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Abstract
In this paper we provide simple, computation-
ally efficient, active algorithms for completion
of symmetric positive semidefinite matrices. Our
proposed algorithms are based on adaptive Nys-
trom sampling, and are allowed to actively query
any element in the matrix, and obtain a possibly
noisy estimate of the queried element. We es-
tablish sample complexity guarantees on the re-
covery of the matrix in the max-norm and in the
process establish new theoretical results, poten-
tially of independent interest, on adaptive Nys-
trom sampling. We demonstrate the efficacy of
our algorithms on problems in multi-armed ban-
dits and kernel dimensionality reduction.

1 Introduction
The problem of matrix completion is a fundamental prob-
lem in machine learning and data mining where one needs
to estimate an unknown matrix using only a few entries
from the matrix. This problem has seen an explosion in
interest in recent years perhaps fueled by the famous Net-
flix prize challenge Bell and Koren (2007) which required
predicting the missing entries of a large movie-user rating
matrix. Candès and Recht (2009) showed that by solv-
ing an appropriate semidefinite programming problem it is
possible to recover a low-rank matrix given a few entries at
random. Many improvements have since been made both
on the theoretical side (Keshavan et al., 2009; Foygel and
Srebro, 2011) as well as on the algorithmic side (Tan et al.,
2014; Vandereycken, 2013; Wen et al., 2012).

Very often in applications the matrix of interest has more
structure than just low rank. One such structure is positive
semi-definiteness which appears when dealing with covari-
ance matrices in applications like PCA, and kernel matrices
when dealing with kernel learning. In this paper we study
the problem of matrix completion of low-rank, symmet-
ric positive semidefinite (PSD) matrices and provide sim-
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ple, and computationally efficient algorithms that actively
query a few elements of the matrix and output an estimate
of the matrix that is provably close to the true PSD matrix.
More precisely, we are interested in algorithms that ouptput
a matrix that is provably (✏, �) close to the true underlying
matrix in the max norm 1. This means that if L is the true,
underlying PSD matrix then we want our algorithms to out-
put a matrix ˆ

L such that k ˆL�Lk
max

 ✏, with probability
at least 1 � �. Our goal is strongly motivated by appli-
cations to certain multi-armed bandit problem where there
are a large number of arms. In certain cases the losses of
these arms can be arranged as a PSD matrix and finding the
(✏, �) best arm can be reduced to the above defined (✏, �)
PSD matrix completion (PSD-MC) problem. Our contri-
butions are as follows.

Let L be a K ⇥K rank r PSD matrix, which is apriori un-
known. We propose two models for the PSD-MC problem.
In both the models the algorithm has access to an oracle O
which when queried with a pair-of-indices (i, j) obtains a
response yi,j . The main difference between these two or-
acle models is the power of the oracle. In the first model,
which we call as a deterministic oracle model, the oracle
is a powerful, deterministic, but expensive oracle where
yi,j = Li,j . In the second model, called as the stochastic
oracle model, we shall assume that all the elements of the
matrix L are in [0, 1], and we have access to a less power-
ful, but cheaper oracle, whose output yi,j is sampled from
a Bernoulli distribution with parameter Li,j . These mod-
els are sketched in Figure (3.1). We propose algorithms for
PSD-MC problem, under the above two models. Our algo-
rithms, called MCANS, in the deterministic oracle model,
and S-MCANS 2 in the stochastic oracle model are both
based on the following key insight: In the case of PSD ma-
trices it is possible to find linearly independent columns
by using few, adaptively chosen queries. In the case of S-
MCANS we use the above insight along with techniques
from multi-armed bandits literature in order to tackle the
randomness of the stochastic oracle.

1The max norm of a matrix is the maximum of the absolute
value of all the elements in a matrix

2MCANS stands for Matrix Completion via Adaptive Nys-
trom Sampling. S in S-MCANS stands for stochastic
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We prove that the MCANS algorithm outputs a (✏ = 0, � =

0) estimate of the matrix L (exact recovery) after making
at most K(r+1) queries. We are able to avoid logarithmic
factors, and coherence assumptions that are typically found
in the matrix completion literature. We also prove that the
S-MCANS algorithm outputs ˆ

L that is (✏, �) close to L

using queries that is linear in K and a low-order polynomial
in the rank r of matrix L.

Motivated by problems in advertising and search, where
users are presented multiple items, and the presence of a
user click reflects positive feedback, we consider a natu-
ral MAB problem in Section (5) where each user is pre-
sented with two items each time. The user may click on
any of these presented items, and the goal is to discover the
best pair-of-items. We show how this MAB problem can
be reduced to a PSD-MC problem and how MCANS and
S-MCANS can be used to find an (✏, �) optimal arm us-
ing far fewer queries than standard MAB algorithms would
need. We demonstrate experimental results on a movielens
dataset. We also demonstrate the efficacy of the MCANS
algorithm in a kernel dimensionality reduction task, where
only a part of the kernel matrix is available.

We believe that our work makes contributions of indepen-
dent interest to the literature on matrix completion, and
MAB in the following ways. First, the MCANS algorithm
is a simple algorithm that has optimal sample complex-
ity when dealing with noiseless, active, PSD-MC problem.
Specifically Lemma 3.1 shows a fundamental property of
PSD matrices that we have not encountered in previous
work. Second, by using techniques common in the MAB
literature in the design of S-MCANS we show how to de-
sign algorithms for PSD-MC which are robust to query
noise. In contrast, algorithms such as Nystrom sampling
assume that they can access the underlying matrix with-
out any noise. Third, most MC literature deals with error
guarantees in spectral norm. In contrast, motivated by ap-
plications, we provide guarantees in the max-norm, which
requires new techniques. Finally, using the spectral struc-
ture to solve the MAB problem in Section (5) is a novel
contribution to the multi-armed bandit literature.

Notation. �r represents the r dimensional probability
simplex. Matrices and vectors are represented in bold font.
For a matrix L, unless otherwise stated, the notation Li,j

represents (i, j) element of L, and Li:j,k:l is the submatrix
consisting of rows i, . . . , j and columns k, . . . , l. The ma-
trix k·k

1

and k·k
2

norms are always operator norms. The
matrix k·k

max

is the element wise infinity norm. Finally,
let 1 be the all 1 column vector.

2 Related Work
The problem of PSD-MC has been considered by many
other authors (Bishop and Byron, 2014; Laurent and
Varvitsiotis, 2014a,b). However, all of these papers con-
sider the passive case, i.e. the entries of the matrix that

have been revealed are not under their control. In contrast,
we have an active setup, where we can decide which entries
in the matrix to reveal. The Nystrom algorithm for approx-
imation of low rank PSD matrices has been well studied
both empirically and theoretically. Nyström methods typ-
ically choose random columns to approximate the original
low-rank matrix (Gittens and Mahoney, 2013; Drineas and
Mahoney, 2005). Adaptive schemes where the columns
used for Nystrom approximation are chosen adaptively
have also been considered in the literature. To the best of
our knowledge these algorithms either need the knowledge
of the full matrix (Deshpande et al., 2006) or have no prov-
able theoretical guarantees (Kumar et al., 2012). More-
over, to the best of our knowledge all analysis of Nystrom
approximation that has appeared in the literature assume
that one can get error free values for entries in the ma-
trix. Adaptive matrix completion algorithms have also been
proposed and such algorithms have been shown to be less
sensitive to the incoherence in the matrix (Krishnamurthy
and Singh, 2013). The bandit problem that we study in the
latter half of the paper is related to the problem of pure
exploration in multi-armed bandits. In such pure explo-
ration problems one is interested in designing algorithms
with low, simple regret or designing algorithms with low
(✏, �) query complexity. Algorithms with small simple re-
gret have been designed in the past (Audibert and Bubeck,
2010; Gabillon et al., 2011; Bubeck et al., 2013). Even-
Dar et al. (2006) suggested the Successive Elimination (SE)
and Median Elimination (ME) to find near optimal arms
with provable sample complexity guarantees. These sam-
ple complexity guarantees typically scale linearly with the
number of arms. In principal, one could naively reduce our
problem to a pure exploration problem where we need to
find an (✏, �) good arm. However, such naive reductions
ignore any dependency information among the arms. The
S-MCANS algorithm that we design builds on the SE al-
gorithm but crucially exploits the matrix structure to give
much better algorithms than a naive reduction.

