
ECE901 Spring 2007 Statistical Learning Theory Instructor: R. Nowak

Lecture 15: Denoising II – Adapting to Unknown Smoothness

1 Maximum Penalized Likelihood Estimators

Let’s recap the last two lectures. Suppose we have data {xi, Yi}n
i=1 where {xi} are deterministic sampling

points and {Yi} are independently distributed according to

Yi ∼ pf∗(xi)(y), i = 1, . . . , n

where pf∗(xi) is a density function parameterized by f∗(xi), the evaluation of the target function at the point
xi. Perhaps the most familiar setting is the Gaussian case where

pf∗(xi)(y) =
1√

2πσ2
exp

[
−(y − f∗(xi))2/2σ2

]
Suppose that we have a countable collection of models F , and a complexity c(f) assigned to each f ∈ F

such that
∑

f∈F2−c(f)≤1. The empirical risk of a model f is defined to be the average negative log-likelihood:

R̂n(f) =
1
n

n∑
i=1

− log pf(xi)(Yi)

The risk is the expectation of the empirical risk:

R(f) =
1
n

n∑
i=1

−E[log pf(xi)(Yi)]

And the excess riks (also called the regret) is

R(f)−R(f∗) =
1
n

n∑
i=1

K(pf(xi), pf∗(xi))

where for any two densities p and q the number K(p, q) is the Kullback-Leibler divergence which is defined
as K(p, q) =

∫
log(q/p)q. Thus, the natural measure of the approximation error or bias for ML estimators

is the KL divergence.
The Maximum Penalized Likelihood Estimator (MPLE) is defined as

f̂n = arg max
f∈F

{
R̂n(f) +

2 log 2 c(f)
n

}
and satisfies the following bound

1
n

n∑
i=1

E[H2(p
bfn(xi)

, pf∗(xi))] ≤ − 2
n

n∑
i=1

E[log A(p
bfn(xi)

, pf∗(xi))]

≤ min
f∈F

{
1
n

n∑
i=1

K(pf(xi), pf∗(xi)) +
2 log 2 c(f)

n

}

1

Lecture 15: Denoising II – Adapting to Unknown Smoothness 2

where for any two densities p and q, H2(p, q) =
∫

(
√

p−√q)2 is the squared Hellinger distance and A(p, q) =∫ √
pq is the affinity of p and q.
In the case of the Gaussian noise model

Yi = f∗(xi) + Wi, i = 1, . . . , n

the MPLE and bound are given by

f̂n = arg max
f∈F

{
1
n

n∑
i=1

(f(xi)− Yi)2

2σ2
+

2 log 2 c(f)
n

}
and

1
n

n∑
i=1

E[(f̂n(xi)− f∗(xi))2] ≤ min
f∈F

{
2
n

n∑
i=1

(f(xi)− f∗(xi))2 +
8 log 2σ2 c(f)

n

}

2 Linear Models

A particular class of models that is very useful and widespread are linear models. These models are defined
in terms of an n× k basis matrix H and a k × 1 parameter vector θ:

f = Hθ =
k∑

j=1

θjhj

where hj is the j-th column of H. Notice that we are considering the model f as an n × 1 column vector.
Let us re-state the Gaussian MPLE problem in this vector notation. Let Y = [Y1, . . . , Yn]T , f∗ = [f ∗
(1/n), f∗(2/n), . . . , f∗(1)]T , and W = [W1, . . . ,Wn]T so that we can write our observations as

Y = f∗ + W

Define the model collection FH = {f ∈ Rn : f = Hθ, θ ∈ Rk} This collection is the subspace of all
n-vectors lying in the span of the columns of H. This is the model collection we would like to work with, but
it is uncountable. To remedy this, let us assume that each coefficient θi lies within the interval [−B,B] and
furthermore let us quantize the coefficient to one of m levels (uniformly distributed) within this interval. In
other words, we discretize the model space by requiring that θi ∈ {−B, . . . ,−B/(m/2), 0, B/(m/2), . . . , B}.
Denote the quantized version of FH as FH,m. Note that FH,m contains mk elements, and so we can encode
them uniquely with codes of length c(f) = k log m. Since the dependence is only logarithmic in m, we can
quantize extremely finely and cover FH almost perfectly.

