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1 Pattern Classification

Recall that the goal of classification is to learn a mapping from the feature space, X , to a label space, Y.
This mapping, f , is called a classifier. For example, we might have

X = Rd

Y = {0, 1}.

We can measure the loss of our classifier using 0− 1 loss; i.e.,

`(ŷ, y) = 1{ŷ 6= y} =
{

1, ŷ 6= y
0, ŷ = y

Recalling that risk is defined to be the expected value of the loss function, we have

R(f) = EXY [`(f(X), Y )] = EXY

[
1{f(X) 6=Y }

]
= PXY (f(X) 6= Y ) .

The performance of a given classifier can be evaluated by comparing it to the performance of the best
possible classification rule, given full knowledge of the problem (in particular the distribution PXY ). The
performance of such a classifier is known as the Bayes’ risk.

Definition 1 (Bayes’ Risk) The Bayes’ risk is the infimum of the risk for all classifiers:

R∗ = inf
f

R(f).

We will prove that the Bayes risk is achieved by the Bayes classifier.

Definition 2 (Bayes Classifier) The Bayes classifier is the following mapping:

f∗(x) =
{

1, η(x) ≥ 1/2
0, otherwise

where
η(x) ≡ PY |X(Y = 1|X = x).

Note that for any x, f∗(x) is the value of y ∈ {0, 1} that maximizes PXY (Y = y|X = x), which is the
intuitive thing to do.

Theorem 1 (Risk of the Bayes Classifier)

R(f∗) = R∗.

1



Proof: Let g : X → Y be any classifier. We will show that R(g)−R(f∗) ≥ 0. This implies that
no classifier performs better than the Bayes classifier. Note that

R(g)−R(f∗) = P (g(X) 6= Y )− P (f∗(X) 6= Y )

=
∫
X

P (g(X) 6= Y |X = x)− P (f∗(X) 6= Y |X = x)dPX(x) . (1)

We will show that
P (g(X) 6= Y |X = x)− P (f∗(X) 6= Y |X = x) ≥ 0 ,

which implies that R(g)−R(f∗) ≥ 0. For any g,

P (g(X) 6= Y |X = x) = 1− P (Y = g(X)|X = x)
= 1− [P (Y = 1, g(X) = 1|X = x) + P (Y = 0, g(X) = 0|X = x)]
= 1− [E[1{Y = 1}1{g(X) = 1}|X = x] + E[1{Y = 0}1{g(X) = 0}|X = x]]
= 1− [1{g(x) = 1}E[1{Y = 1}|X = x] + 1{g(x) = 0}E[1{Y = 0}|X = x]]
= 1− [1{g(x) = 1}P (Y = 1|X = x) + 1{g(x) = 0}P (Y = 0|X = x)]
= 1− [1{g(x) = 1}η(x) + 1{g(x) = 0} (1− η(x))]

Next consider the difference

P (g(X) 6= Y |X = x)− P (f∗(X) 6= Y |X = x)
= η(x) [1{f∗(x) = 1} − 1{g(x) = 1}] + (1− η(x)) [1{f∗(x) = 0} − 1{g(x) = 0}]
= η(x) [1{f∗(x) = 1} − 1{g(x) = 1}]− (1− η(x)) [1{f∗(x) = 1} − 1{g(x) = 1}]
= (2η(x)− 1) (1{f∗(x) = 1} − 1{g(x) = 1}) ,

where the second equality follows by noting that 1{g(x) = 0} = 1− 1{g(x) = 1}. Next recall

f∗(x) =
{

1, η(x) ≥ 1/2
0, otherwise

For x such that η(x) ≥ 1/2, we have

(2η(x)− 1)︸ ︷︷ ︸
≥0

1{f∗(x) = 1}︸ ︷︷ ︸
1

−1{g(x) = 1}︸ ︷︷ ︸
0or1


︸ ︷︷ ︸

≥0

and for x such that η(x) < 1/2, we have

(2η(x)− 1)︸ ︷︷ ︸
<0

1{f∗(x) = 1}︸ ︷︷ ︸
0

−1{g(x) = 1}︸ ︷︷ ︸
0or1


︸ ︷︷ ︸

≤0

,

which implies
(2η(x)− 1) (1{f∗(x) = 1} − 1{g(x) = 1}) ≥ 0

or
P (g(X) 6= Y |X = x)− P (f∗(X) 6= Y |X = x) ≥ 0 ,

concluding the proof.
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Note that while the Bayes classifier achieves the Bayes risk, in practice this classifier is not realizable because
we do not know the distribution PXY and so cannot construct η(x). It is interesting to write the excess risk
R(g)−R∗ using (1). Note that any classifier g : X → Y is of the form g(x) = 1{x ∈ G} for some set G. Let
G∗ = {x ∈ X : η(x) ≥ 1/2}. Now from (1) we have

