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Learning Sparse Doubly-Selective Channels
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Abstract—Coherent data communication over doubly-selective require relatively simple processing at the receiver aradl le
channels requires that the channel response be known at the to decoupling of the data detection module from the channel
receiver. Training-based schemes, which involve probingfothe |earming module at the receiver, which helps to reduce the
channel with known signaling waveforms and processing of th receiver complexity even further. As such, despite the fact
corresponding channel output to estimate the channel paraex . P Yy : ' P .
ters, are commonly employed to learn the channel response in that training-based methods are known to be suboptimal from
practice. Conventional training-based methods, often copris- the spectral efficiency viewpoint, they are widely prevaien
ing of linear least squares channel estimators, are known to modern communication systems [5].
be optimal under the assumption of rich multipath channels. — gpe of the first analytical studies of training-based channe
Numerous measurement campaigns have shown, however, thatI . thod th d by C 6 h ined
physical multipath channels tend to exhibit a sparse struatre at earning me ods was a_u ored by _avers [6], who coine
h|gh Signa| space dimension (time_bandwidth product)’ anccan the termpllot Symbol aSS|Sted modulatl(for these methOdS.
be characterized with significantly fewer parameters compeed Since then, there has been a continued interest in the design
to the maximum number dictated by the delay-Doppler spread and analysis of training-based methods for various clastes
of the channel. In this paper, it is established that traditonal channels; we refer the reader to [5] for a tutorial overvigw o

training-based channel learning techniques are ill-suitd to fully PR .
exploiting the inherent low-dimensionality of sparse chanels. related work. These works often highlight two salient aspec

In contrast, key ideas from the emerging theory of compresse Of training-based channel learning methods, namsdyising
sensing are leveraged to propose sparse channel learningtheds andestimation Sensing corresponds to the design of signaling
for both single-carrier and multicarrier probing waveform s \waveforms (training signals) used to probe the channel and
that employ reconstruction algorithms based on convex/liear  qir hiacement within the transceiver signal space. Bt
programming. In particular, it is shown that the performanc e of . th bl f ina th di h Lout
the proposed schemes come within a logarithmic factor of tha IS the pro _em Of processing the corresponding channe ) utp
of an ideal channel estimator, leading to significant redudons in ~ at the receiver to recover the channel response. The abiliy
the training energy and the loss in spectral efficiency assated training-based method to accurately learn the channebressp
with conventional training-based methods. depends critically on both the design/placement of apjpetgr
training signals and the application of effective estimmati

o ) methods. In particular, training waveforms and estimation
Several coherent communication techniques have been ategies that are tailored to the anticipated charatiesi

veloped in the last decade or so to maximally exploit thgy yq underlying channel yield better estimates than dgener
effects of time- and frequency-selectivity of doubly-s#ee o equres. Grappling with these issues is central to mst o
channels—see, e.g., [1]-[4]. In particular, doubly-st¥ec papers written on this topic.

chgnnels can offer large joint rnultipath-DoppIer. dive;{sit This paper presents a new approach for learning (single-
gains Wheq perfect channel state mformauon (CSI) is afsel antenna) doubly-selective channels through trainingtbas
at the recever [2], [3]. In many practical scenarios, ho®eV nethods. A number of authors have recently addressed this
the receiver has seldqm access _to the CS_I _and the Cha’}ﬂ%blem—see, e.g., [7]-[9]. The analysis carried out irs¢he
needs to be learned either implicitly or explicitly to red®@t 4 similarly related works, however, is often based on the
benefits of coherent demodulation and decoding. assumption of arich underlying multipath environment in

Two classes of methods are commonly employed 10 legffl, sense that the number of degrees of freedom (DoF) in
a channel at the receiver. imining-based channel learning y,e channel scale linearly with the signal space dimension