With this model space, we can now consider the MPLE

f̂n = arg min
f∈FH,m

{
‖f − Y ‖2 + 4 log(2)σ2k log m

}
which satisfies the MSE bound

1
n

E
[
‖f̂n − f‖22

]
≤ min

f∈FH,m

{
2
n
‖f − f∗‖22 +

8σ2 log(2)k log m

n

}
= min

θ∈Θm

{
2
n
‖Hθ − f∗‖22 +

8σ2 log(2)k log m

n

}
where Θm denotes the quantized set of coefficient vectors. Note that the penalty term is the same for every
f ∈ FH,m and so the MPLE minimization is equivalent to minimizing over the choice of θ in the model
f = Hθ, and since FH,m almost perfectly covers FH , we may conlude that

f̂n ≈ H(HT H)−1HY

Lecture 15: Denoising II – Adapting to Unknown Smoothness 3

the standard least squares estimator of f given Y . Note that H(HT H)−1H is the orthogonal projection
matrix onto the subspace spanned by the columns of H. The error bound above shows that the least squares
estimator’s MSE is proportional to the sum of the squared bias of approximating f∗ in terms of functions
in the subspace and the variance which is proportional to the number of parameters k, as we know from
standard multivariate statistics. Indeed, we for the simple least squares estimator one can derive a similar
(actually tighter) MSE bound using standard techniques.

However, the MPLE framework can handle situations that cannot be easily characterized using standard
techniques from multivariate statistics. Suppose that instead of just one subspace, we considered a sequence
of subspaces of increasing dimension, say H1,H2, . . . where the subscript denotes the dimension (k in the
analysis above). Each matrix defines a collection of linear models of the form f = Hkθ, and for each we can
define the least squares estimator

f̂ (k)
n ≈ Hk(HT

k Hk)−1HkY

Now we can select the best overall estimator using our MPLE procedure. Note that if we define F =⋃
k≥1 FHk,m, then the MPLE is given by

f̂n = arg min
f∈F

{
‖f − Y ‖2 + 4 log(2)σ2k log m

}
It is easy to see that f̂n ≡ f̂

(bk)
n , where

k̂ = arg min
k≥1

{
2
n
‖Hk(HT

k Hk)−1HkY − Y ‖22 +
8σ2 log(2)k log m

n

}
In other words, we select the best dimension k by minimizing the combination of the residual sum-of-squared
errors and the variance bound (proportional to k). The choice of k, and hence Hk, for our final estimator
is an instance of model selection. The error bound shows that the MSE of the final estimator is essentially
as good as we could achieve had we known a priori which value of k to use in the least squares proceedure.
Note that the final estimator is a highly nonlinear function of the data, and therefore we could not arrive at
a similar MSE bound using standard techniques.

3 Review: Denoising in Smooth Function Spaces I

We will put the above techniques into action in a denoising application. Let us first recall one of the basic
denoising problems we considered earlier. Suppose we make noisy measurements of a smooth function:

Yi = f∗(xi) + Wi, i = {1, . . . , n},

where
Wi

i.i.d.∼ N
(
0, σ2

)
and

xi =
(

i

n

)
.

The unknown function f∗ is a map
f∗ : [0, 1] → R

In Lecture 4, we consider this problem in the case where f∗ was Lipschitz on [0, 1]. That is, f∗ satisfied

|f∗(t)− f∗(s)| ≤ L|t− s|, ∀t, s ∈ [0, 1]

where L > 0 is a constant. In that case, we showed that by using a piecewise constant function on a partition
of n

1
3 equal-size bins (Figure 3) we were able to obtain an estimator f̂n whose mean square error was

E
[
‖f∗ − f̂n‖2

]
= O

(
n−

2
3

)

Lecture 15: Denoising II – Adapting to Unknown Smoothness 4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
1

2

3

4

5

6

7

8

9

10

f*

f
n

^

n1/3 bins

Figure 1: Example of the piecewise constant approximation of f∗

In this lecture we will use the Maximum Complexity-Regularized Likelihood Estimation result we derived
in Lecture 14 to extend our denoising scheme in several important ways.

