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Abstract— This paper characterizes the robustness of de- conclude that the decoding is robust to possible deviatibns
coding under parametric channel uncertainty. We consider the true parameter from the nominal parameter. On the other
discrete channel models described by probabilistic graplaial hand, if the nominal parameter is near the boundary of a

models, such as finite state channels. Using recent advances . . .
from the field of tropical geometry, we are able to partition partition cell then a slight perturbation of the true partane

the channel parameter space into cells corresponding to all could lead to a completely different decoding, indicating a
channels that identically decode a given output codeword. fe  non-robust condition.
partition, based on a combinatorial object called theNewton To motivate our investigation further, consider the simple
polytope of the graphical model, can be efficiently computed oy ample of a binary symmetric channel (BSC) with crossover
in polynomial time (in terms of the number of parameters in babilit S that lov block codi
the channel model). This partitioning of the channel parameer probability p. UF’,F’_OSe at we emP oy bioc 09 'r?g a_s a
space provides two key results: l) Given a nominal (Vector) means Of transm|tt|ng data over th|S BSC In th|S S|tuat|0n,
channel parameter, one can easily gauge the robustness ofit is obvious that the MAP decoding rule is the nearest-
the decoding as a function of deviations from this nominal neighbor decoding (in Hamming space) fox 1/2, and the
parameter; 2) Rather than obtaining one decoding for a singt farthest-neighbor decoding fer> 1/2. Thus, the parameter
parametrization, one can obtain a list of decodings for a farity fa BSC b titi dinto th . t 4/9
of channel parametrizations at the decoder. Space ora can e-par : 'On_e Into : e interyajs /2)
and (1/2,1]. If our nominal setting forp is close to1/2,
|. INTRODUCTION then we see that we are in a very non-robust situation. While
o o this partitioning of the one-dimensional parameter spdee o
_ Success of a communication system lies in how welssc js trivial, the determination of analogous partitions f
it can encode and decode data. While many of todaygiscrete channel models with higher dimensional parameter
commonly employed channel decoding techniques are bullbaces is highly non-trivial. In the sequel, we present a
on the premise that the decoder has knowledge of the trygified computational approach to solving this problem for

chan_nel parameters, this is almost never the case in realifscrete channels described by graphical models (e.ge finit
In this paper, we attempt to characterize the robustness gk i (Markov) channels [2]).

decoding under parametric uncertainties in discrete aklann

described by probabilistic graphical models. The focus of Il. CHANNEL PARAMETER SPACE PARTITIONING

the paper is not on modeling the uncertainties themselves,In this section, we formally define the channel parameter
but rather on examining the relationship between decodingace partitioning problem under consideration. Consider
outputs and variations in the channel parametrizationeRec a point-to-point digital communication system with finite
advances in the field of tropical geometry [1] enable us tihput codebookY and finite output codebook. An input
partition the channel parameter space into cells congistitodewordz € X is transmitted through a discrete channel
of “equivalent” channels. By equivalent we mean that fowhich produces an output codeworde . It is further

a given output codeword, all the channels described yssumed that the discrete channel is represented by aedirect
the parameters in a given cell will produce the identicahcyclic graphical model and the joint probability of an itpu
maximum a posteriori (MAP) decoding. This partitioningoutput codeword pair can be written as a monomial in a
of the channel parameter space, which is a function of thedimensional parameté = (a1, ..., a4), that is,

family of graphical models and the output codeword, can () va (@) (@)

be computed in time that is polynomial in the dimension Pz, y;0) =ay " ay " ayt )

pf _the _channel parametrization and prov_ldes tremendoysere the powers;(z,y), j = 1,...,d, are integer-valued
insight into the robustnes§ of a given decoding. For examplg,nctions of the paifz, y), and the parametéris an element
suppose we have a nominal (vector) channel parameter agine parameter space that defines all possible channels.
find that an identical decoding results from a large ball Ofinjte state channels (FSCs) [2] are one class of channel
channels about this nominal setting. In such a case, we Mayaqels having this form and, for the sake of this exposition,

. . we would focus exclusively on them. In particular, as a
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nowak@engr.wisc.edu). the channel states, which takes value in the state space



sizeable ball ofY, will also decodey to x;. Thus, we can
say (loosely) that the decoding gfbased ord, is robust.