3 Algorithms in the deterministic oracle
model

Our deterministic oracle model is shown in Figure (3.1)
and assumes the existence of a powerful, deterministic or-
acle that returns queried entries of the unknown matrix ac-
curately. Our algorithm in this model, called MCANS,
is shown in Figure (3.2). It is an iterative algorithm that
determines which columns of the matrix are independent.
MCANS maintains a set of indices (denoted as C in the
pseudo-code) corresponding to independent columns of
matrix L. Initially C = {1}. MCANS then makes a sin-
gle pass over the columns in L and checks if the current
column is independent of the columns in C. This check
is done in line 5 of Figure (3.2) and most importantly re-
quires only the principal sub-matrix, of L, indexed by the
set C [ {c}. If the column passes this test then all the ele-
ments in this column i whose values have not been queried
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Model 3.1 Description of deterministic and stochastic ora-
cle models
Figure (3.1)

1: while TRUE do
2: Algorithm chooses a pair-of-indices (it, jt).
3: Algorithm receives the response yt defined as fol-

lows

yt,det = Lit,jt // if model is deterministic (1)
yt,stoc = Bern(Lit,jt) // if model is stochastic (2)

4: Algorithm stops if it has found a good approxima-
tion to the unknown matrix L.

5: end while

in the past are queried and the matrix ˆ

L is updated with
these values. The test in line 5 is the column selection step
of the MCANS algorithm and is justified by Lemma (3.1).
Finally, once r independent columns have been chosen, we
impute the matrix by using Nystrom extension. Nystrom
based methods have been proposed in the past to handle
large scale kernel matrices in the kernel based learning lit-
erature Drineas and Mahoney (2005); Kumar et al. (2012).
The major difference between the above work and ours is
that the column selection procedure in our algorithms is de-
terministic, whereas in Nystrom methods columns are cho-
sen at random. Lemma (3.1) and Theorem (3.2) provide

Algorithm 3.2 Matrix Completion via Adaptive Nystrom
Sampling (MCANS)
Input: A deterministic oracle that takes a pair of indices
(i, j) and outputs Li,j .
Output: ˆ

L

1: Choose the pairs (j, 1) for j = 1, 2, . . . ,K and set
ˆ

Lj,1 = Lj,1. Also set ˆ

L

1,j = Lj,1

2: C = {1} {Set of independent columns discovered till
now}

3: for (c = 2; c c+ 1; c  K) do
4: Query the oracle for (c, c) and set ˆ

Lc,c  Lc,c

5: if �
min

⇣
ˆ

LC[{c},C[{c}

⌘
> 0 then

6: C  C [ {c}
7: Query O for the pairs (·, c) and set ˆ

L(·, c)  
L(·, c) and by symmetry ˆ

L(c, ·) L(·, c).
8: end if
9: if (|C| = r) then

10: break
11: end if
12: end for
13: Let C denote the tall matrix comprised of the columns

of L indexed by C and let W be the principle sub-
matrix of L corresponding to the indices in C. Then,
construct the Nystrom extension bL = CW

�1

C

>.

the proof-of-correctness and the sample complexity guar-
antees for Algorithm (3.2).

Lemma 3.1. Let L be any PSD matrix of size K. Given a
subset C ⇢ {1, 2, . . . ,K}, the columns of the matrix L in-
dexed by the set C are independent iff the principal subma-
trix LC,C is non-degenerate, equivalently iff, �

min

(LC,C) >
0.

Proof. Suppose L·,C is degenerate. The there exists x 6= 0

with xj = 0 8j 2 C such that L·,Cx = LC,CxC = 0.
Therefore x>

C LC,CxC = 0 showing LC,C is degenerate.

Now assume that LC,C is degenerate. Then z such that
z

>
LC,Cz = 0. Now notice that setting xi = 0, i /2 C and

xi = zi, i 2 C, x>
Lx = z

>
LC,Cz = 0. Therefore, x

is a minimizer of the quadratic x

>
Lx. This satisfies the

property that its gradient vanishes. i.e. Lx = 0. Therefore,
Lx = L·,Cz = 0. Therefore L·,C is degenerate 3

Theorem 3.2. If L 2 RK⇥K is an PSD matrix of rank r,
then the matrix ˆ

L output by the MCANS algorithm (3.2)
satisfies ˆ

L = L. Moreover, the number of oracle calls
made by MCANS is at most K(r + 1). The sampling algo-
rithm (3.2) requires: K+ . . .+(K� (r�1))+(K� r) 
(r + 1)K samples from the matrix L.

Note that the sample complexity of the MCANS algorithm
is better than typical sample complexity results for LRMC
and Nystrom methods. We managed to avoid factors log-
arithmic in dimension and rank that appear in LRMC and
Nystrom methods (Gittens and Mahoney, 2013), as well
as incoherence factors that are typically found in LRMC
results (Candès and Recht, 2009). Also, our algorithm is
purely deterministic, whereas LRMC uses randomly drawn
samples from a matrix. In fact, this careful, deterministic
choice of entries of the matrix is what helps us do better
than LRMC.

Moreover, MCANS algorithm is optimal in a min-max
sense. This is because any PSD matrix of size K and rank r
is characterized via its singular value decomposition by Kr
degrees of freedom. Hence, any algorithm for completion
of an PSD matrix would need to see at least Kr entries.
As shown in theorem (3.2) the MCANS algorithm makes
at most K(r + 1) queries and hence is order optimal.

The MCANS algorithm needs the rank r as an input. How-
ever, the MCANS algorithm can be made to work even if
r is unknown by simply removing the condition on line 9

in the MCANS algorithm. In this case, once r indepen-
dent columns have been found, all future checks on the if
statement in line 5 of MCANS will fail, and the algorithm
eventually exits the for loop. Even in this case the sample
complexity guarantees in Theorem (3.2) hold. Finally, if
the matrix is not exactly rank r but can be approximated
by a matrix of rank r, then we might be able to modify

3Proof of Theorem (3.2) is in the appendix.
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MCANS to output the best rank r approximation, by modi-
fying line 5 to use an appropriate �thresh > 0. We leave this
modification to future work.

4 Algorithms in the stochastic oracle model
For the stochastic model considered in this paper we
shall propose an algorithm, called S-MCANS, which is a
stochastic version of MCANS. Like MCANS, the stochas-
tic version discovers a set of independent columns itera-
tively and then uses the Nyström extension to impute the
matrix. Figure (4.1) provides a pseudo-code of the S-
MCANS algorithm.

S-MCANS like the MCANS algorithm repeatedly per-
forms column selection steps to select a column of the ma-
trix L that is linearly independent of the previously selected
columns, and then uses these selected columns to impute
the matrix via a Nystrom extension. In the case of de-
terministic models, due to the presence of a deterministic
oracle, the column selection step is pretty straight-forward
and requires calculating the smallest singular-value of cer-
tain principal sub-matrices. In contrast, for stochastic mod-
els the stochastic oracle outputs a Bernoulli random vari-
able Bern(Li,j) when queried with the indices (i, j). This
makes the column selection step much harder. We resort to
the successive elimination algorithm (shown in Fig (4.2))
where principal sub-matrices are repeatedly sampled to es-
timate the smallest singular-values for those matrices. The
principal sub-matrix that has the largest smallest singular-
value determines which column is selected in the column
selection step.