To begin with let’s consider a broader class of functions.

4 Hölder Spaces

For 0 < α < 1, define the space of functions

Hα(Cα) =

{
f : sup

x,h

|f(x + h)− f(x)|
|h|α

≤ Cα

}

for some constant Cα < ∞ and where f ∈ L∞. Hα above contains functions that are bounded, but less
smooth than Lipschitz functions. Indeed, the space of Lipschitz functions can be defined as H1 (α = 1)

H1(C1) =

{
f : sup

x,h

|f(x + h)− f(x)|
|h|

≤ C1

}

for C1 < ∞. Functions in H1 are continuous, but those in Hα, α < 1, are not in general.

Let’s also consider functions that are smoother than Lipschitz. If α = 1 + β, where 0 < β < 1, then define

Hα(Cα) =
{

f ∈ H1(Cα) :
∂f

∂x
∈ Hβ(Cα)

}
In other words, Hα, 1 < α < 2, contains Lipschitz functions that are also differentiable and their derivatives
are Hölder smooth with smoothness β = α− 1.

And finally, let

H2(C2) =
{

f :
∂f

∂x
∈ H1(C2)

}

Lecture 15: Denoising II – Adapting to Unknown Smoothness 5

contain functions that have continuous derivatives, but that are not necessarily twice-differentiable.

If f ∈ Hα(Cα), 0 < α ≤ 2, then we say that f is Hölder−α smooth with Hölder constant Cα. The notion of
Hölder smoothness can also be extended to α > 2 in a straightforward way.

Note: If α1 < α2 then
f ∈ Hα2 ⇒ f ∈ Hα1

Summarizing, we can describe Hölder spaces as follows. If f∗ ∈ Hα (Cα) for some 0 < α ≤ 2 and Cα < ∞,
then

(i) 0 < α ≤ 1 |f∗(t)− f∗(s)| ≤ Cα|t− s|α

(ii) 1 < α ≤ 2
∣∣∣∂f∗

∂x (t)− ∂f∗

∂x (s)
∣∣∣ ≤ Cα|t− s|α−1

Note that since Hölder smoothness essentially measures how differentiable functions are, the Taylor polyno-
mial is the natural way to approximate Hölder smooth functions. We will focus on Hölder smooth function
classes with 0 < α ≤ 2. Thus, we will work with piecewise linear approximations, the Taylor polynomial of
degree 1. If we were to consider smoother functions, α > 2 we would need consider higher degree Taylor
polynomial approximation functions, i.e. quadratic, cubic, etc.

5 Denoising Example for Signal-plus-Gaussian Noise Observation
Model

Now let’s assume f∗ ∈ Hα(Cα) for some unknown α (0 < α ≤ 2); i.e. we don’t know how smooth f∗ is.
We will use our observations

Yi = f∗(xi) + Wi, i = {1, . . . , n},

to construct an estimator f̂n. Intuitively, the smoother f∗ is, the better we should be able to estimate it.
Can we take advantage of extra smoothness in f∗ if we don’t know how smooth it is? The smoother f∗ is,
the more averaging we can perform to reduce noise. In other words for smoother f∗ we should average over
larger bins. Also, we will need to exploit the extra smoothness in our approximation of f∗. To that end, we
will consider candidate functions that are piecewise linear functions on uniform partitions of [0, 1]. Let

Fk =
{
|f | ≤ C : f is piecewise linear on

[
0, 1

k

)
,
[

1
k , 2

k

)
, . . .

[
k−1

k , 1
)

and the
coefficients of each line segment are quantized to 1

2 log n bits.

}
The start and end points of each line segment are each one of

√
n discrete values, as indicated in Figure 2.

Since each line may start at any of the
√

n levels and terminate at any of the
√

n levels, there are a total of
n possible lines for each segment.
Given that there are k intervals we have

|Fk| = nk ⇒ log |Fk| = k log n

Therefore we can use k log n bits to describe a function f ∈ Fk. Also observe that each function f ∈ Fk has

Lecture 15: Denoising II – Adapting to Unknown Smoothness 6

(i−1)/k i/k

−C

0

C

n
levels

Figure 2: Example on the quantization of f on interval
[

i−1
k , i

k

)
the form f = Hkθ, where

Hk =

1 1 0 0
1 2 0 0
...