On the other hand, parametgr is near the boundary of a
cell and so the decoding af based org, is not robust. It
may be desirable in such cases to provide the decoder with
a list decoding. In this specific case, the ordered list might
be (z1, z3, x4, z2) based on the proximity of cell boundaries
to 6,1, which is immediately available from the partition.

IIl. NEWTON POLYTOPES OFFINITE STATE CHANNELS

In this section, we introduce concepts from tropical ge-
ometry that enable the polynomial-time construction of the
partition of the channel parameter space. For channels with
joint probability distributions of the form given in (2), we
can write the (marginal) probability distribution gfas

. . . fy = P(y;0)
Fig. 1. Partitioning of the channel parameter sp&céor a given output

codewordy. = Z Z P(z,y,s;0)

z€EX s€S

S [2]. That is, the channel is characterized by the joint = Z“ll(m’y’s)a?(m’y’s) N )

probability distribution of the input and output codewards TEX sES

and the channel state as follows Now consider the tropicalization of,, denoted byg,,

vi(0y,8) va (4,5 va(z,s which is obtained by replacing the operatdrs, x) with

Py, 5:0) = " Va0 add( L@ the operatorgmin, +) anda; with —log(a;) &], [3]). This

where again the powers (z,y, s), j = 1,...,d, are integer- gives us

valued functions. Finally, note that the MAP decoding rule

for a fixed channel parametég is given by

d
gy = min minz (—vi(z,y, s)log(a;))

rzeX sES
~ i=1
2(f0) = argmax { max P(z,, 5:00) } ® = min min (v(z,y, 5), — log(V)), (6)

or, alternatively, if the state of the channel is known to b re ()
59 through some side information then the MAP decodin ’
is taken to be

is used to denote an inner product,
g/(x,y,s) = (n(z,y,s), ..., va(z,y,s)) and —log(f) =
(—log(ai), ..., —log(aq)). The interesting thing to
Z(y) = argmax P(z,y, 5(0); 6o). (4) observe here is that, coincides with the negative-log joint
zEX probability evaluated at the MAP values ofand s.
Our main interest here concerns the sulf3gtC © such The Newton polytope of,, denoted by NPf,), is simply

that #(¢) = (o) for everyd € ©¢. Thus,©, defines the the convex hull oi/(z,y, s) forall 2 € X ands € S, namely,
collection of channel parameters that are equivalef tfor
the output codeworg. More generally, we are interested in NP(fy) = conv{v(z,y,s) 1z € X,s € S}. )

a partition of© into subsets/cells corresponding to channeA nice consequence of tropicalizing, by g, is that the
parameters that produce identical MAP decodings for thﬁfmction gy is piecewise linear on the cones in the normal

output codeword,. Partitions of this form allow us to assessg, . of NF(/, ). Note that the normal cone to a closed, convex

the robustness of a given decoding and simultaneously stk — R at the pointy € K is traditionally defined to be
cover a list decoding that is ordered relative to the progimi the set NQu, K) C R¢ such that

of cell boundaries to a nominal parameter setting.
To illustrate this idea further, consider the partition of NC(v,K)={beR?: (v —u,b) >0Yuec K}. (8)

a two-dimensional channel parameter space giverbby . . i
{(ar1,a2) : ai,az >0}, as shown in Fig. 1. The partition HOWever, in this context, we define the normal cone of

of © is determined by the output codeword (and the & Vertexv € NP(f,) to be the set of (log) parameters
underlying graphical model) and the partition cells can bNC(v; f,) such thaty minimizes (v, b) for all b € NC(v, f,,)
enumerated in terms of the input codewords. For exampl@Nd allu € NP(f,), namely,

C(zs,y) C © i_s the set of all channel parameters that NC(v, f,) = {b€ R : (v —u,b) < 0%u € NP(f,)}. (9)
decodey to the input codeword:,. To illustrate the notion

of decoding robustness, consider the parantgtes can be The usefulness of these Newton polytopes lies in the fact
seen from the figure), is well contained within the interior that, given the nominal channel paramefgr they can be

of cell C(z1,y) and hence, all channel parameters within aised to decode a given output codewgrdo the optimal
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Fig. 2. An example of a Newton polytope.