methods, the trar!smlttgr multlplex_es tra|n|_ng s_lgnalst _m"'_’ (product of signaling duration and bandwidth). In contrast
known to the receiver with information bearing signals méi ;. jcal wireless channels encountered in practice tend to
frequency and/or code domain and CSl is obtained at the [gihit impulse responses dominated by a relatively small
ceiver from knowledge of the training and received signiails. ,mper of dominant resolvable paths, especially when oper-
blind channel learningnethods, CSl is acquired at the receiveLiing at large bandwidths and signaling durations and/en wi
by making use of the statistics of information bearing si§na, ;mpers of antenna elements [10]-[12]. These are ofteactall
only. Although theoretically efficient, blind learing retls  «gn41se channels, since majority of the DoF in the channel
typically require complex signal processing at the reaedf@ ¢ ither zero or nearly zero. The primary focus of this pape
often entail inversion of large data-dependent matricéBeiv s o |earning sparse doubly-selective channels—channels
also makes them highly prone to error propagation in rapidly i, most of the multipath energy localized to relatively
varying channels. Training-based methods, on the othed,hag regions within the delay-Doppler spread. Sparse réian
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baj wa@ae. wi sc. edu, {akbar, nowak}@ngr.wi sc. edu both from a communication-theoretic perspective [13] and
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a channel learning perspective [14]-[16]. In the context ¢échniques with that of more conventional strategies, Wwhic
channel learning, the previous investigations [14]-[1&}kI often comprise of linear least squares channel estimators.
a quantitative theoretical analysis of the performancehef t Finally, with regards to the connections with compressed
proposed sparse channel learning methods in terms of H@nsing related literature, some of the analysis carri¢dnou
mean squared error (MSE). In contrast, the main results the paper in the context of single-carrier training is redat
this paper adapt recent advances from the theory of coto-the recent work of Pfander et al. [21] and Herman and
pressed sensing to devise quantitative error bounds fglesin Strohmer [22]. Both [21] and [22] study the problem of
carrier and multicarrier training waveforms and conveddir identifying matrices that have a sparse representatiomén t
programming based estimation schemes. The bounds cadiwtionary of time-frequency shift matrices; [21] looksthis
within a logarithmic factor of the performance of an idegbroblem in an abstract setting, while [22] studies it from a
channel estimator and clearly reveal the relationship eetw radar perspective. It can be seen from Section IlI that tiee us
the training signals and the accuracy of the channel estBnatof single-carrier spread spectrum training waveformsnalo
with appropriate modeling of sparse doubly-selective clets)
also reduces the channel learning problem to that of idgngf

In the channel learning context, the work in this paper i matrix which has a sparse representation in the dictionary
closely related to some of the earlier works by Cotter and Ra¢ time-frequency shift matrices. The resulting time-ghih
[14], Li and Preisig [15], and Taubodck and Hlawatsch [16the paper are linear, however, as opposed to the circula one
Similar to the main results of this paper, the channel le@yniconsidered in [21], [22]. More importantly, though, botH]2
techniques proposed in [14]-[16] have been inspired by thghich makes use of a BPIC estimator for matrix identification
literature on sparse signal representations, more conymogahd [22], which focuses only on the noiseless setting, lack a
studied under the rubric of compressed sensing these ddgsmal MSE analysis. Further, the emphasis in [21], [22] is
Both [14] and [15] limit themselves to single-carrier siin@ on finding thecoherence19] of the dictionary of (circular)
and propose variants of the matching pursuit algorithm [1i#ilne-frequency shift matrices, while we focus on showiraf th
for estimation purposes. The results, however, are priynarihe dictionary of time-frequency shift matrices satisfigg t
based on simulation and experimental implementationsasd restricted isometry propert{23], which allows for improved
such, fail to provide any theoretical justifications for thee recoverability results; we refer the reader to Section Htla
of the proposed training-based methods. The channel larnine proof of Theorem 2 in [24] for further details.
technique proposed in [14] also suffers from the drawbaak th  Notation: Throughout this paper, the following notation
it fails to take into account the Doppler sparsity and limits used.I and 0 denote identity matrices and zero vectors
itself to sparsity in the delay domain only. of appropriate sizes, respectively. Superscripls (-)’ and

In [16], Taubock and Hlawatsch focus on the case ¢f)t denote complex conjugation, transposition and conjugate
multicarrier signaling and propose the use of an optimirati transposition, respectively. 1A is a p x ¢ matrix, then
based estimator that goes by the namevasis pursuit with 5 — ved A) denotes theyg x 1 vector obtained by stacking
inequality constraint(BPIC) [18], [19]. Although some the- columns of A. The inverse and trace oA are denoted by
oretical guarantees are provided for the proposed technig —! and t(A), respectively]a||, is the usua¥, norm of the
the paper lacks a formal MSE analysis. Also, while BPIC igectora, while ||al|, counts the number of nonzero entries in
nearly optimal under the adversarial noise model [18], it is. Finally, ® denotes a Kronecker product aig ;) (t) is the
known to be strictly suboptimal in the presence of stochasthdicator function of{a, b).
noise [20]. Finally, the multicarrier training wavefornis[l6]  Qrganization: The rest of this paper is organized as fol-
are comprised of the elements of arcompleteshort-time |ows. In Section 1I, a modeling framework for multipath
Fourier (STF) basis [1]. Signaling using an incomplete ST{jreless channels is reviewed and the notion of sparse gloubl
basis, however, results in a loss in spectral efficiency ef thelective channels is formally described. Section 11l ders
communication system, which directly translates into @din the problem of learning sparse doubly-selective usinglsing
decrease in the overall system capacity [4]. carrier signaling waveforms, while Section IV studies this