Given a set C, define C to be a K ⇥ r matrix correspond-
ing to the columns of L indexed by C and define W to be
the r⇥r principal submatrix of L corresponding to indices
in C. S-MCANS constructs estimators bC,cW of C,W re-
spectively by repeatedly sampling independent entries of
C,W (which are Bernoulli) for each index and averaging
these entries. The sampling is such that each entry of the
matrix C is sampled at least m

1

times and each entry of the
matrix W is sampled at least m

2

times, where

m
1

= 100C
1

(W ,C) log(2Kr/�)max

✓
r5/2

✏
,
r2

✏2

◆
(3)

m
2

= 200C
2

(W ,C) log(2r/�)max

✓
r3

✏
,
r5

✏2

◆
(4)

and C
1

, C
2

are problem dependent constants defined as:

C
1

(W ,C) = max

���
W

�1

C

>��
max

,
��
W

�1

C

>��2
max��

W

�1

��
max

,
��
CW

�1

��2
1

,
��
W

�1

��
2

��
W

�1

��
max

�
(5)

C
2

(W ,C) = max

���
W

�1

��2
2

��
W

�1

��2
max

,
��
W

�1

��
2

��
W

�1

��
max

,
��
W

�1

��
2

,
��
W

�1

��2
2

�
(6)

S-MCANS then returns the Nyström extension constructed
using matrices bC,cW .

Algorithm 4.1 Stochastic Matrix Completion via Adaptive
Nystrom Sampling (S-MCANS)
Input: ✏ > 0, � > 0 and a stochastic oracle O that when

queried with indices (i, j) outputs a Bernoulli random
variable Bern(Li,j)

Output: A PSD matrix ˆ

L, which is an approximation to
the unknown matrix L, such that with probability at
least 1 � �, all the elements of ˆ

L are within ✏ of the
elements of L.

1: C  {1}.
2: I  {2, 3, . . . ,K}.
3: for (t = 2; t t+ 1; t  r) do
4: Define, ˜Ci = CS{i}, 8i 2 I.
5: Run the successive elimination algorithm 4.2 on ma-

trices L
˜Ci, ˜Ci

, i 2 I, with given �  �
2r to get i?t .

6: C  CS{i?t }; I  I \ {i?t }.
7: end for
8: Obtain estimators bC,cW of C,W by repeatedly sam-

pling and averaging entries. Calculate the Nystrom ex-
tension bL =

b
C

c
W

�1 b
C

>.

4.1 Sample complexity of the S-MCANS algorithm
As can be seen from the S-MCANS algorithm, samples are
consumed both in the successive elimination steps (step 5

of S-MCANS) as well as during the construction of the
Nyström extension. We analyze both these steps next.

Sample complexity analysis of successive elimination.
Before we provide a sample complexity analysis of the S-
MCANS algorithm, we need a bound on the spectral norm
of random matrices with 0 mean where each element is
sampled possibly different number of times. This bound
plays a key role in correctness of the successive elimination
algorithm. The proof of this bound follows from matrix
Bernstein inequality. We relegate the proof to the appendix
due to lack of space.

Lemma 4.1. Let ˆ

P be a p⇥ p random matrix that is con-
structed as follows. For each index (i, j), set ˆ

Pi,j =

Hi,j

ni,j
,

where Hi,j is an independent random variable drawn from
the distribution Binomial(ni,j , pi,j). Then, || ˆP � P ||

2


2 log(2p/�)
3 min

i,j
ni,j

+

q
log(2p/�)

2

P
i,j

1

ni,j
. Furthermore, if we de-

note by � the R.H.S. in the above bound, then |�
min

(

ˆ

P )�
�
min

(P )|  �.

Lemma 4.2. The successive elimination algorithm shown
in Figure (4.2) on m square matrices of size A

1

, . . . ,Am

each of size p⇥ p outputs an index i? such that, with prob-
ability at least 1 � �, the matrix Ai? has the largest min-
imum singular value among all the input matrices. Let,
�k,p :

= maxj=1,...,m �
min

(Aj) � �
min

(Ak). Then num-
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Algorithm 4.2 Successive elimination on principal subma-
trices
Input: Square matrices A

1

, . . . ,Am of size p⇥ p, which
share the same p� 1⇥ p� 1 left principal submatrix;
a failure probability � > 0; and a stochastic oracle O

Output: An index
1: Set t = 1, and S = {1, 2, . . . ,m} (Here m = K� ⌧ +

1 where ⌧ is the iteration number in MCANS, when
successive elimination is invoked).

2: Sample each entry of the input matrices once.
3: while |S| > 1 do
4: Set �t = 6�

⇡2mt2

5: Let b�max

= max

k2S
�
min

(

b
Ak) and let k? be the index

that attains argmax.
6: For each k 2 S , define ↵t,k =

2 log(2p/�t)

3 min

i,j
ni,j(

bAk)
+

q
log(2p/�t)

2

P
i,j

1

ni,j(
bAk)

7: For each index k 2 S , if b�max � b�
min

(

b
Ak) �

↵t,k?
+ ↵t,k then do S  S \ {k}.

8: t t+ 1

9: Sample each entry of the matrices indexed by the
indices in S once.

10: end while
11: Output k, where k 2 S .

ber of queries to the stochastic oracle are

mX

k=2

O
�
p3 log(2p⇡2m2/3�2

k,p�)/�
2

k,p

�
+

O

✓
p4 max

k
log(2p⇡2m2/3�2

k,p�)/�
2

k,p

◆
(7)

Sample complexity analysis of Nystrom extension. The
following theorem tells us how many calls to a stochastic
oracle are needed in order to guarantee that the Nystrom ex-
tension obtained by using matrices bC,cW is accurate with
high probability. The proof has been relegated to the ap-
pendix.

Theorem 4.3. Consider the matrix b
C

c
W

�1 b
C

> which is
the Nystrom extension constructed in step 10 of the S-
MCANS algorithm. Given any � 2 (0, 1), with probability
at least 1 � �,

���CW

�1

C

> � b
C

c
W

�1 b
C

>
���
max

 ✏ after

making a total of Krm
1

+ r2m
2

number of oracle calls
to a stochastic oracle, where m

1

,m
2

are given in equa-
tions (3), (4).

The following corollary follows directly from theo-
rem (4.3), and lemma (4.2).

Corollary 4.4. The S-MCANS algorithm outputs an (✏, �)

good arm after making at most

Krm
1

+ r2m
2

+

rX

p=1

K�rX

k=2

˜O

 
p3

�2

k,p

+ p4 max

k

1

�2

k,p

!

number of calls to a stochastic oracle, where ˜O hides fac-
tors that are logarithmic in K, r, 1

� , 1/�k,p, and m
1

,m
2

are given in equations (3), (4).

In principal, precise values of m
1

,m
2

given in equa-
tions (3), (4) are application dependent, and often unknown
apriori. If, for a given PSD matrix L, and for all pos-
sible choices of submatrices C of L, which admit an in-
vertible principal r ⇥ r sub-matrix W , the terms involved
in Equation (3), (4) can be upper bounded by a universal
constant ✓(L), then one can use ✓(L) instead of the terms
C

1

(W ,C), C
2

(W ,C) in the expressions for m
1

,m
2

in
equations (3), (4). For our experiments, we assume that we
are given some sampling budget B that we can use to query
elements of the matrix L, and once we run out of this bud-
get we stop and report the necessary error metrics. As we
see MCANS and S-MCANS allow us to properly allocate
our budget to obtain good estimates of the matrix L.

5 Applications to multi-armed bandits
We shall now look at a multi-armed bandit (MAB) prob-
lem where there are a large number of arms and show how
this MAB problem can be reduced to a PSD-MC prob-
lem. To motivate the MAB problem consider the follow-
ing example: Suppose an advertising engine wants to show
different advertisements to users. Each incoming user be-
longs to one of r different unknown sub-populations. Each
sub-population may have different taste in advertisements.
For example, if there are r = 3 sub-populations, then
sub-population P

1

may like advertisements about vacation
rentals, while P

2

may like advertisements about car rentals
and population P

3

may like advertisements about motor-
cycles. Suppose, the advertising company has a constraint
that it can show only two advertisements each time to a ran-
dom, unknown incoming user. The question of interest is
what would be a good pair of advertisements to show to a
random incoming user in order to maximize click probabil-
ity?