R(g)−R∗ =
∫
X

(2η(x)− 1) (1{f∗(x) = 1} − 1{g(x) = 1}) dPX(x)

=
∫
X
|2η(x)− 1| |1{f∗(x) = 1} − 1{g(x) = 1}| dPX(x)

=
∫
X
|2η(x)− 11{f∗(x) 6= g(x)}dPX(x)

=
∫

G∆G∗
|2η(x)− 1dPX(x) ,

where G∆G∗ = (G∩ Ḡ∗)∪ (Ḡ∩G∗) is the symmetric difference between the sets G and G∗, that corresponds
to the set of features where the two classifiers disagree upon.

2 Regression

The goal of regression is to learn a mapping from the input space, X , to the output space, Y. This mapping,
f , is called a estimator. For example, we might have

X = Rd

Y = R.

We can measure the loss of our estimator using squared error loss; i.e.,

`(ŷ, y) = (y − ŷ)2.

Recalling that risk is defined to be the expected value of the loss function, we have

R(f) = EXY [`(f(X), Y )] = EXY [(f(X)− Y )2].

The performance of a given estimator can be evaluated in terms of how close the risk is to the infimum of
the risk for all estimator under consideration:

R∗ = inf
f

R(f).

Theorem 2 (Minimum Risk under Squared Error Loss (MSE)) Let f∗(x) = E[Y |X = x].

R(f∗) = R∗.
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Proof: Let f : X → Y be any prediction rule . We have

R(f) = E
[
(f(X)− Y )2

]
= E

[
E

[
(f(X)− Y )2|X

]]
= E

[
E

[
(f(X)− E[Y |X] + E[Y |X]− Y )2|X

]]

=
E[ E[(f(X)− E[Y |X])2|X]

+2E [(f(X)− E[Y |X])(E[Y |X]− Y )|X]
+E[(E[Y |X]− Y )2|X]]

=
E[ E[(f(X)− E[Y |X])2|X]

+2(f(X)− E[Y |X])× 0
+E[(E[Y |X]− Y )2|X]]

= E
[
(f(X)− E[Y |X])2

]
+ R(f∗).

Thus R(f) ≥ R(f∗) for any prediction rule f , and therefore R∗ = R(f∗).

3 Empirical Risk Minimization

Definition 3 (Empirical Risk) Let {Xi, Yi}n
i=1

iid∼ PXY be a collection of training data. Then the empir-
ical risk is defined as

R̂n(f) =
1
n

n∑
i=1

`(f(Xi), Yi).

Empirical risk minimization is the process of choosing a learning rule which minimizes the empirical risk;
i.e.,

f̂n = arg min
f∈F

R̂n(f).

The main idea behind this approach is that, for a fixed rule f , the empirical risk should be somewhat close
to the true risk. In fact the strong law of large numbers says that for a fixed rule f

R̂n(f) a.s.→ R(f) ,

as n →∞.

Example 1 (Pattern Classification) Let Y = {−1, 1} and consider the set of hyperplane classifiers over
the feature space X = Rd or [0, 1]d:

F =
{
x 7→ sign(w′x) : w ∈ Rd

}
,

where sign(t) = 21{t ≥ 0} − 1. If we use the notation fw(x) ≡ sign(w′x), then the set of classifiers can be
alternatively represented as

F =
{
fw : w ∈ Rd

}
.

In this case, the classifier which minimizes the empirical risk is

f̂n = arg min
f∈F

R̂n(f)

= arg min
w∈Rd

1
n

n∑
i=1

1{sign(w′Xi) 6= Yi}.
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Figure 1: Example linear classifier for two-class problem.