In contrast to the aforementioned references, this papé+s Stproblem from the multicarrier signaling perspective. fina
ies both single-carrier and multicarrier signaling for khel  some numerical results and a discussion of the numerical and

sensing purposes. In particular, single-carrier traimnzarried - theoretical results are provided in Section V.
out in the paper using spread spectrum waveforms multiglexe

in the code domain, whereas the multicarrier training wave- ||
forms are comprised of the elements af@npleteorthogonal

STF basis, which helps to maximize the spectral efficiency In this section, we review a virtual modeling framework for
of the system [4]. The main results of the paper are stateddaubly-selective channels that captures the interactwéen
terms of a linear programming based (nonlinear) estimattr t the physical paths and the signal space. Physically, eagh pr
goes by the name dbantzig selectolf20] and last, but not agation path in a doubly-selective channel can be repredent
least, the focus is on providing a formal comparison of thees a distinct point in the delay-Doppler domain. The virtual
MSE performance of the proposed sparse channel learnoigannel model [2], also sometimes referred to as the caalonic

A. Relationship to Previous Work

. MULTIPATH WIRELESSCHANNEL MODELING



channel model [25], constructs a low-dimensional approand the transmitted and received waveforms are related by
imation of the underlying multipath environment through Npacn
uniform sampling of the delay-Doppler domain at a resohutio ' 2yt

. X . . . t) = o; el (t — Ty 3
commensurate with the signaling duration and bandwidth. It y(®) ; ! (=) 3

plays a key role in the subsequent development in this paper

since it captures the relationship between the clustering yghich corresponds to signal propagation alavig.., physical

physical paths within the delay-Doppler domain and sparsiPaths, wheren; € C, vi € [~Viaz/2,Vinae/2] @nd 7 €
, Tmaz) @re the complex path gain, the delay and the Doppler

of effective DoF in the channel and sets the stage for the’ , X ’ ! ,
application of compressed sensing theory and methods. shift associated with théth physical path, respectively.
The discrete path model (2), while realistic, is difficult

A. Doubly-Selective Channels: Physical Channel Model to analyze and learn due to its nonlinear dependence on a

We consider single-antenna communication channels, whigfitentially large number of physical parametgts;, v;, 7i)}-
are often characterized as linear, time-varying systerbg [ZHowever, because of the finite signaling duration and band-

The corresponding (complex) baseband transmitted and Y4dth. the discrete path model can be accurately approxi-
ceived signals in the absence of noise are related as mated by a linear (in parameters) counterpart, known as a
virtual channel model, with the aid of sampling theorems
yt) = /TW Wt o)t — 7)dr = /H(Lf)X(f)ejQWftdf and/or power geries expansions—s_ee, e.g. [2], [2_5]. Tlye ke
0 idea behind virtual channel modeling is to provide a low-
Tmaw (Vmas/2 2t dimensional approximation of the discrete path model by
= /0 )2 Clv,7)a(t —7)e dvdr @) uniformly sampling the physical multipath environmentlire t
e delay-Doppler domain at a resolution commensurate With
where z(¢) and y(t) represent the transmitted and receivegnd T (AT =1/W,Av =1/T). That is,
waveforms, respectively, anli( f) is the Fourier transform of L1 K
z(t). The channel is characterized by the time-varying impulse y(t) ~ Z Z hzﬂkejg,r%tx(t — W)

response,h(t,7), or the time-varying frequency response “)
A . . ’ =0 k=—K
H(t, f), or the delay-Doppler spreading functiati(v, 7). All _
three channel characterizations are equivalent and detate hew ~ Z a; e ImE=T)
each other via Fourier transforms. 1€S57,eNSu i
The parameters,,,, and vm,q, in (1) are the two key -sindk — Tv;)sind¢ — Wr;)  (5)

channel parameters;,..., the delay spread of the channel . L _
is defined as the maximum possible nonzero delay introduc ere sin¢a) = sin(ra)/ma, and_L = [Wtnaa] + 1 and
= [TVmaz/2] denote the maximum number of resolvable

by the channel and,,... /2, the Doppler spread of the channel . . L
is defined as the maximum possible (one-sided) Doppler shqﬁlays and (one-sided) Doppler shifts within the delay-flep

S ding function, respectively. The s&t, = {i : =, €
caused by the channel. Throughout the paper, we |mpI|C|tF rea . ST
consider communication using packets of durafioand (two- g?/W — 1/2W,£/W +1/2W)} is the set of indices of all