Such problems and more can be cast in a MAB framework,
where the MAB algorithm actively elicits response from
users on different pairs of advertisements. In Figure (5.1)
we sketch the two models for the above mentioned adver-
tising problem. In both the models, there are K ads in to-
tal, and in each round t, we choose a pair of ads and re-
ceive a reward which is a function of the pair. Let, Zt be a
multinomial random variable defined by a probability vec-
tor p 2 �r, whose output space is the set {1, 2, . . . , r}.
Let uZt be a reward vector in [0, 1]K indexed by Zt. On
displaying the pair of ads (it, jt) in round t the algorithm
receives a scalar reward yt. This reward is large if either of
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the ads in the chosen pair is “good”. For both the models
we are interested in designing algorithms that discover an
(✏, �) best pair of ads using as few trials as possible, i.e. al-
gorithms which can output, with probability at least 1� �,
a pair of ads that is ✏ close to the best pair of ads in terms
of the expected reward of the pair. The difference between
the models is whether the reward is stochastic or determin-
istic. In the deterministic model yt is deterministic and is

Model 5.1 Description of our proposed models
1: while TRUE do
2: In the case of stochastic model, nature chooses Zt ⇠

Mult(p), but does not reveal it to the algorithm.
3: Algorithm chooses a pair of items (it, jt).
4: Algorithm receives the reward yt defined as follows:

If the model is deterministic

yt,det = 1� EZt⇠p(1� uZt(it))(1� uZt(jt))
(8)

If the model is stochastic

yt,stoc = max{yit , yjt} (9)
yit ⇠ Bern(uZt(it)) (10)
yjt ⇠ Bern(uZt(jt)) (11)

5: Algorithm stops if it has found a certifiable (✏, �)
optimal pair of items.

6: end while

given by Equation (8), whereas in the stochastic model yt
is a random variable that depends on the random variable
Zt as well as additional external randomness. However, a
common aspect of both these models is that the expected
reward associated with the pair of choices (it, jt) in round
t is the same and is equal to the expression given in Equa-
tion (8). It is clear from Figure (5.1) that the optimal pair
of ads satisfies the equation

(i?, j?) = argmini,j EZt⇠p(1� uZt(i))(1� uZt(j)).
(12)

A naive way to solve this problem is to treat this problem as
a best-arm identification problem in stochastic multi-armed
bandits where there are ⇥(K2

) arms each corresponding to
a pair of items. One could now run a Successive Elimina-
tion (SE) algorithm or a Median Elimination algorithm on
these ⇥(K2

) pairs Even-Dar et al. (2006) to find an (✏, �)
optimal pair. The sample complexity of the SE or ME algo-
rithms on these ⇥(K2

) pairs would be roughly ˜O(

K2

✏2 )

4.
In the advertising application that we mentioned before and
other applications K can be very large, and therefore the
sample complexity of such naive algorithms can be very
large. However, these simple reductions throw away in-

4The Õ notation hides logarithmic dependence on 1
� ,K, 1

�

formation between different pairs of items and hence are
sub-optimal. We next show that via a simple reduction it is
possible to convert this MAB problem to a PSD-MC prob-
lem.

5.1 Reduction from MAB to PSD matrix completion

Since, we are interested in returning an (✏, �) optimal pair
of ads it is enough if the pair returned by our algorithm
attains an objective function value that is at most ✏ more
than the optimal value of the objective function shown in
equation (12), with probability at least 1 � �. Let p 2
�r, and let the reward matrix R 2 RK⇥K be such that its
(i, j)th entry is the expected reward obtained using the pair
of ads (i, j). Then from equation (12) we know that the
(i, j)th element of matrix R has the form

Ri,j = 1� EZt⇠p(1� uZj (i))(1� uZj (j))

= 1�
rX

k=1

pk(1� uk(i))(1� uk(j)) (13)

R = 11> �
rX

k=1

pk(1� uk)(1� uk)
>

| {z }
L

. (14)

It is enough to find an entry in the matrix L that is ✏ close to
the smallest entry in the matrix L with probability at least
1� �. In order to do this it is enough to estimate the matrix
L using repeated trials and then use the pair-of-indices cor-
responding to the smallest entry as an (✏, �) optimal pair.
In order to do this we exploit the structural properties of
matrix L. From equation (14) it is clear that the matrix
L can be written as a sum of r rank-1 matrices. Hence
rank(L)  r. Furthermore, since these rank-1 matrices
are all positive semi-definite and L is a convex combina-
tion of such, we can conclude that L ⌫ 0. We have proved
the following proposition:

Proposition 5.1. The matrix L shown in equation (14) sat-
isfies the following two properties: (i) rank(L)  r (ii)
L ⌫ 0.

The above property immediately implies that we can treat
the MAB problem as a MC-PSD problem.

Proposition 5.2. The (✏, �) optimal pair for the MAB prob-
lem shown in model (5.1) with deterministic rewards can
be reduced to a PSD-MC problem with a deterministic or-
acle. Using the MCANS algorithm we can obtain a (0, 0)
optimal arm using less than (r + 1)K queries. Similarly,
the (✏, �) optimal pair for the MAB problem shown in Fig-
ure (5.1), under the stochastic model can be reduced to a
PSD-MC problem with a stochastic oracle. Using the S-
MCANS algorithm we can obtain an (✏, �) optimal pair-of-
arms using number of trials equal to the quantity shown in
Corollary (4.4).
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(a) ML-100K; K = 800, r = 2
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(b) ML-100K; K = 800, r = 4

Number of samples #105
-2 0 2 4 6 8 10 12

Er
ro

r

#10-4

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
Comparison of learning rates

LRMC 
LIL 
Naive 
S-MCANS

(c) ML-1M; K = 200, r = 2

Figure 1: Error of various algorithms with increasing budget. The error is defined as Lî,ĵ � Li?,j? where (̂i, ĵ) is a pair of optimal
choices as estimated by each algorithm. Note that the Naive and LIL’ UCB have similar performances and do not improve with budget
and both are outperformed by S-MCANS. This is because both Naive and LIL’ UCB have few samples that they can use on each pair of
movies. All experiments were repeated 10 times.

5.2 Related work to multi-armed bandits

Bandit problems where multiple actions are selected have
also been considered in the past usually in the context of
computational advertising (Kale et al., 2010), information
retrieval Radlinski et al. (2008), Yue and Guestrin (2011),
resource allocation Streeter and Golovin (2009). A ma-
jor difference between the above mentioned works and our
work is that our feedback and reward model is different
and that we are not interested in cumulative regret guaran-
tees but rather in finding a good pair of arms as quickly as
possible. Furthermore our linear-algebraic approach to the
problem is very different from the approaches taken in the
previous papers. Finally we would like to mention that our
model shown in Figure (5.1) on the surface bears resem-
blance to dueling bandit problems (Yue et al., 2012). How-
ever, in duleing bandits two arms are compared which is not
the case in the bandit problem that we study. A more thor-
ough literature survey has been relegated to the appendix
due to lack of space.

6 Experiments
In this section we demonstrate experiments to show the effi-
cacy of our proposed algorithms: MCANS and S-MCANS.

6.1 Movie reommendation as a MAB problem

We describe a multi-armed bandit task where the target is
to recommend a good pair of movies to users.

Experimental setup. We used the Movie Lens
datasets (Harper and Konstan, 2015), namely ML-100K,
ML-1M. This dataset contains incomplete movie ratings
provided by users for different movies. We pre-process this
dataset to make it suitable for a bandit experiment as fol-
lows: We use this incomplete user-movie ratings dataset
as an input to an LRMC solver called OptSpace. The
complete ratings obtained from an LRMC solver are then

thresholded to obtain binary values. More precisely, all rat-
ings of at least 3 are set to 1 and ratings less than 3 are set to
0. All the users are assigned to different sub-populations,
based on some attribute of the user. For example in Fig-
ures (1a), (1b) the gender attribute is used, to create 2 sub-
populations and in Figure (1b) occupation of the user is
used to define the resulting 4 sub-populations. In the final
step we averaged the binary ratings of all users in a cer-
tain population to get the probability that a random user
from a given sub-population likes a certain movie. This
gets us matrices R and L = 1 � R. In the experiments
we provide the different algorithms with increasing budget
and measure the error of each algorithm in finding the best
pair of movies. The algorithms that we use for comparison
are Naive, LiL’UCB (Jamieson et al., 2014) and LRMC us-
ing OptSpace (Keshavan et al., 2009). The naive algorithm
uniformly distributes the given budget equally among all
the K(K + 1)/2 pairs of movies. LIL applies the LiL’
UCB algorithm treating each pair of movies as an arm in
a stochastic multi-armed bandit game. All algorithms can
access entries of the matrix L via noisy queries of the form
(i, j) and obtain a Bernoulli outcome with probability Li,j .
No other information such as sub-populations are available
to any of the algorithms. The setup faithfully imitates the
stochastic oracle model shown in Figure (5.1).

