
ECE 901

Lecture 3: Introduction to Complexity Regularization

R. Nowak

5/17/2009

1 Competing Goals: The Bias-Variance Tradeoff

We ended the previous lecture with a brief discussion of overfitting, and that the size/complexity of the set
of candidate models plays a very important role. Recall that, given a set of n data points, Dn, and a space
of functions (or models) F , our goal in solving the learning from data problem is to choose a function f̂n ∈ F
which minimizes the expected risk E

[
R(f̂n)

]
, where the expectation is being taken over the distribution

PXY on the data points Dn. One approach to avoiding overfitting is to restrict F to some subset of all
measurable function. To gauge the performance of a given f in this case, we examine the difference between
the expected risk of f and the Bayes’ risk (called the excess risk).

E
[
R(f̂n)

]
−R∗ =

(
E[R(f̂n)]− inf

f∈F
R(f)

)
︸ ︷︷ ︸

estimation error

+
(

inf
f∈F

R(f)−R∗
)

︸ ︷︷ ︸
approximation error

The approximation error term quantifies the performance hit incurred by imposing restrictions on F . The
estimation error term is due to the randomness of the training data, and it expresses how well the chosen
function f̂n will perform in relation to the best possible f in the class F . This decomposition into stochastic
and approximation errors is similar to the bias-variance tradeoff which arises in classical estimation theory:
the approximation error is like a bias squared term, and the estimation error is like a variance term.

By allowing the space F to be large1 we can make the approximation error as small as we want at the
cost of incurring a large estimation error. On the other hand, if F is very small then the approximation
error will be large, but wthe estimation error may be very small. This tradeoff is illustrated in Figure 1.

1When we say F is large, we mean that |F|, the number of elements in F , is large.
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Figure 1: Illustration of tradeoff between estimation and approximation errors as a function of the size
(complexity) of the F .

Why is this the case? We do not know the true distribution PXY on the data, so instead of minimizing
the expected risk of we design a predictor by minimizing the empirical risk:

f̂n = arg min
f∈F

R̂n(f),

R̂n(f) =
1
n

n∑
i=1

`(f(Xi), Yi).

If F is very large then R̂n(f) can be made arbitrarily small and the resulting f̂n can “overfit” to the data
since R̂n(f) is not be a good estimator of the true risk R(f̂n).

The behavior of the true and empirical risks, as a function of the size (or complexity) of the space F , is
illustrated in Figure 2. Unfortunately, we can’t easily determine whether we are over or underfitting just by
looking at the empirical risk.
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Figure 2: Illustration of empirical risk and the problem of overfitting to the data.

2 Strategies To Avoid Overfitting

Picking

f̂n = arg min
f∈F

R̂n(f)

is problematic if F is large. We will examine two general approaches to dealing with this problem:

1. Restrict the size or dimension of F (e.g., restrict F to the set of all lines, or polynomials with maximum
degree d). This effectively places an upper bound on the estimation error, but in general it also places
a lower bound on the approximation error.

2. Modify the empirical risk criterion to include an extra cost associated with each model (e.g., higher
cost for more complex models):

f̂n = arg min
f∈F

{
R̂n(f) + C(f)

}
.

The cost is designed to mimic the behavior of the estimation error so that the model selection procedure
avoids models with a estimation error. Roughly this can be interpreted as trying to balance the tradeoff
illustrated in Figure 1. Procedures of this type are often called complexity penalization methods.

Example 1 Revisit the polynomial regression example (Lecture 2, Ex. 4), and incorporate a penalty term
C(f) which is proportional to the degree of f , or the derivative of f . In essence, this approach penalizes
for functions which are too “wiggly”, with the intuition being that the true function is probably smooth so a
function which is very wiggly will overfit the data.

How do we decide how to restrict or penalize the empirical risk minimization process? Approaches which
have appeared in the literature include the following.

2.1 Method of Sieves (Grenander, 1981)

Perhaps the simplest approach is to try to limit the size of F in a way that depends on the number of
training data n. The more data we have, the more complex the space of models we can entertain. Let the
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class of candidate functions grow with n. That is, take

F1,F2, . . . ,Fn, . . .

where |Fi| grows as i → ∞. In other words, consider a sequence of spaces with increasing complexity or
degrees of freedom depending on the number of training data samples, n.

Given samples {Xi, Yi}n
i=1 i.i.d. distributed according to PXY , select f ∈ Fn to minimize the empirical

risk
f̂n = arg min

f∈Fn

R̂n(f).

In the next lecture we will consider an example using the method of sieves. The basic idea is to design the
sequence of model spaces in such a way that the excess risk decays to zero as n →∞. This sort of idea has
been around for decades, but Grenander’s method of sieves is often cited as a nice formalization of the idea:
Grenander (1981), Abstract Inference, Wiley, New York.

2.2 Complexity Penalization Methods

2.2.1 Bayesian Methods (Bayes, 1764)

In certain cases, the empirical risk happens to be a (log) likelihood function, and one can then interpret the
cost C(f) as reflecting prior knowledge about which models are more or less likely. In this case, e−C(f) is
like a prior probability distribution on the space F . The cost C(f) is large if f is highly improbable, and
C(f) is small if f is highly probable.

Alternatively, if we restrict F to be small, and denote the space of all measurable functions as F = F∪Fc,
then it is essentially as if we have placed a uniform prior over all functions in F , and zero prior probability
on the functions in Fc.