) : . . . _paths whose delays lie within the delay resolution bin of
T e ot oo hemh Ar — 111 Gentered around heh il dey
focus of this paper is on learning doubly-selective chafnnegé N E/W’hWh"e 8”];’“.:(1.{1 : Vife [lllf/T_hl/er;’ k/TglﬂlT)} hift
which are characterized by the fact that the delay spread ?ne o_tte;]s_ t tﬁ SeDt 0 :n Ices IO t'a %‘?‘t S fW .33; onlerTs s
Doppler spread of the channel are large relative to the gave 1€ within the LJoppler resolution bin of wi v=1

of the signaling bandwidth and duration, respectively,, i.e(;ef.\]ntered arotund ;hé_th V'rtltjal D(épp|ertﬁhlft,.l/;t€ :I kr{T‘ |
Wrmaz > 1 and Tv,,q. > 1. We further limit ourselves to e parametersf.x} are termed as the virtual channe

underspread channels, characterizedriy, vma. < 1, and coefficients in the delay-Doppler domain. The expressign (5

assume that there is no interpacket interference in timmand?);a:ﬁ: ?uar;tg? CZﬁwnsnﬁlf (;c;|eﬁ:t|g?t,cv :gé)eroglerraatsel)éﬁgnsgsts ler
frequency, i.e.T > T andW > v, 9 P y PP

shifts lie within the (¢, k)-th delay-Doppler resolution bin of
B. Doubly-Selective Channels: Virtual Representation size A7 x Av centered around the sampling poit, o) =

Doubly-selective channels generate multiple delaye ,/W’lk/lT) in the d(tarl]ay-l?ct)ppller domalrt1,t.as |IIAlsttr?fted. n
Doppler-shifted and attenuated copies of the transmit@gew Ig. 1. In essence, he virtual representation (4) e ngw
form. A discrete path model is frequently used to Captmae?prommatesao!lscrete path doubly-sele_c'qve channermst
the characteristics of these channels in terms of the pdillysigh an ]I\f-d|mf?n_5|0:1a}IL paramre]ter X]O”lprf'n%g thf vlrtual
propagation paths. In the discrete path model, the del _I;a[l/nne COE;CIG;? s ;N erle N - N+ ) =
Doppler spreading function of the channel is expressed as Tmaz| +1) - (2[TVmaz /2] + 1) ® TmazVmazNo-

Npath C. Sparse Doubly-Selective Channels

Clv,7) = > oud(v—v)d(r —7) (2)  Channel measurement results dating as far back as 1987 [10]
i=1 and as recent as 2007 [12] suggest that multipath components



1
g be represented as

RS INE iz N1
o N e(t)= Y walor (t—nT.), 0<t<T  (6)
i % n=0
L
R whereI}, 1,)(t) is the chip waveform7, ~ 1/W is the chip
» duration and{z,, € R} is the spreading code corresponding to
—rn [ o8 e the training waveform. The output of the channel correspond
0 DELAY()  Tmas ing to z(t) is given by (cf. (4))
Fig. 1. A schematic illustrating the virtual representataf a single-antenna, 1 K

doubly-selective channel. Each black dot denotes theibatitn of a distinct ok
physical path to the delay-Doppler spreading function dedvirtual channel y(t) ~ Z Z hg7k€'72777t17(t — Z/W)
coefficients {h, } correspond to uniformly-spaced samples of a smoothed =0 ke K
version of the spreading function taken{dt,, o) = (¢/W, k/T)}.

+z(t), 0<t<T+Tma )

tend to arrive at the receiver in clusters. Based on thespger- Where z(t) is a zero-mean, circularly symmetric, complex
ings between these multipath clusters within the delayiap additive white Gaussian noise (AWGI\_I) waveform. For ;pread
domain, doubly-selective channels can be characterized SRECtrUm waveforms, chip-rate sampling,of) at the receiver
either “rich” or “sparse”. In a rich multipath channel, the/i€lds an equivalent discrete-time representation

interspacings are smaller thair = 1/W in delay and L-1 K o

Av = 1/T in Doppler. Sparse multipath channels, on the other y,, = Z Z hmeﬂ’fw_ﬂxn_g

hand, exhibit interspacings that are larger tianand/orAwv. =0 k=—K

Similar to the setting in Fig. 1, not every delay-Doppler bin +2,, n=0,1...,N,+L—-2 (8)

of size AT x Av contains a physical path in this case. In . .
particular, since a channel coefficient consists of the stim §heré{z-} corresponds to a zero-mean, circularly symmetric,
gains of all paths falling within its respective delay-Dégp COMPIex AWGN sequence anll, ~ T'WW is the dimension of
resolution bin, sparse doubly-selective channels tendate h (€ transceiver signal space. N
far fewer thanN nonzero channel coefficients at any fixed NOW l6tNo = N%+L_1 and define anV,-length sequence
(but large enough) signaling duration and/or bandwidth. V& vectors{x, € C*} comprising of the spreading code.. }
formalize this notion of delay-Doppler sparsity as follows 2aS follows