...
...

...
...

...
...

1 ` 0 0
0 0 1 1 0 . . . 0
0 0 1 2 0 . . . 0
...

...
...

...
...

...
...

0 0 1 ` 0 . . . 0
...

...
...

...
...

...
...

0 0 1 1
0 0 1 2
...

...
...

...
...

...
...

0 0 1 `

Note that each of the 2k columns corresponds to a constant [1, 1, . . . , 1] or linear [1, 2, . . . , `] basis function
of length ` = n/k for one of the k subintervals.
Let

F =
⋃
k≥1

Fk.

Construct a prefix code for every f ∈ F by

(i) Use 000 . . . 1︸ ︷︷ ︸
k bits

to encode the smallest k such that f ∈ Fk

(ii) Use k log n bits to encode which element of Fk we are considering.

Thus, if f ∈ Fk, then the prefix code associated with f has codeword length

c(f) = k + k log n = k(1 + log n)

which satisfies the Kraft Inequality ∑
f∈F

2−c(f) ≤ 1.

Lecture 15: Denoising II – Adapting to Unknown Smoothness 7

Now we will apply our complexity regularization result to select a function f̂n from F and bound its risk.
We are assuming Gaussian errors, so

− log pf (Yi) =

(
Yi − f

(
i
n

))2

2σ2
+ constant.

We can ignore the constant term and so our empirical selection is

f̂n = arg min
f∈F

{
1
n

n∑
i=1

(
Yi − f

(
i
n

))2

2σ2
+

2c(f) log 2
n

}
We can compute f̂n according to:

For k = 1, . . . , n

f̂ (k)
n = arg min

f∈Fk

R̂n(f) = arg min
f∈Fk

1
n

n∑
i=1

(
Yi − f

(
i
n

))2

2σ2

then select

k̂ = arg min
k=1,...,n

{
R̂n

(
f̂ (k)

n

)
+

2k(1 + log n) log 2
n

}
and finally

f̂n = f̂ (k̂)
n .

Because the KL divergence and −2 log affinity simply reduce to squared error in the Gaussian case, the risk
bound in Theorem 1, Lecture 14, produces a relatively simple bound on the mean square error of f̂n

1
n

n∑
i=1

E

[(
f̂n

(
i

n

)
− f∗

(
i

n

))2
]
≤ min

f∈F

{
2
n

n∑
i=1

(
f

(
i

n

)
− f∗

(
i

n

))2

+
8σ2c(f) log 2

n

}
The first term on the lefthand side above is the error incurred by approximating f∗ by an element of F . The
second term is an upper bound on the estimation error involved with the model selection process.

Let’s focus on the approximation error. First, suppose f∗ ∈ Hα (Cα) for 1 < α ≤ 2. Let f∗k be the
“best” piecewise linear approximation to f∗, with k pieces on intervals

[
0, 1

k

)
,
[

1
k , 2

k

)
, . . .

[
k−1

k , 1
)
. Consider

the difference between f∗ and f∗k on one such interval, say
[

i−1
k , i

k

)
. By applying Taylor’s theorem with

remainder we have

f∗(t) = f∗
(

i

k

)
+

∂f∗

∂x
(t′)

(
t− i

k

)
for t ∈

[
i−1
k , i

k

)
and some t′ ∈

[
t, i

k

]
. Define

f∗k (t) ≡ f∗
(

i

k

)
+

∂f∗

∂x

(
i

k

) (
t− i

k

)
.

Note that f∗k (t) is not necessarily the best piecewise linear approximation to f∗, but it is good enough for
our purposes. Then using the fact that f∗ ∈ Hα (Cα), for t ∈ [i− 1/k, i/k) we have

|f∗(t)− f∗k (t)| =
∣∣∣∣∂f∗

∂x
(t′)

(
t− i

k

)
− ∂f∗

∂x

(
i

k

) (
t− i

k

)∣∣∣∣
≤ 1

k

∣∣∣∣∂f∗

∂x
(t′)− ∂f∗

∂x

(
i

k

)∣∣∣∣
≤ 1

k
Cα

∣∣∣∣t′ − i

k

∣∣∣∣α−1

≤ 1
k

Cα

(
1
k

)α−1

= Cαk−α.