Example 2 Let Xi ∼ Unif([0, 1]), Yi = f(Xi) + Wi, where Wi
i.i.d.∼ N (0, σ2). Then

P (X1, Y1, . . . , Xn, Yn|f) =
n∏

i=1

1√
2πσ2

exp
(

(Yi − f(Xi))2

2σ2

)
.

Suppose you have some prior knowledge on f , in particular that f arises from sampling a distribution with
density pF . We can then compute the posterior density p(f |Dn), where Dn = {Xi, Yi}n

i=1.

p(f |Dn) =
p(Dn|f)pF (f)

p(Dn)
.

The maximum a posterior estimator is just the model that maximizes the above quantity, or equivalently
minimizes − log p(f |Dn).

f̂n = arg min
f∈F

− log f(Dn|f)− log pF (f) ,

where the first term can be interpreted as the empirical risk − log f(Dn|f) = 1
2σ2

∑n
i=1(Yi− f(Xi))2, and the

second term is a complexity penalty C(f) = − log pF (f).

2.2.2 Description Length Methods (Rissanen, 1978)

This is an information theoretical approach similar in spirit to the Bayesian methods. The idea is to
measure the complexity of the model by the number of bits it takes to represent it. More complex models
take more bits to represent. Let the cost c(f) be proportional to the number of bits needed to describe f
(the description length). This results in what is known as the minimum description length (MDL) approach
where the minimum description length is given by

min
f∈F

{
R̂n(f) + C(f)

}
.
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In certain situations the empirical risk can be interpreted as the number of bits needed to explain the
dataset given the model f . Then the above criteria is simply choosing the best compression strategy for the
data, by first encoding a plausible model and them encoding the differences between the prediction of the
model and the actual data.

2.3 Hold-out Methods

The basic idea of “hold-out” methods is to split the n samples D ≡ {Xi, Yi}n
i=1 into a training set, DT , and

a test set, DV .

DT = {Xi, Yi}m
i=1, DV = {Xi, Yi}n

i=m+1

Now, suppose we have a collection of different model spaces {Fλ} indexed by λ ∈ Λ (e.g., Fλ is the set of
polynomials of degree d, with λ = d), or suppose that we have a collection of complexity penalization criteria
Lλ(f) indexed by λ (e.g.,let Lλ(f) = R̂(f) + λc(f), with λ ∈ R+). We can obtain candidate solutions using
the training set as follows. Define

R̂m(f) =
m∑

i=1

`(f(Xi), Yi)

and take

f̂λ = arg min
f∈Fλ

R̂m(f)

or

f̂λ = arg min
f∈F

{
R̂m(f) + λc(f)

}
This provides us with a set of candidate solutions {f̂λ}. Then we can define the hold-out error estimate
using the test set:

R̂V (f) =
1

n−m + 1

n∑
i=m+1

`(f(Xi), Yi),

and select the “best” model to be f̂ = f̂λ̂ where

λ̂ = arg min
λ

R̂V

(
f̂λ

)
This type of procedure has many nice theoretical guarantees, provided both the training and test set grow
with n.

2.3.1 Leaving-one-out Cross-Validation (Wahba, 1971)

A very popular hold-out method is the so call “leaving-one-out cross-validation” studied in depth by Grace
Wahba (UW-Madison, Statistics). For each λ we compute

f̂
(k)
λ = arg min

f∈F

1
n

n∑
i=1
i 6=k

`(f(Xi), Yi) + λC(f)

or

f̂
(k)
λ = arg min

f∈Fλ

1
n

n∑
i=1
i 6=k

`(f(Xi), Yi).
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Then we have cross-validation function

V (λ) =
1
n

n∑
k=1

`(f (k)
λ (Xk), Yk)

λ∗ = arg min
λ

V (λ).

3 Summary

To summarize, this lecture gave a brief and incomplete survey of different methods for dealing with the issues
of overfitting and model selection. Given a set of training data, Dn = {Xi, Yi}n

i=1, our overall goal is to find

f∗ = arg min
f∈F

R(f)

from some collection of functions, F . Because we do not know the true distribution PXY underlying the
data points Dn, it is difficult to get an exact handle on the risk, R(f). If we only focus on minimizing the
empirical risk R̂(f) we end up overfitting to the training data. Two general approaches were presented.

1. In the first approach we consider an indexed collection of spaces {Fλ}λ∈Λ such that the complexity of
Fλ increases as λ increases, and

lim
λ→∞

Fλ = F .

A solution is given by

f̂λ∗ = arg min
f∈Fλ∗

R̂n(f)

where either λ∗ is a function which increases with n,

λ∗ = λ(n),

or λ∗ is chosen by hold-out validation.

2. The alternative approach is to incorporate a penalty term into the risk minimization problem formula-
tion. Here we consider an indexed collection of penalties {Cλ}λ∈Λ satisfying the following properties:

(a) Cλ : F → R+;
(b) For each f ∈ F and λ1 < λ2 we have Cλ1(f) ≤ Cλ2(f);
(c) There exists λ0 ∈ Λ such that Cλ0(f) = 0 for all f ∈ F .

In this formulation we find a solution

f̂λ∗ = arg min
f∈F

R̂n(f) + Cλ∗(f),

where either λ∗ = λ(n), a function growing the number of data samples n, or λ∗ is selected by hold-out
validation.

4 Consistency

If an estimator or classifier f̂λ∗ satisfies

E
[
R(f̂λ∗)

]
→ inf

f∈F
R(f) as n →∞,

then we say that f̂λ∗ is F-consistent with respect to the risk R. When the context is clear, we will simply
say that f̂ is consistent.
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