As can be seen from the figures (1) the Naive and LIL’UCB
algorithms have similar performance on all the datasets. On
the ML-100K datasets LIL’UCB quickly finds a good pair
of movies but fails to improve with an increase in the bud-
get. To see why, observe that there are about 32 ⇥ 10

4

pairs of movies. The maximum budget here is on the or-
der of 106. Therefore, Naive samples each of those pairs
on an average at most four times. Since many entries in
the matrix are of the order of 10�4, Naive algorithm a lot
of sees 0’s when sampling. The same thing happens with
the LIL’UCB algorithm too; very few samples are avail-
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(a) t-SNE with the full kernel matrix . (b) t-SNE + MCANS, B = 250K (c) t-SNE + LRMC, B = 250K

(d) t-SNE with the full kernel matrix. (e) t-SNE + MCANS, B = 8K (f) t-SNE + LRMC, B = 8K

Figure 2: 2� dimensional visualization obtained by using a partially observed RBF kernel matrix with the t-SNE algorithm for kernel
dimensionality reduction. The budget B specifies how many entries of the RBF kernel matrix the algorithms are allowed to query. The
kernel matrix obtained using MCANS and LRMC are then fed into t-SNE. The first row shows resuls on the MNIST2500 dataset and the
second row shows results on USPS500 dataset, obtained by subsampling digits 1 � 5 of the USPS dataset. Figures (2a),(2d) shows the
result of KDR when the entire kernel matrix is observed. The MNIST2500 dataset is available at https://lvdmaaten.github.
io/tsne/

able for each pair to improve its confidence bounds. This
explains why the Naive and LIL’ UCB algorithm have such
poor and similar performances. In contrast, S-MCANS fo-
cuses most of the budget on a few select pairs and infers the
value of other pairs via Nystrom extensio. This is why, in
our experiments we see that S-MCANS finds good pair of
movies quickly and finds even better pairs with increasing
budget, outperforming all the other algorithms. S-MCANS
is also better than LRMC, because we specifically exploit
the SPSD structure in our matrix L, which enables us to do
better. We would like to mention that on ML-100K dataset
the performance of LRMC was much inferior and this re-
sult and more results are in the appendix.

6.2 Kernel dimensionality reduction under budget

Kernel based dimensionality reduction (KDR) is a suite of
powerful non-linear dimensionality reduction techniques
which all use a kernel matrix in order to perform dimen-
sionality reduction. Given a collection of points residing
in a d dimensional space where d is very large most KDR
based techniques require constructing a kernel matrix be-
tween all pairs of points. A popular kernel matrix used
in KDR is an RBF kernel matrix, obtained using all pair-
wise distances. Calculating all pairwise distances takes
O(K2d) time which can be large when d is very high.
Hence, we need algorithms that can use only a few pair-
wise distance measurements and use the incomplete kernel
matrix to perform dimensionality reduction. Given a bud-
get of B = O(Kr), where r is the approximate rank of the
kernel matrix, we expect MCANS to construct a good ap-

proximation of the underlying kernel matrix. This matrix
is in turn used for KDR. In the experiments shown in this
section, we want to investigate how the estimate of the ker-
nel matrix provided by MCANS and LRMC effect KDR.
In order to do this we use as our true kernel matrix L a
matrix obtained by applying the RBF kernel to all pairs of
points. All algorithms are assumed to have an access to a
deterministic, oracle that can query at the most B entries
of L. We compare MCANS with LRMC using SoftIm-
pute (Mazumder et al., 2010) as implemented in the python
package fancyimpute. For the LRMC implementation we
sample B indices randomly from the upper triangle of the
kernel matrix L, and use these sampled values in the cor-
responding lower triangle too. The completed matrices are
then used in t-SNE (Maaten and Hinton, 2008) to visual-
ize the USPS digits dataset and the MNIST2500 dataset.
As can be seen in Figure (2), t-SNE with MCANS gener-
ates clusters which are comparable in quality to the ones
obtained using full kernel matrix. However, the LRMC al-
gorithm when used with t-SNE output poor quality clusters.
7 Conclusions
In this paper we proposed theoretically sound active al-
gorithms for the problem of positive semi-definite matrix
completion in the presence of deterministic and stochastic
oracles and applications shown. In the future we will look
at applications to graphical models and kernel machines.
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Abstract

We provide proofs that were skipped in the main paper. We also provide some additional experimental results and
related work concerning multi-armed bandits that was skipped in the main paper.

1 Preliminaries

We shall repeat a proposition that was stated in the main paper for the sake of completeness.

Proposition 1.1. Let L be any SPSD matrix of size K. Given a subset C ⇢ {1, 2, . . . ,K}, the columns of the
matrix L indexed by the set C are independent iff the principal submatrix LC,C is non-degenerate, equivalently iff,
�
min

(LC,C) > 0.

We would also need the classical matrix Bernstein inequality, which we borrow from the work of Joel Tropp [Tropp,
2015].

Theorem 1.2. Let S
1

, . . . ,Sn be independent, centered random matrices with dimension d
1

⇥ d
2

and assume that
each one is uniformly bounded

ESk = 0, kSkk  Lfor each k = 1, . . . , n.

Introduce the sum Z =

Pn
k=1

Sk, and let ⌫(Z) denote the matrix variance statistic of the sum:

⌫(Z) = max

�

�

�EZZ>�
� ,
�

�EZ>Z
�

�
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)

(2)

Then,

P(kZk � t)  (d
1

+ d
2

) exp

 

� t2/2

⌫(Z) +

Lt
3

!

2 Sample complexity of MCANS algorithm: Proof of Theorem 3.2 in the

main paper

Theorem 2.1. If L 2 RK⇥K is an SPSD matrix of rank r, then the matrix ˆL output by the MCANS algorithm satisfies
ˆL = L. Moreover, the number of oracle calls made by MCANS is at most K(r+1). The sampling algorithm requires:
K + (K � 1) + (K � 2) + . . .+ (K � (r � 1)) + (K � r)  (r + 1)K samples from the matrix L.

1



Proof. MCANS checks one column at a time starting from the second column, and uses the test in line 5 to determine if
the current column is independent of the previous columns. The validity of this test is guaranteed by proposition (1.1).
Each such test needs just one additional sample corresponding to the index (c, c). If a column c is found to be
independent of the columns 1, 2, . . . , c � 1 then rest of the entries in column c are queried. Notice, that by now we
have already queried all the columns and rows of matrix L indexed by the set C, and also queried the element (c, c) in
line 4. Hence we need to query only K � |C|� 1 more entries in column c in order to have all the entries of column c.
Combined with the fact that we query only r columns completely and in the worst case all the diagonal entries might
be queried, we get the total query complexity to be (K � 1) + (K � 2) + . . . (K � r) +K  K(r + 1).

3 Proof of Lemma 4.1 in the main paper

We begin by stating the lemma.

Lemma. Let ˆP be a p ⇥ p random matrix that is constructed as follows. For each index (i, j) independent of other
indices, set ˆPi,j =

Hi,j

ni,j
, where Hi,j is a random variable drawn from the distribution Binomial(ni,j , pi,j). Let

Z =

ˆP � P . Then,

||Z||
2

 2 log(2p/�)

3 min

i,j
ni,j

+

v

u

u

t

log(2p/�)

2

X

i,j

1

ni,j
. (3)

Furthermore, if we denote by � the R.H.S. in Equation (3), then |�
min

(

ˆP )� �
min

(P )|  �.