Lecture 15: Denoising II – Adapting to Unknown Smoothness 8

So, for all t ∈ [0, 1]
|f∗(t)− f∗k (t)| ≤ Cαk−α.

Now let fk be the element of Fk closest to f∗k (fk is the quantized version of f∗k)

|f∗(t)− fk(t)| = |f∗(t)− f∗k (t) + f∗k (t)− fk(t)|
≤ |f∗(t)− f∗k (t)|+ |f∗k (t)− fk(t)|

≤ Cαk−α +
1√
n

since we used 1
2 log n bits to quantize the endpoints of each line segment. Consequently,

|f∗(t)− f∗k (t)|2 ≤ |f∗(t)− f∗k (t)|2 + 2 |f∗(t)− f∗k (t)| |f∗k (t)− fk(t)|+ |f∗k (t)− fk(t)|2

≤ C2
αk−2α + 2Cα

k−α

√
n

+
1
n

.

Thus it follows that

min
f∈Fk

{
2
n

n∑
i=1

(f(i/n)− f∗(i/n))2 +
8σ2c(f) log 2

n

}
≤ 2C2

αk−2α +
4Cαk−α

√
n

+
2
n

+
8σ2k(log n + 1) log 2

n
.

The first and last terms dominate the above expression. Therefore, the upper bound is minimized when
k−2α and k

n are balanced. This is accomplished by choosing k = bn
1

2α+1 c. Then it follows that

min
f∈Fk

{
2
n

n∑
i=1

(
f

(
i

n

)
− f∗

(
i

n

))2

+
8σ2c(f) log 2

n

}
= O

(
n−

2α
2α+1 log n

)
.

If α = 2 then we have
1
n

n∑
i=1

E

[(
f̂n

(
i

n

)
− f∗

(
i

n

))2
]

= O
(
n−

4
5 log n

)

If f∗ ∈ Hα (Cα) for 0 < α ≤ 1, let f∗k be the following piecewise constant approximation to f∗. Note that
constant functions are simply special cases of linear functions,and thus they are contained in F . Let

f∗k (t) ≡ f∗
(

i

n

)
on interval

[
i− 1

k
,

i

k

)
.

Then

|f∗(t)− f∗k (t)| =
∣∣∣∣f∗(t)− f∗

(
i

n

)∣∣∣∣
≤ Cα

∣∣∣∣t− i

n

∣∣∣∣α
≤ Cαk−α.

Repeating the same reasoning as in the 1 < α ≤ 2 case, we arrive at

1
n

n∑
i=1

E

[(
f̂n

(
i

n

)
− f∗

(
i

n

))2
]

= O
(
n−

2α
2α+1 log n

)
for 0 < α ≤ 1. In particular, for α = 1 we get

1
n

n∑
i=1

E

[(
f̂n

(
i

n

)
− f∗

(
i

n

))2
]

= O
(
n−

2
3 log n

)
within a logarithmic factor of the rate we had before (in Lecture 4) for that case!

Lecture 15: Denoising II – Adapting to Unknown Smoothness 9

6 Summary

1. f̂n can be computed by finding least-square line fits to the data on partitions of the form
[

i−1
k , 1

k

)
for

i = 1, . . . , n, and then selecting the best fit by choosing k̂ that minimizes the complexity regularization
criterion.

2. If f∗ ∈ Hα (Cα) for some 0 < α ≤ 2, then

MSE
(
f̂n

)
=

1
n

n∑
i=1

E

[(
f̂n

(
i

n

)
− f∗

(
i

n

))2
]

= O
(
n−

2α
2α+1 log n

)
.

3. f̂n automatically picks the optimal number of bins. Essentially f̂n adapts to the unknown smoothness
of f∗ and produces a rate which is near minimax optimal ! (n−

2α
2α+1 is the best possible).

4. The larger α is the faster the convergence and the better the denoising !

	Review: Denoising in Smooth Function Spaces I
	Hölder Spaces
	Denoising Example for Signal-plus-Gaussian Noise Observation Model
	Summary