Definition 1 (D-Sparse Channels)tet D denote the num- (27 @no1 ... iCnf(Lq)]/, n=0,1,...,N,— 1
ber of effectiveDoF in a doubly-selective channel, that is,
D = |{(,k) : hey > 0}|. We say that the channel iB- where the notational understanding is that= 0 for ¢ ¢
sparse ifD < N, whereN = L - (2K + 1) & TmagVmazNo 10:1:--., No — 1}. Further, let
is the total number of resolvable delays and Doppler shifts

ho.— ho.— e h
(channel coefficients) within the delay-Doppler spread. 0t Ot 0K

hi, -k h, k1 ... hxk
H= , . . )
I1l. L EARNING SPARSEDOUBLY-SELECTIVE CHANNELS: : : :
SINGLE-CARRIER SIGNALING hp-1-xk hr—1-x+1 ... hroo1k

Since the virtual representation of a douny-seIectivmehabeﬂt{helL x (2K + 1) matrix of channel coefficients, arfd,, €
nel captures its essential characteristics in terms oftiaewel C *1} be anN,-length sequence of phase vectors given by
coefficients{h 1}, the channel learning problem is equivalent

!/
. . —|,.,K (K-1)n -K
to the design and placement of the training wavefar) Un = [WN:L “N, Wy,
within the N,-dimensional signal space and estimation of om .
wherewy, = ¢ ’% andn = 0,1,...,N, — 1. Then the

he ’s from the (noisy) received waveforg(t). The signaling
waveforms commonly employed for channel sensing purpos’?squencqyn
can be broa(_jly categorized as either single-carrier orioalll_Jt Y = x.Hu, + 2, = (0, ® x,) vedH) + 2,
rier. We begin our treatment of the sensing and estimation of , , ~

. . =(u,®x,)h+z n=0,1,...,N,—1 (10)
sparse doubly-selective channels by focusing on the case of n n " Phrrratto

} in (8) can be written as

single-carrier signaling in this section. whereh = veqH) € C" is the vector of channel coefficients,
_ and stackingy,,’s into an N,-dimensional vectoy yields the
A. Sensing Phase following system of equations
We consider binary phase-shift keying as the modulation y=Xh+z (11)

scheme and propose the use of a single-carrier spreadwpectr ~
waveform corresponding to a particular spreading code fothere theN, x N “sensing matrix"X is comprised oﬁ%@
training purposes. The resulting training wavefosift) can x/,} as its rowsX = [uo ®%Xp ... Uy _, ®erJ . In



the following, we shall treah as adeterministic but unknown oracle provides us witli,. Then an ideal estimatdr* can be
vector. It is further assumed that the communication systeshtained fromy by first forming arestrictedLS estimator
has a transmit energy budget &ffor training purposes, i.e, ot L1t

S No T E[lz,|?] = €. Finally, without loss of generality, we bz, = (X7 Xz.)" X7y (14)
assume that the spreading cofle,} is generated from a where Xz, is a submatrix obtained by extracting the
Rademacher distribution, i.ez,,’s independently take valuescolumns of X corresponding to the indices i, and then
+v/&/N, or —\/E/N, with probability 1/2 each, andz is settingh* equal tohz, on the indices irZ, and zero on the
distributed al NV (0 , I ). indices inZ¢. Appealing to the proof of Lemma 1, the MSE

. . of this oracle based channel estimator obeys
B. Estimation Phase Y

D
The model (11) is a linear observation model with = E[|h* - h|3] = (X} Xz,)7?) > z (15)

L - (2K + 1) unknowns and it can be shown that the sensing, I .
(2K +1) u W ! W I@th equality if and only if Xz, has orthogonal columns.

omparison of the MSE lower bounds (13) and (15) shows
that conventional LS channel estimators may be at a signtfica
N disadvantage when it comes to identifying sparse channels.
hys = (X'X) X'y (12)  While the ideal estimatoh* is impossible to construct in
ractice, we now show that it is possible to obtain a more
eliable estimate oh as a solution to the convex program

matrix X has full column rank. In this case, and under no
priori sparsity assumption, the least squares (LS) estinit
the channel vectoh

is known to be optimal in the sense that (i) it is also th
maximum likelihood estimate oh, and (ii) it achieves the RN ~
Cramer-Rao lower bound [26]. h = argmin |[h[j; subject to [XTr)0o < A (16)
Many real-world channels of practical interest, such as heCV
underwater acoustic channels [15], digital televisionreteds \here AMN,E) > 0 andr is the N,-dimensional vector of
[27] and residential ultrawideband channels [11], howgeveesidualsr = y — Xh. This optimization program goes by the
tend to be either sparse or approximately sparse, With- name of Dantzig selector (DS) and is computationally tialeta
[hjlo < N. Unfortunately, conventional LS channel estimasince it can be recast as a linear program [20]. We state our
tors, while appropriate for rich channels, fail to cap#elion main results in terms of the DS primarily because it provides
the anticipated sparsity of the aforementioned channelgeT  the cleanest and most interpretable error bounds that we.kno
an idea of the potential MSE gains to be had by incorporatimgbte, however, that similar bounds also hold for the lasso
the sparsity assumption into the channel estimation sfyateestimator [28] which can sometimes be more computationally

we compare the performance of an LS channel estimator dfiractive because of the availability of a wide array ofoidfit
that of a channel estimator that has been equipped with gttware packages for solving it [29], [30].