Proof. Define, St
i,j =

1

ni,j
(Xt

i,j�pi,j)Ei,j , where Ei,j is a p⇥p matrix with a 1 in the (i, j)th entry and 0 everywhere
else, and Xt

i,j is a random variable sampled from the distribution Bern(pi,j). If Xt
i,j are independent for all t, i, j,

then it is easy to see that Z =

P

i,j
1

ni,j

Pni,j

t=1

St
i,j . Hence S is a sum of independent random matrices and this allows

to apply matrix Bernstein type inequalities. In order to apply the matrix Bernstein inequality, we would need upper
bound on maximum spectral norm of the summands, and an upper bound on the variance of Z. We next bound these
two quantities as follows,

||St
i,j ||2 = || 1

ni,j
(Xt

i,j � pi,j)Ei,j ||2 =

1

ni,j
|Xt

i,j � pi,j | 
1

ni,j
. (4)

To bound the variance of Z we proceed as follows

⌫(Z) = ||
X

i,j

ni,j
X

t=1

E(St
i,j)

>St
i,j ||

^

||
X

i,j

ni,j
X
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ESt
i,j(S

t
i,j)

>|| (5)

Via elementary algebra and using the fact that Var(Xt
i,j) = pi,j(1� pi,j)It is easy to see that,
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>St
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n2
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2
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Using similar calculations we get ESt
i,j(S

t
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>
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1

4n2
i,j
Ej,j . Hence, ⌫(Z) =
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Pni,j
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1

4ni,j
. Applying

matrix Bernstein, we get with probability at least 1� �
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The second part of the result follows immediately from Weyl’s inequality which says that |�
min

(

ˆP ) � �
min

(P )| 
|| ˆP � P || = ||Z||.
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4 Sample complexity of successive elimination algorithm: Proof of Lemma

4.2 in the main paper

Lemma. The successive elimination algorithm shown in Figure (6.2) on m square matrices of size A
1

, . . . ,Am each
of size p ⇥ p outputs an index i? such that, with probability at least 1 � �, the matrix Ai? has the largest smallest
singular value among all the input matrices. The total number of queries to the stochastic oracle are

m
X
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where �k,p :

= maxj=1,...,m �
min

(Aj)� �
min

(Ak)

Proof. Suppose matrix A
1

has the largest smallest singular value. From lemma (3), we know that with probability
at least 1 � �t, |�min
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. Hence, by union bound the
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is eliminated in one of the rounds is at most
P

t
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k=1

�t 
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6�
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This proves that the successive elimination step identifies the matrix with the largest smallest singular value.
An arm k is eliminated in round t if ↵t,1 + ↵t,k  �̂max

t � �
min

(

bAk). By definition,
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That is if ↵t,1+↵t,k  �k,p

2

, then arm k is eliminated in round t. By construction, since in round t each element in each

of the surviving set of matrices has been queried at least t times, we can say that ↵t,j  2 log(2p/�t)
3t +

q

p2
log(2p/�t)

2t

for any index j corresponding to the set of surviving arms. Hence arm k gets eliminated after
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In each round t the number of queries made are O(p) for each of the m matrices corresponding to the row and column
which is different among them, and O(p2) corresponding to the left p� 1⇥ p� 1 submatrix that is common to all of
the matrices A

1

, . . . , Am. Hence, the total number of queries to the stochastic oracle is
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5 Proof of Nystrom method

In this supplementary material we provide a proof of Nystrom extension in max norm when we use a stochastic oracle
to obtain estimators bC,cW of the matrices C,W . The question that we are interested in is how good is the estimate
of the Nystrom extension obtained using matrices bC,cW w.r.t. the Nystrom extension obtained using matrices C,W .
This is answered in the theorem below.

Theorem 5.1. Suppose the matrix W is an invertible r ⇥ r matrix. Suppose, by multiple calls to a stochastic oracle
we construct estimators bC,cW of C,W . Now, consider the matrix bCcW�1

bC> as an estimate CW�1C>. Given
any � 2 (0, 1), with probability atleast 1� �,

�

�

�

CW�1C> � bCcW�1

bC>
�

�

�

max

 ✏

after making M number of oracle calls to a stochastic oracle, where

M � 100C
1

(W,C) log(2Kr/�)max

✓

Kr7/2

✏
,
Kr3

✏2

◆

+ 200C
2

(W,C) log(2r/�)max

✓

r5

✏
,
r7

✏2

◆
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where C
1

(W ,C) and C
2

(W ,C) are given by the following equations

C
1

(W ,C) = max

⇣

�

�W�1C>�
�

max

,
�

�W�1C>�
�

2

max

,
�

�W�1

�

�

max

,
�

�CW�1

�

�

2

1

,
�

�W�1

�

�

2

�

�W�1

�

�

max

⌘

C
2

(W ,C) = max

⇣

�

�W�1

�

�

2

2

�

�W�1

�

�

2

max

,
�

�W�1

�

�

2

�

�W�1

�

�

max

,
�

�W�1

�

�

2

,
�

�W�1

�

�

2

2

⌘

Our proof proceeds by a series of lemmas, which we state next.

Lemma 5.2.

�

�

�

CW�1C> � bCcW�1

bC>
�

�

�

max


�

�

�

(C � bC)W�1C>
�

�

�

max

+

�

�

�

bCcW�1

(C � bC)

>
�

�

�

max

+

�

�

�

bC(W�1 � cW�1

)C>
�

�

�

max

Proof.
�

�

�

CW�1C> � bCcW�1

bC>
�

�

�

max

=

�

�

�

CW�1C> � bCW�1C>
+

bCW�1C> � bCcW�1

bC>
�

�

�

max


�

�

�

CW�1C> � bCW�1C>
�

�

�

max

+

�

�

�

bCW�1C> � bCcW�1

bC>
�

�

�

max

=

�

�

�

CW�1C> � bCW�1C>
�

�

�

max

+

�

�

�

bCW�1C> � bCcW�1C>
+

bCcW�1C> � bCcW�1

bC>
�

�

�

max


�

�

�

CW�1C> � bCW�1C>
�

�

�

max

+

�

�

�

bCW�1C> � bCcW�1C>
�

�

�

max

+

�

�

�

bCcW�1C> � bCcW�1

bC>
�

�

�

max

=

�

�

�

(C � bC)W�1C>
�

�

�

max

+

�

�

�

bCcW�1

(C � bC)

>
�

�

�

max

+

�

�

�

bC(W�1 � cW�1

)C>
�

�

�

max

In the following lemmas we shall bound the three terms that appear in the R.H.S of the bound of Lemma (5.2).

Lemma 5.3.

�

�

�

(C � ˆC)W�1C>
�

�

�

max

 2||W�1C>||
max

3m
log(2Kr/�) +

r

r ||W�1C>||2
max

log(2Kr/�)

2m
(12)

Proof. Let M = W�1C>, then
�

�

�

(C � bC)W�1C>
�

�

�

max

=

�

�

�

(C � bC)M
�

�

�

max

. By the definition of max norm we
have

�

�

�

(C � bC)M
�

�

�

max

= max

i,j

�

�

�

�

�

l
X

p=1

(C � bC)i,pMp,j

�

�

�

�

�

Fix a pair of indices (i, j), and consider the expression
�

�

�

Pl
p=1

(C � bC)i,pMp,j

�

�

�

Define ri,p = (C � bC)i,p. By definition of ri,p we can write ri,p =

1

m

Pm
t=1

rti,p, where rti,p are a set of
independent random variables with mean 0 and variance at most 1/4. This decomposition combined with scalar
Bernstein inequality gives that with probability at least 1� �

�

�

�

�

�

l
X

p=1

(

bC � bC)i,pMp,j

�

�

�

�

�

=

�

�

�

�

�

l
X

p=1

ri,pMp,j

�

�

�

�

�

=

�

�

�

�

�

l
X

p=1

m
X

t=1

1

m
rti,pMp,j

�

�

�

�

�

 2||M ||
max

3m
log(2/�) +

r

r ||M ||2
max

log(2/�)

2m

4



Applying a union bound over all possible Kr choices of index pairs (i, j), we get the desired result.

