/2) boundary squares.
This results in a total energy expenditure of

Er2 = O

e(n) · nβ/2

(1−β) log4 n−1∑
j=0

2jn(1−β)/2


= O

(
e(n) · n(1+β)/2

)
.

Thus, the energy required for the activation signaling process isO(e(n) · n(1+β)/2). Since there are
O(nβ/2) boundary squares in the preview partition, andO(n1−β) sensors are activated in each one, a total
of O(n1−β/2) additional sensors are activated.

The per-sensor MSE for these squares decays like the target rate,n−1/2. To see this, first note that
in each of theO(nβ/2) subsquares being refined, the boundary passes nearO(n(1−β)/2) of the O(n1−β)
sensors. Each of these sensors near the boundary induces a bias ofO(1) and covers an area of1/n. Thus the
total per-sensor MSE incurred by sensors near the boundary isO(nβ/2 · n(1−β)/2 · 1/n) = O(n−1/2). Next
note that in each of theO(nβ/2) subsquares being refined,O(n1−β) sensors are away from the boundary
on aC2 surface. As in the preview stage, the approximation error and estimation error are balanced by
fitting O(n(1−β)/3) platelets to these measurements, resulting in a per-sensor error ofO(n−2(1−β)/3) for
this subsquare. Since there aren1−β sensors in the subsquare, and each covers an area of1/n, the total per-
sensor MSE for the field incurred by these sensors isO(nβ/2) ·O(n−2(1−β)/3) ·n1−β ·1/n = O(n−2/3+β/6),
which isO(n−7/12), lower than the target rate ofn−1/2, for β = 1/2.

To calculate the energy required to refine the preview estimate of the field, first note that the refinement
energy per square is proportional to the number of measurements taken in that square, as was the case in the
preview stage. This step thus requiresO(e(n) · n1−β) units of energy per boundary square, and since there
areO(nβ/2) such squares,

Er3 = O
(
e(n) · n1−β/2

)
. (7)

These estimates are transmitted to the fusion center. Since each of theO(nβ/2) preview squares is refined
to produced a partition withO(n(1−β)/2) boundary regions andO(n(1−β)/3) non-boundary regions, a total
of O(n(1−β)/2) bits per preview square need to be transmitted an average ofO(n1/2) hops for a total energy
expenditure ofO(e(n)·n). This can be significantly reduced by simply fitting a line to the boundary estimate
generated by the partition and transmitting the boundary and platelet coefficients. Assuming the boundary
is aC2 curve, this approximation does not increase the error of the estimate. In this case, a total ofO(nβ/2)
bits need to be transmitted an average ofO(n1/2) hops for a total energy expenditure of

Er4 = O
(
e(n) · n(1+β)/2

)
. (8)

C Discussion

Summing the energy from each stage, we obtain a total energy of

E = Ep +
4∑

i=1

Eri

= O
(
e(n)

(
n3/4 + n(1+β)/2 + n1−β/2

))
. (9)
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Balancing terms, we find thatβ = 1/2 minimizes the total energy consumption, yielding a final energy of

E = O
(
e(n) · n3/4

)
. (10)

Equation (10) tells us that if we set our target MSE decay rate ton−1/2, then estimating the field using
adaptive sampling will costO(e(n) · n3/4) units of energy instead of theO(e(n) · n) units required by the
hierarchical estimation method with non-adaptive sampling. Furthermore, note that onlyO(n3/4) sensors
needed to be activated for the entire procedure.

D Absence of a Boundary

Note that the above analysis is also valid for the case where there is no boundary, and the sensor network
is estimating a smoothly varying field. In this case,Ep would still beO(e(n) · n3/4). However, with high
probability all of the resulting preview squares would be the result of measurement aggregation and hence
the fusion center would not perform refinement. Thus the target error rate ofO(n−1/2) can be reached with
O(n3/4) sensors awake andO(e(n) · n3/4) units of energy.
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