oracle The oracle does not reveal the trigbut does inform  The key to proving the efficacy of the DS estimator is

us of thesparsity pattern(locations of nonzero entries) ®. in showing thatX satisfies the so-called “restricted isometry

Clearly this represents an ideal estimation strategy arel gfroperty” (RIP) with sufficiently small value afD-restricted
cannot expect to attain its performance level. Nevertiselegsometry constant.

it is the benchmark that one should consider. We begin thisDefinition 2 (Restricted Isometry Constanffhe 2D re-
comparison with the following lemma. stricted isometry constant 6X, denoted byd.p, is defined
Lemma 1:Given the observation model (11), the MSE 0fs the smallest value such that

an LS channel estimator is lower bounded as - - -
E(1 = d2p)[/h[l3 < [[Xh[[3 < E(1 + d2p)[[h]3 17)

- . N
E {”hLS - hHZ} = (13) holds for all2D-sparse vectorh € CV. The matrixX is said
with equality if and only ifX has orthogonal columns. to satisfy RIP of ordeeD if d;p € [0,1). .
Sketch of Proof: Given the observation model (11), it is Note that if any two columns aX happened to be linearly
easy to see that dependent thed,p, > 1. Loosely speaking, RIP of order
R 2D essentially requires that mutual coherence between the
E {||hL5 - h||§} =tr((XTX)™h) columns of X is sufficiently small so thaX/v/E (approxi-

mately) behaves like an isometry on the space bfsparse
QEctors. The following theorem asserts that the DS soluton
highly accurate in this case.
Theorem 1:Suppose thatX satisfies RIP of orderD
N2 N with d,p < v/2 — 1. ChooseA(N, E) = 1/28(1 +a)log N
&

and since the trace of a matrix is equal to the sum
its eigenvalues, an application of arithmetic-harmonianse
inequality yields

tr(XIX)™) > e = =

= r(XTX) for any a > 0. Then, with probability exceeding —
2(y/7(1+a)log N - N*)~1, the DS estimatoh obeys
with equality if and only if XX = 1. []
On the other hand, lef, C {1,...,N} be the set of ||ﬁ_h|‘§ <c? logN - <2> (18)
indices of theD nonzero entries oh and suppose that an g



where the constant; = 4/2(1+a)/ (1 — (V2 +1)d2p). basis elements. Therefore, as opposed to signaling over an
Theorem 1, which is a slight variation on Theorem 1.lhcomplete STF basis [1] (corresponding ToW, > 1),

in [20],! states that the DS estimator cpaotentially achieve signaling using a complete STF basis [4] does not lead to

squared error within a factor éfg IV of the oracle based MSE an inherent loss in spectral efficiency.

lower bound ofD/£. However, it remains to be seen whether We propose the use of a training waveform that randomly

the sensing matriX satisfies RIP withi,p < /2 — 1. We dedicatesV, of the N, STF basis elements as “pilot tones”.

now state the key result of this section which shows that thi$at is,

is indeed the case.
Theorem 2:Let {x,}N°;' be a sequence of independent 1/ Z Yomt), 0<t<T  (20)
and identically distributed Rademacher variables takalges Ny (n,m)€S,

Jr\/S/Nz or —/&/No mg}(h gzl)robabilityl/2 each. Further, let \ here the set of indices of pilot tones,, consists ofN,

{xn € C"} and{u, € C*""'} be as defined in Section Ill-A gjements randomly selected fro® and € is the transmit

ar12d suppose that the signal space dimenior> c;-log V- gnergy budget available for training purposes. At the regei

D?. Then, with probability exceeding— exp(—cs - No), the - 555ming that the basis paramet&sand W, are matched to

N, x N matrix X given by the channel parameters, ., and v,,., SO thaty,,'s serve
X=[w®x wex .. ug_, ®X1\70—1y (19) @as approximate eigenfunctions for sufficiently undersprea

channels [4], projecting the (noisy) received sigpél) onto

satisfies RIP of ordeRD with 6,p € (0,v2 — 1), where the STF basis waveforms yields

N,=N,+L—-1andN = L- (2K +1). Here,ca,c3 > 0

are constants that do not depend &hor N,. Ynom = Yy Ynom) & /iHn,m + Znm, (n,m) €S, (21)
The proof of this theorem is provided in [24, Appendix].