input codewordz and optimal state vectos. To observe
this, note that

2(0o),3(00) = al"gmgr)}?sxesp(%y, 5;60)
=arg_min _—log(P(z,y,s5:60))

d
=arg min (—vi(z,y, s)log(a;))
i=1

=arg min (v(z,y,s), —log(bp)) (10)

and thus, by a simple convexity argument, the point
v(Z(6o),y,5(00)) is a vertex of NRf,); hence, the point
by = —log(6‘0) lies in qu(f(eo),y,é\(eo)),fy) If the
optimal channel state vector is deemed to be unimportant, we
may simply decodg to Z(6y) as given in (3). Additionally, if
the channel state vector is known, we may use (4) to decode
the output codeworg.

Finally, note that typically one would expect the number
of possible decodings to be on the order |&f||S|, that
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Fig. 3. Decoding regions for example 1 in the tropical chhmaeameter Fig. 4. A two-state binary input, quaternary output pureetisymbol
space. interference channel model.

Specifically, letV, be the vertices of Nf¥,) that do not  state vector dependigterministically on the input codeword.

correspond tar, then In this section, we apply the channel partitioning techegu
v —u,b)| developed so far to decode the output of a two-state binary
0 = min J (14) input, quaternary output pure 1SI channel.

wev, ||v—ul]
. . The channel in Fig. 4 is a simple model of such
‘é";}ﬁ:&’l is the vertex of NEf,) corresponding to the MAP .\ 5| channel. The channel has input codewords—
. . ] (r1,...,z5) € X C {0,1}" and output codewordg =
i EXﬁ.TnplAe 1_(C0nt|nued). Wetrr]ettutrrr: o tl?e exsim;]ple of lSec- f(_?gl, ...,yn) € Y = {a,b,c,d}. Further, as can be seen
lon 1Il. Again, we assume that the channél has only ong, ., e figure, the channel state at any time instant is

state. With Newton polytope NF, ) as given in Fig. 2, we the same as the channel input at the previous time instant.

tcr?n alsolde;erm|(rj1_e the trp;igal decfo ding regicifs, yd)_ancti Without loss of generality, it is also assumed that the cklnn
e regular decoding regiortS(z, y) for « corresponding to - i o from rest in the sense thay = 2. Thus, the

the vertices of the Newton polytope. Lélt - —_logal and_ robability assignment on the current outpytconditioned
by = —logasy. Then, the tropical decoding regions are give n the input codeword: is simply given by
by the normal cones of the vertices of the Newton polytope

and are described by PWnT) = PWnlTn_12n) = Py, 210 (17)
C(z1,y) = {(b1,bs) by >0,b; +by >0
A I SRR for n € {2,..., N}, andp(yalx) = p(ynfn) = Py o,
Clusy) = {(br,ba):bs > 0, b1+ by < 0} (15) for the specific case of = 1. Additionally, it is assumed
Clray) = {(brbs):bs < 0,by+ by < 0} that we have a uniform prior over the input codebook, that is,

_ _ _ - - p(z) =1/]X]|, and that the channel outputs are statistically
A plot of these tropical decoding regions is given in Fig. 3independent conditioned on the input codeword, that is,
Similarly, the decoding region§(z, y) in the regular chan-

nel parameter space can be written as (ulo) ﬂ (18)
plyjxr) =p Pynlzn—12n-
C(z1,y) = {(a1,a2):a2 <1,a1as < 1} yilerzy et Ynlen -1
C(za,y) = {(a1,a2):a2>1,a1a2 <1} 16 _ _ o
Clzs,y) = {(a1,a2):as <1,a1as > 1} (16) Finally, we assume that the ISI channel is symmetric in the
C(za,y) = {(a1,a2) a2 > 1,a1a2 > 1} sense that
The reader should be reminded that a> are not probabil- Pajo0 = Pdi1, Pajor = Pdj10s
ities and hence, they need not be contained within the unit Pojoo = D11, Poloi = Pejios
square. These regular decoding regions are plotted in Fig. 1 Pejoo = Dbj11, Pelor = Pyl10s
Pdjoo = Pal11> Pdjo1r = Pall0-

V. APPLICATION TO A SYMMETRIC ISI CHANNEL

An intersymbol interference (I1SI) channel is a special casdote that in this specific case of a symmetric ISI channel,
of the general FSC in which the channel state vector the channel parameter space is 6-dimensional — in the denera
depends statistically on the input codeward?2, pp. 97- case of a nhon-symmetric ISI channel, however, it can be as
100]. A pure ISI channel is the one in which the channelarge as 14-dimensional.