Before we establish bounds on the remaining two terms in the RHS of Lemma (5.2) we state and prove a simple
proposition that will be used at many places in the rest of the proof.

Proposition 5.4. For any two real matrices M
1

2 Rn1⇥n2 ,M
2

2 Rn2⇥n3 the following set of inequalities are true:

1. kM
1

M
2

k
max

 kM
1

k
max

kM
2

k
1

2. kM
1

M
2

k
max


�

�M>
1

�

�

1

kM
2

k
max

3. kM
1

M
2

k
max

 kM
1

k
2

kM
2

k
max

4. kM
1

M
2

k
max

 kM
2

k
2

kM
1

k
max

where, the k·kp is the induced p norm.

Proof. Let ei denote the ith canonical basis vectors in RK . We have,

kM
1

M
2

k
max

= max

i,j

�

�e>i M1

M
2

ej
�

�

 max

i,j

�

�e>i M1

�

�

max

kM
2

ejk
1

= max

i

�

�e>i M1

�

�

max

max

i
kM

2

ejk
1

= kM
1

k
max

kM
2

k
1

.

To obtain the first inequality above we used Holder’s inequality and the last equality follows from the definition of ||·||
1

norm. To get the second inequality, we use the observations that kM
1

M
2

k
max

=

�

�M>
2

M>
1

�

�

max

. Now applying the
first inequality to this expression we get the desired result. Similar techniques yield the other two inequalities.

Lemma 5.5. With probability at least 1� �, we have
�

�

�

bCcW�1

(C � bC)

>
�

�

�

max

 r2

2m

⇣

�

�

�

cW�1 �W�1

�

�

�

max

+

�

�W�1

�

�

max

⌘

log(2Kr/�)+

r2
�

�

�

cW�1 �W�1

�

�

�

max

r

log(2Kr/�)

2m
+ r

�

�CW�1

�

�

1

r

log(2Kr/�)

2m

Proof.
�

�

�

bCcW�1

(C � bC)

>
�

�

�

max


�

�

�

(

bCcW�1 �CW�1

+CW�1

)(C � bC)

>
�

�

�

max

(a)

�

�

�

(

bCcW�1 �CW�1

)(C � bC)

>
�

�

�

max

+

�

�

�

CW�1

(C � bC)

>
�

�

�

max

(b)

�

�

�

bCcW�1 �CW�1

�

�

�

max

�

�

�

(C � bC)

>
�

�

�

1

+

�

�CW�1

�

�

max

�

�

�

(C � bC)

>
�

�

�

1

(13)

To obtain inequality (a) we used triangle inequality for matrix norms, and to obtain inequality (b) we used Proposi-
tion (5.4). We next upper bound the first term in the R.H.S. of Equation (13).

We bound the term
�

�

�

bCcW�1 �CW�1

�

�

�

max

next.
�

�

�

bCcW�1 �CW�1

�

�

�

max


�

�

�

bCcW�1 �CcW�1

+CcW�1 �CW�1

�

�

�

max


�

�

�

bCcW�1 �CcW�1

�

�

�

max

+

�

�

�

CcW�1 �CW�1

�

�

�

max

=

�

�

�

(

bC �C)

cW�1

�

�

�

max

+

�

�

�

C(

cW�1 �W�1

)

�

�

�

max

(a)

�

�

�

(

bC �C)

>
�

�

�

1

�

�

�

cW�1

�

�

�

max

+

�

�C>�
�

1

�

�

�

cW�1 �W�1

�

�

�

max

(14)
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We used Proposition (5.4) to obtain inequality (a). Combining Equations (13) and (14) we get,
�

�

�

bCcW�1

(C � bC)

>
�

�

�

max


�

�

�

(

bC �C)

>
�

�

�

1

⇣

�

�

�

(

bC �C)

>
�

�

�

1

�

�

�

cW�1

�

�

�

max

+

�

�C>�
�

1

�

�

�

cW�1 �W�1

�

�

�

max

+

�

�CW�1

�

�

max

⌘

=

�

�

�

(

bC �C)

>
�

�

�

2

1

�

�

�

cW�1

�

�

�

max

+

�

�

�

(

bC �C)

>
�

�

�

1

�

�C>�
�

1

�

�

�

cW�1 �W�1

�

�

�

max

+

�

�

�

(

bC �C)

>
�

�

�

1

�

�CW�1

�

�

max

(15)

Since all the entries of the matrix C are probabilities we have kCk
max

 1 and
�

�C>
�

�

1

 r. Moreover, since each
entry of the matrix ˆC�C is the average of m independent random variables with mean 0, and each bounded between
[�1, 1], by Hoeffding’s inequality and union bound, we get that with probability at least 1� �

�

�

�

(

bC �C)

>
�

�

�

1

 r

r

log(2Kr/�)

2m
(16)

The next proposition takes the first steps towards obtaining an upper bound on
�

�

�

ˆC(W�1 � ˆW�1

)C>
�

�

�

max

Proposition 5.6.

�

�

�

bC(W�1 � cW�1

)C>
�

�

�

max

 min

n

r2
�

�

�

W�1 � cW�1

�

�

�

max

, r
�

�

�

W�1 � cW�1

�

�

�

1

o

Proof.
�

�

�

bC(W�1 � cW�1

)C>
�

�

�

max

(a)

�

�

�

bC(W�1 � cW�1

)

�

�

�

max

�

�C>�
�

1

(b)
 r

�

�

�

bC(W�1 � cW�1

)

�

�

�

max

(c)
 min

n

r2
�

�

�

W�1 � cW�1

�

�

�

max

, r
�

�

�

W�1 � cW�1

�

�

�

1

o

(17)

In the above bunch of inequalities (a) and (c) we used Proposition (5.4) and to obtain inequality (b) we used the fact
that ||C>||

max

 r.

Hence, we need to bound
�

�

�

W�1 � cW�1

�

�

�

max

and
�

�

�

W�1 � cW�1

�

�

�

1

.

Let us define ˆW = W + EW where EW is the error-matrix and ˆW is the sample average of m independent
samples of a random matrix where E ˆWk(i, j) = W (i, j).

Lemma 5.7. Let us define ˆW �W = EW . Suppose,
�

�W�1EW

�

�

2

 1

2

, then
�

�

�

ˆW�1 �W�1

�

�

�

max

 2

�

�W�1

�

�

2

kEW k
2

�

�W�1

�

�

max

.

Proof. Since
�

�W�1EW

�

�

2

< 1, we can apply the Taylor series expansion:

(W +EW )

�1

= W�1 �W�1EWW�1

+W�1EWW�1EWW�1

+ · · ·
Therefore:

�

�

�

ˆW�1 �W�1

�

�

�

max

=

�

�W�1 �W�1EWW�1

+W�1EWW�1EWW�1

+ · · ·�W�1

�

�

max

(a)

�

�W�1EWW�1

�

�

max

+

�

�W�1EWW�1EWW�1

�

�

max

+ · · ·
(b)

�

�W�1EW

�

�

2

�

�W�1

�

�

max

+

�

�W�1EW

�

�

2

2

�

�W�1

�

�

max

+ . . .

(c)
 2

�

�W�1

�

�

2

kEW k
2

�

�W�1

�

�

max
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To obtain the last inequality we used the hypothesis of the lemma, and to obtain inequality (a) we used the triangle
inequality for norms, and to obtain inequality (b) we used proposition (5.4). Inequlaity (c) follows from the triangle
inequality.

Thanks to Lemma (5.7) and proposition (5.6) we know that
�

�

�

bC(W�1 � cW�1

)C>
�

�

�

max

 r2✏. We now need to
guarantee that the hypothesis of lemma (5.7) applies. The next lemma helps in doing that.