Note that the main condition of the theoremi, > ¢, - where(y, Yn.m) = [ Y(t)Yn.m(t Yr.m (D) dt, {2.m} corresponds to an

log N - D is trivially satisfied for sufficiently underspreadawGN sequence and the STF channel coefficients are given

doubly-selective channels since, by definition, < N = by H,. . ~ H(t, f) |§ T i) [4].

TmaazVmazNo < No. Therefore Theorem 2, along with Theo- N recall from Lo i that the time- -varying frequency
rem 1, shows that the DS estimator (16) does remarkablyrbet‘tgsponse[{(t f) = [[C(v,7)e? ™ e=3277] dudr. The vir-

than the LS estimator (12) in learning /2-sparse doubly- 5| representation of a doubIX -selective channel theeefo
selective channel: using single-carrier spread spectraimitg implies that H(¢, f) ~ S0 ST he LeI2T o= i2m g f

waveforms, the MSE improvement is roughly by a factor ijonsequently, the STE channel coefﬂme@ﬁn m} can be
(N/D) Finally, it is worth pointing at this point that if \\ritten as

= 0 (corresponding to a purely frequency-selective channel) -1 K
; —j2rLtm
then Theorem 2 reduces to [31, Th. 2]. Hyn = Z Z hMegszLtne VEUS Al ), Hu, ,
IV. LEARNING SPARSEDOUBLY-SELECTIVE CHANNELS: £=0 k=—K
MULTICARRIER SIGNALING = (u;, ® u},, )vedH) = (u; ,, ® u},,)h (22)
In this section, we consider multicarrier signaling for senwhere H is the I, x (2K + 1) matrix of channel co-
ing and estimation of sparse doubly-selective channels. dfficients defined earlier in (9)h = veqH) e CV,
particular, owing to the fact that orthogonal short-timeifer m (L-1ym]’ L
. . : ) . us, = {1 wy . wy } e C* and u,, =
(STF) basis functions serve as approximate eigenfunctams f Nt
underspread doubly-selective channels [1], [4], we ingagt whn wJ(VK Do w;[K" € C2K+11tis worth noting
the use of training waveforms that consist of the elements of; this p0|ﬁt that under the assumption of STF basis param-

complete orthogonal STF basis whose time-frequency stippgfers being matched to the channel parameters (specifically
is matched to the channel characteristics. T, < 1/Vmaz and W, < 1/7mas [4]), One can easily ensure
that N, > 2K +1 and Ny > L. Finally, stacking the received

A. Sensing Phase o . . .
. . _ training symbols{y,, ..} into an N,-dimensional vectory
A complete orthogonal STF basis for thé,-dimensional ?Ids the following system of equations

signal space is generated via time and frequency shifts "o
a fixed prototype pulsg(t): vox(t) = g(t — €T,)el? kWot, y=Uh+z (23)
(é,k) eS={0,1,...,N, -1} x{0,1,...,N; — 1}, where

/ h the N, x N i trixU i ised of
=T/T,andNy = W/W,. The prototype pulse |sassumec¥/ ere e ~ sensmg matrixL I _comprisec: o

VE/Ny(u,,, ® o’ : (n,m) € S} as its rows and the
to have unit energy, |g(¢)|*dt = 1, and completeness of bin 7.m) !
{7e.1:} stems from the underlying assumption tigtVv, = 1, AWGN vectorz is distributed a<N (O, I, )
which results in a total ofN;\N; = TW/T,W, = N, B. Estimation Phase

1 o , Similar to (11), the model (23) is a linear observation model

The variation is primarily due to the presence of compleliied noise as . hN = L-(2K K To obtai ble ch |
opposed to the real-valued noise in [20, Th. 1.1] and ndi¢ire fact that W|t_ = _'(2 +1) unknowns. 10 0 tain reasonable channe
0p.2p < V232p; we refer the reader to [20] for further details. estimates in this multicarrier setting, conventional afeln



estimators based on the LS criterion rely on the assumpti
that the number of pilot toned/, > N [26], [32]. It can  ~_ ™ . -
be shown in this case thdf has full column rank and the T

resulting LS channel estimator is of the form

MSE (log Scale)
5

MSE (log Scale)
i
S

N -1 3 NEEE oln. ilots)
hrs = (UTU)~'Uy. (24) T ll R
m— |_asso Solution = |_asso Soln. (135 Pilots)
H H H ” Oracle Solution ” Oracle Soln. (135 Pilots)
As noted earI|.er, however, a LS channel estimator (Whi w2 %% % a s
known to be optimal for nonsparse channels) is ill-suited fo SNR (in dB) SNR (in dB)
the purposes of estimating a sparse channel. To see thes, not (a) (b)

that the MSE of the LS estimator (24) is lower bounded bistg. 2. Numerical results comparing the performance of adasstimator

N/E (Cf. Lemma 1)_ On the other hand using argumenféth that of a LS estimator. The MSEs of the channel estimatesplotted
o . . ' . n alog scale against the SNR in dB corresponding to (a) Spread 1Spect