TABLE | Perturbation bound vs. ISI parameters

COMPLEXITY OF MAP DECODINGSBASED ONNEWTON POLYTOPES x*=01111
x* = 10101
N | |x]=2V—3 ] # of NP(f,) Vertices
6 8 8
7 16 16
8 32 32
9 64 60 g
10 128 101 5
11 256 158 B
12 512 238
13 1024 352

A. Experiment 1. Complexity of Newton Polytopes
-10 -10

As noted earlier, a particularly exciting consequence log, o(B) log, (@)
using Netwon polytopes for MAP detection is that the
number of vertices of these Netwon polytopes grows onlfig. 5. Perturbation bound in the tropical channel parameter space as a
polynomially in the number of parameters of the graphicdtnction of the ISI channel parametessand 3.
model [3]. In the context of this symmetric ISI channel,

therefore, it means that the number of MAP decodings Caéh, respectively. Note that these geometrically progressing

P
be no larger tharO(N"), since the Newton pol_ytope_ of probability assignments are rather natural in the senge tha
an output codeword of this channel can have dimensions e . . )

. . for example, if 00’ was transmitted then one is more likely
no larger than six. On the other hand, since any reasonali) e

input codebook will have cardinality exponential i, one O'receive and’ at the receiver than &, a 'c’ or a 'd".

would expect the number gfossible MAP decodings to be For the sake of this e_zxpenm_ent, we fix the QUtPUt code-
- word to bey = beacd while the input codebook is given by
exponential in the block lengthv.

. . . X ={10101,00101,11101,01111}. We varya and 3 from
In_thls experiment, we numerlcally_demonstrate the pOIyiO—lo to 1, and calculate the corresponding perturbation
nomial (or subexponential) complexity of MAP Olecodlngsnoundé in the tropical channel parameter space as well

based_ on Nt_—:‘vvtc?n polytopes. The input codebatn th-|s ..as the optimal (MAP) input codeword. The results of this
ej>§p_e3r|ment 'S given by a random COdEbOOK of Cardma“t}éxperiment are plotted in Fig. 5. The sudden drop in the
20 de\;v\(')vrr:jeyrejyhs t:grf)elggl;*%?r?;h'N'\é(xfozha;(ﬂ;igsnwc%gtpmperturbation bound in the figure is an_indication of the fact
can be calt':ulated by applying (7) to (18). However thesthat the channel parametér= («, 3) is very close to the

i ' .Eoundary separating two decoding regions — on one side of
Newton polytopes can also be more easily calculated usiyg. boundary is the decoding region ff8) — 01111, while
the polytope propagation algorithm described in {3[he on the other side is the decoding region ff) = 1b101
outcome of this experiment is summarized in Table 1. '

VI. CONCLUSION

Based on recent advances in the field of tropical geometry,
. . . . this work provides a new methodology for partitioning the
In this experiment, we consider the effect of varying,, ameter space of finite state channels into separate decod
channel parameters on the perturbation botias described g regions. The approach is based on a polynomial-time
in Seqtlon IV. The input codebook’ in th|_s e_xpegnment is polytope propagation algorithm [3], [4], and the partiiup
also given by a f?“d‘?m codebook of cardinatity~?, where process is highly efficient and scalable. Furthermore, we ha
the block length is given byv = 5. provided a framework for characterizing the robustness of

In order to visualize the outcome of this experiment, Wejecoding under uncertainties in the channel parameters.
reduce the dimensionality of the channel parameter space to

B. Experiment 2: Perturbation bounds under parametric
variation
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