Example 2 (Regression) Let the feature space be

X = [0, 1]

and let the set of possible estimators be

F = {degree d polynomials on [0, 1]} .

In this case, the classifier which minimizes the empirical risk is

f̂n = arg min
f∈F

R̂n(f)

= arg min
f∈F

1
n

n∑
i=1

(f(Xi)− Yi)2.

Alternatively, this can be expressed as

ŵ = arg min
w∈Rd+1

1
n

n∑
i=1

(w0 + w1Xi + . . . + wdX
d
i − Yi)2

= arg min
w∈Rd+1

‖V w − Y ‖2

where V is the Vandermonde matrix

V =


1 X1 . . . Xd

1

1 X2 . . . Xd
2

...
...

. . .
...

1 Xn . . . Xd
n

 .

The pseudoinverse can be used to solve for ŵ :

ŵ = (V ′V )−1V ′Y.

A polynomial estimate is displayed in Figure 2.
Note that in some cases, the pseudoinverse of the Vandermonde matrix can produce unstable results.

This can be alleviated by using a Chebyshev Vandermonde matrix. While the Vandermonde matrix contains
evaluations of the polynomials {x0, x1, x2, . . . , xk}, the Chebyshev Vandermonde matrix contains evaluations
of the 0th through kth degree Chebyshev polynomials, which are orthogonal on the interval [−1, 1]. See

http://mathworld.wolfram.com/ChebyshevPolynomialoftheFirstKind.html
for details on the Chebyshev polynomials.
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Figure 2: Example polynomial estimator. Blue curve denotes f∗, magenta curve is the polynomial fit to the
data (denoted by dots).

4 Overfitting

Suppose F , our collection of candidate functions, is very large. We can always make

min
f∈F

R̂n(f)

smaller by increasing the cardinality of F , thereby providing more possibilities to fit to the data.
Consider this extreme example: Let F be all measurable functions. Then every function f for which

f(x) =
{

Yi, x = Xi for i = 1, . . . , n
any value, otherwise .

has zero empirical risk (R̂n(f) = 0). However, clearly this could be a very poor predictor of Y for a new
input X .

Example 3 (Classification Overfitting) Consider the classifier in Figure 3; this demonstrates overfitting
in classification. If the data were in fact generated from two Gaussian distributions centered in the upper
left and lower right quadrants of the feature space domain, then the optimal estimator would be the linear
estimator in Figure 1; the overfitting would result in a higher probability of error for predicting classes of
future observations.

Example 4 (Regression Overfitting) Below is an m-file that simulates the polynomial fitting. Feel free
to play around with it to get an idea of the overfitting problem.

% poly fitting
% rob nowak 1/24/04
clear
close all

% generate and plot "true" function
t = (0:.001:1)’;
f = exp(-5*(t-.3).^2)+.5*exp(-100*(t-.5).^2)+.5*exp(-100*(t-.75).^2);
figure(1)
plot(t,f)

% generate n training data & plot
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Figure 3: Example of overfitting classifier. The classifier’s decision boundary wiggles around in order to
correctly label the training data, but the optimal Bayes classifier is a straight line.

n = 10;
sig = 0.1; % std of noise
x = .97*rand(n,1)+.01;
y = exp(-5*(x-.3).^2)+.5*exp(-100*(x-.5).^2)+.5*exp(-100*(x-.75).^2)+sig*randn(size(x));
figure(1)
clf
plot(t,f)
hold on
plot(x,y,’.’)

% fit with polynomial of order k (poly degree up to k-1)
k=3;
for i=1:k

V(:,i) = x.^(i-1);
end
p = inv(V’*V)*V’*y;

for i=1:k
Vt(:,i) = t.^(i-1);

end
yh = Vt*p;
figure(1)
clf
plot(t,f)
hold on
plot(x,y,’.’)
plot(t,yh,’m’)
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Figure 4: Example polynomial fitting problem. Blue curve is f∗, magenta curve is the polynomial fit to the
data (dots). (a) Fitting a polynomial of degree d = 0: This is an example of underfitting (b)d = 2 (c) d = 4
(d) d = 6: This is an example of overfitting. The empirical loss is zero, but clearly the estimator would not
do a good job of predicting y when x is close to one.
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