S|m_|lar to the.ones made in Section IlI-B, an ideal chann%llaining Waveforms, and (b) STE Training Waveforms.

estimator having access to an oracle can be shown to have

the MSE lower bound oD/€&. Equally importantly, the ideal )

estimator also does not requifé. > N pilot tones and can @nd the MSE by a factor oD(N/D). Finally, note that
provide reasonable estimates as longhas> D (cf. (14)). while Theorer5n 3 requires the n_umber of pilot tones to satisfy
This is especially important from the system efficiency view/Vr = ¢4 - log” N, - D, it is conjectured that the true lower
point since one extra dimension allocated for training psgs Pound onN;. is along the lines oV, > ¢z - log N, - D for

is one less dimension available for data transmission. some constant; > 0; see, e.g., [34].

The main thesis of this section is that it is in fact possible
to come within a logarithmic factor of the performance of an
ideal estimator, both in terms of the MSE and the minimum We begin this section by numerically comparing the MSE
number of pilots needed. The proposed estimator is onca aga¢rformance of the sparse channel learning techniques pro-
given as the solution to the Dantzig selector (DS) posed in Sections Il and 1V with that of conventional strate
gies comprising of linear LS channel estimators. The simula
tion parameters are chosen to be depictive of a communicatio
system with (i) Channel Parametersr,,,. = 250 us and
where A(N, &) = /26(1 +a)logN for somea > 0 and y,,,, = 350 Hz, and (ii) Signaling ParametersT = 45
r is the N,-dimensional vector of residuals: = y — Uh. ms andW = 45 kHz, which result inN, = TW = 2025
Theorem 1, withX replaced byU, is still applicable in this and N = L - (2K + 1) = 221. For the case of multicarrier

V. NUMERICAL RESULTS AND DISCUSSION

h=argmin|/h|; subjectto |U'r|.. <A  (25)
heCN

setting, which implies that the DS estimator obeys signaling, the STF basis parameters are chosen tf,be 1
. D ms andW, = 1 kHz, which correspond téV; = Ny = 45.
h—hl5 <cf-logN- (= (26)  The simulations are carried out under the assumption that
&

only 10% of the channel coefficients are nonzero, ile.+= 22.

with high probability as long a¥J satisfies RIP of orde2D  Tnhe simulation setup corresponds to realizing the channel
with d2p < V2 — 1. The goal, then, is to determine thematrix H given in (9) by first randomly selecting the locations
number of pilot tonesV,. for which (if any) U satisfies the of 22 nonzero channel coefficients and then generating their
aforementioned RIP condition. The key result of this seGtioya|yes from independent realizationsto¥/(0, 1/22). The out-
which helps address this question, is stated in terms of t§gt of the channel is observed at different values of sigoal-
following theorem. noise ratio (SNR), and LS and lasso estimates are obtained by

Theorem 3:LetS = {0,1,..., N; =1} x{0,1,..., Ny—1} pseudo-inverting the sensing matrices and executing ShaRS
and S, be a random set ofV,. ordered pairs sampled uni-[30], respectively Same (randomly generated) spreading code
formly at random fromS. Further, let{uy,, € C*} and js ysed for both LS and lasso estimates in the case of
{w,, € C***'} be as defined in Section IV-A and supposgingle-carrier training. Multicarrier training is cardeout by
that N, > ¢4 - log” N,, - D. Then, with probability exceeding randomly designatingV, of the N, STF basis functions as
1— 5Ny “, the N, x N matrix U comprising of the vectors pjjot tones in the case of lasso estimate, and by using a comb-
{VE/N(uy,, ®u},,) : (n,m) € Sp} as its rows satisfies type pilot arrangement in the case of LS estimate. That is,
RIP of order2D with d,p € (0,v2 —1). Here,cy,c5 andcs  z,4(t) = /E/N, Y mmyer Tm(t), P = {(n,m) : n =
are strictly positive constants that do not depend\oor N,.  0.,1,..., N, — 1, m = (ijf/p, ..., (p = 1)N;/p}, where it

The proof of this theorem, which leverages some key idegsassumed thaV, = pN; for somep that is a factor ofV;.
from [33], [34], is provided in [24, Appendix]. Theorems 1dan This is because of the fact that comb-type pilot arrangesnent
3 show that, even in the multicarrier setting, the DS estimatare known to be optimal for LS channel estimators [32].
(25) comes remarkably close to matching the performanceThe MSEs of the channel estimates, corresponding to av-

of an ideal estimator. And as for a comparison with the L&raging overl000 independent trials, are plotted against the
estimator (24), ignoring theog factors, the DS estimator

roughly results in a decrease in the number of pilot tones?As noted earlier, lasso is expected to perform as well as ®d28].
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