Lemma 5.8. With probability at least 1� � we have

kEW k =

�

�

�

ˆW �W
�

�

�

 2r

3m
log(2r/�) +

r

r log(2r/�)

2m
(18)

Proof. The proof is via matrix Bernstein inequality. By the definition of ˆW , we know that ˆW�W =

1

m

P

(Wi�W ),
where ˆW is 0� 1 random matrix where the (i, j)th entry of the matrix ˆW is a single Bernoulli sample sampled from
Bern(Wi,j). For notational convenience denote Zi :

=

1

m
ˆWi � W This makes ˆW � W =

1

m

P

Wi � W an
average of m independent random matrices each of whose entry is a 0 mean random variable with variance at most
1/4, with each entry being in [�1, 1]. In order to apply the matrix Bernstein inequality we need to upper bound ⌫, L
(see Theorem (1.2)), which we do next.

�

�

�

�

1

m
(

ˆWi �W )

�

�

�

�

2

 1

m

p
r2 =

r

m
. (19)

In the above inequality we used the fact that each entry of ( ˆWi �W ) is between [�1, 1] and hence the spectral norm
of this matrix is at most

p
r2. We next bound the parameter ⌫.

⌫ =

1

m2

max

(

�

�

�

�

�

X

i

EZiZ
>
i

�

�

�

�

�

,

�

�

�

�

�

X

i

EZ>
i Zi

�

�

�

�

�

)

(20)

It is not hard to see that the matrix EZiZ>
i is a diagonal matrix, where each diagonal entry is at most l

4

. The same
holds true for EZiZ>

i . Putting this back in Equation (20) we get ⌫  r
4m . Putting L =

r
m and ⌫ =

r
4m , we get

�

�

�

ˆW �W
�

�

�

 2r

3m
log(2r/�) +

r

r log(2r/�)

2m
(21)

We are now ready to establish the following bound

Lemma 5.9. Assuming that m � m
0

:

=

4rkW�1k
3

+ 2r log(2r/�)
�

�W�1

�

�

2

2

, with probability at least 1 � � we will
have

�

�

�

bC(W�1 � cW�1

)C>
�

�

�

max

 2r2
�

�W�1

�

�

2

�

�W�1

�

�

max

 

2r

3m
log(2r/�) +

r

r log(2r/�)

2m

!

. (22)

Proof.
�

�

�

bC(W�1 � cW�1

)C>
�

�

�

max

(a)
 r2

�

�

�

W�1 � ˆW�1

�

�

�

max

(b)
 2r2

�

�W�1EW

�

�

2

�

�W�1

�

�

max

(c)
 2r2

�

�W�1

�

�

2

kEW k
2

�

�W�1

�

�

max

(d)
 2r2

�

�W�1

�

�

2

�

�W�1

�

�

max

 

2r

3m
log(2r/�) +

r

r log(2r/�)

2m

!

To obtain inequality (a) above we used proposition (5.6), to obtain inequality (b) we used lemma (5.7), and finally to
obtain inequality (c) we used the fact that matrix 2-norms are submultiplicative.
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With this we now have bounds on all the necessary quantities. The proof of our theorem essentially requires us to
put all these terms together.

6 Proof of Theorem 4.3 in the main paper

Since we need the total error in max norm to be at most ✏, we will enforce that each term of our expression be atmost
✏
10

. From lemma (5.2) we know that the maxnorm is the sum of three terms. Let us call the three terms in the R.H.S.
of Lemma (5.2) T

1

, T
2

, T
3

repsectively. We then have that if we have m
1

number of copies of the matrix C, where

m
1

�
20

�

�W�1C>
�

�

max

log(2Kr/�)

3✏

^

100r
�

�W�1C>
�

�

2

max

log(2Kr/�)

2✏2
(23)

then T
1

 ✏/5. Next we look at T
3

. From lemma (5.9) it is easy to see that we need m
3

independent copies of the
matrix W so that T

3

 ✏/5, where m
3

is equal to

m
3

�
40r3

�

�W�1

�

�

2

�

�W�1

�

�

max

log(2r/�)

3✏

^

400r5
�

�W�1

�

�

2

2

�

�W�1

�

�

2

max

log(2r/�)

2✏2
(24)

Finally we now look at T
2

. Combining lemma (5.5), and lemma (5.7) and (5.8) and after some elementary algebraic
calculations we get that we need m

2

independent copies of the matrix C and W to get T
2

 3✏
5

, where m
2

is

m
2

� 100max(

�

�W�1

�

�

max

,
�

�CW�1

�

�

2

1

,
�

�W�1

�

�

2

�

�W�1

�

�

max

) log(2Kr/�)

✓

r5/2

✏
,
r2

✏2

◆

(25)

The number of calls to stochastic oracle is r2(m
0

+ m
3

) + Kr(m
1

+ m
2

), where m
0

is the number as stated in
Lemma (5.9). Using the above derived bounds for m

0

+m
1

,m
2

,m
3

we get

Kr(m
1

+m
2

) + r2(m
0

+m
3

) � 100 log(2Kr/�)C
1

(W,C)max

✓

Kr7/2

✏
,
Kr3

✏2

◆

+

200C
2

(W,C) log(2r/�)max

✓

r5

✏
,
r7

✏2

◆

where C
1

(W ,C) and C
2

(W ,C) are given by the following equations

C
1

(W ,C) = max

⇣

�

�W�1C>�
�

max

,
�

�W�1C>�
�

2

max

,
�

�W�1

�

�

max

,
�

�CW�1

�

�

2

1

,
�

�W�1

�

�

2

�

�W�1

�

�

max

⌘

C
2

(W ,C) = max

⇣

�

�W�1

�

�

2

2

�

�W�1

�

�

2

max

,
�

�W�1

�

�

2

�

�W�1

�

�

max

,
�

�W�1

�

�

2

,
�

�W�1

�

�

2

2

⌘

7 Additional experimental results: Comparison with LRMC on Movie Lens

datasets

First we present the results on the synthetic dataset. To generate a low-rank matrix, we take a random matrix in
L

1

= [0, 1]K⇥r and then define L
2

= L
1

L>
1

. Then get L = L
2

/maxi,j(L2

)i,j . This matrix L will be K ⇥K and
have rank r.

In Figure 2, you can find the comparison of LRMC and S-MCANS on the ML-100K dataset.

7.1 Further discussion and related work

Bandit problems where multiple actions are selected have also been considered in the past. Kale et al. [2010] consider
a setup where on choosing multiple arms the reward obtained is the sum of the rewards of the chosen arms, and
the reward of each chosen arm is revealed to the algorithm. Both these works focus on obtaining guarantees on the
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Figure 1: Error of various algorithms with increasing budget. Numbers in the brackets represent values for (K, r). The error is defined as
Lî,ĵ �Li?,j? where (̂i, ĵ) is a pair of optimal choices as estimated by each algorithm.

cumulative regret compared to the best set of arms in hindsight. Radlinski et al. [2008] consider a problem, in the
context of information retrieval, where multiple bandit arms are chosen and the reward obtained is the maximum of
the rewards corresponding to the chosen arms. Apart from this reward information the algorithm also gets a feedback
that tells which one of the chosen arms has the highest reward. Similar models have also been studied in Streeter and
Golovin [2009] and Yue and Guestrin [2011]. A major difference between the above mentioned works and our work is
the feedback and reward model and the fact that we are not interested in regret guarantees but rather in finding a good
pair of arms as quickly as possible. Furthermore our linear-algebraic approach to the problem is very different from
previous approaches which were either based on multiplicative weights [Kale et al., 2010] or online greedy submodular
maximization [Streeter and Golovin, 2009, Yue and Guestrin, 2011, Radlinski et al., 2008]. Simchowitz et al. [2016]
also consider similar subset selection problems and provide algorithms to identify the top set of arms. In the Web
search literature click models have been proposed to model user behaviour [Guo et al., 2009, Craswell et al., 2008]
and a bandit analysis of such models have also been proposed [Kveton et al., 2015]. However, these models assume
that all the users come from a single population and tend to use richer information in their formulations (for example
information about which exact link was clicked). Finally we would like to mention that our model shown in Figure 5.1
of the main paper on the surface bears resemblance to dueling bandit problems [Yue et al., 2012]. However, in duleing
bandits two arms are compared which is not the case in the bandit problem that we study.Interactive collaborative
filtering (CF) and bandit approaches to such problems have also been investigated [Kawale et al., 2015]. Though, the
end goal in CF is different from our goal in this paper.
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