ECE901 Spring 2007 Statistical Learning Theory Instructor: R. Nowak

Lecture 14: Maximum Likelihood and Complexity Regularization

Review : Maximum Likelihood Estimation We have n i.i.d observations drawn from an unknown distribution

}/;i.}‘\"d'pe* ai:{lv"'an}

where 6* € ©. We can view py- as a member of a parametric class of distributions, P = {pg}oco. Our goal
is to use the observations {Y;} to select an appropriate distribution (e.g., model) from P. We would like the
selected distribution to be close to pj in some sense.

We use the negative log-likelihood loss function, defined as 1(0,Y;) = —logpe(Y;). The empirical risk
is

. 1 &
R (0) = —Hzlogpe(Yi)-
=1

We select the distribution that minimizes the empirical risk
n n
in — 1 Y;) = min— 1 Y;
min ; ogp(Y;) = min ; ogpo(Y:)

In other words, the distribution we select is p := Pg,. s where

On = argmin  — Z;Ingﬁ(Yi)
The risk is defined as
R(0) = E[I(6,Y)] = —E[log pe(Y)].

As shown above, 6* minimizes R(f) over ©.

6" = argmin  —FEflogps(Y)]

— in — [1 - Dge .
arg min / ogpe(y) - pe-(y) dy

Finally, the excess risk of 6 is defined as

R(0) — R(0") = /10g 1;9;((;/)) po-(y) dy = K (po, po~) -

We recognized that the excess risk corresponding to this loss function is simply the Kullback-Leibler (KL) Di-
vergence or Relative Entropy, denoted by K (pg, , pe, ). It is easy to see that K (pg, , pe,) is always non-negative
and is zero if and only if pg, = pg,. KL divergence measures how different two probability distributions are
and therefore is natural to measure convergence of the maximum likelihood procedures. However, K (pg, , po,)
is not a distance metric because it is not symmetric and does not satisfy the triangle inequality. For this
reason, two other quantities play a key role in maximum likelihood estimation, namely Hellinger Distance
and Affinity.
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The Hellinger distance is defined as

1
2

H(po, , po,) = (/ (\/pel(y) - \/peQ(y))2 dy)

We proved that the squared Hellinger distance lower bounds the KL divergence:
H*(po,,p0,) < K(po,,po,)
H*(po,,p0,) < K(po,,po,)-
The affinity is defined as

A(p917p92) = / V Po, (y>p92 (y) dy.

we also proved that
Hz(p017p92) < 7210g (A(p017p92)) .

Example 1 (Gaussian Distribution) Y is Gaussian with mean 6 and variance o>.

First, look at
log P2 — L[(gf —03) — 2(6; — 62)y]
pel 202
Then,

K(p917p02) = E02 |:10g %:|
Do,

02 03 2(6: — 2)

| S —
E[Y]=0,

L oo\ g2 (6F — 6)?
=5 @(01 +62 - 20192) - T

1 w-op2\ /2 1 w02\ /2
—2log A(po,,pe.) = —2log /(We 20% ) '(Wff?”) dy

91 / 1 _<y—e%>2_(y—9§>2 q

= — [e) e 4o 4o

& V2ro? Y

o [@_@)ﬁ(@)?] dy)

1
— 2] L
o8 (/ \/277026

01—05\2
= —2loge " 22
(61 — 0)°

1
= oz~ = KWepe) = H(pos o).
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1 Maximum likelihood estimation and Complexity regularization

Suppose that we have n i.i.d training samples, {X;, Y;}7 ; i PXY -

Using conditional probability, pxy can be written as
pxy (7,y) = px () - py|x=2(Y) -
Let’s assume for the moment that px is completely unknown, but py|x—,(y) has a special form:
Py|x=2(¥) = Ps+(2) ()

where py|x—(y) is a known parametric density function with parameter f*(z).

Example 2 (Signal-plus-noise observation model)

where W; " N(0,0?%) and X; .

1 _ = f*En?
2

Py (y) = N

Y|X =z ~ Poisson(f*(x))

— () L (@)
P (y) =€ T )7,~

y!
The likelihood loss function is

I(f(z),y) = —logpxy(X,Y)
—log px(X) — log pyx(Y]X)
—log px (X) —log pyx)(Y).

The expected loss is

El(f(X),Y)] = Ex [Byx[(f(X),Y)|X =z]]
= Ex[Ey|x[—1log px(z) —log ps)(Y)|X = z]]
= —EX[long(X)]—EX[Ey|X[logpf(x)(Y)|X:x]]
= —Ex[log px(X)]— E[log pyx)(Y)].

Notice that the first term is a constant with respect to f.
Hence, we define our risk to be

R(f) = —E[logpsx)(Y)]
—Ex[Ey|x[log psa)(Y)|X = z]]

= 7/ </log D)) - Pre@)(Y) dy) px(z)dx.

The function f* minimizes this risk since f(z) = f*(z) minimizes the integrand.
Our empirical risk is the negative log-likelihood of the training samples:

Ra(f) = % > —log pycx)(Yi)

i=1
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The value % is the empirical probability of observing X = X;.

Often in function estimation, we have control over where we sample X. Let’s assume that X = [0, 1]¢
and J) = R. Suppose we sample X uniformly with n = m? samples for some positive integer m (i.e., take m
evenly spaced samples in each coordinate).

Let z;, + = 1,...,n denote these sample points, and assume that Y; ~ pf*(mi)(y). Then, our empirical
risk is
. 1< 1<
Ry(f) = Ezl(f(zi)ayi) = Z —log pya,)(Yi) .

i=1 i=1
Note that x; is now a deterministic quantity.
Our risk is

R =~ B [log pyey (V)

i=1
1 n

- Th Z {/log Prtwo)Wi) - Py (i) (i) dys
i=1

The risk is minimized by f*. However, f* is not a unique minimizer. Any f that agrees with f* at the point
x; also minimizes this risk.

Now, we will make use of the following vector and shorthand notation. The uppercase Y denotes a
random variable, while the lowercase y and = denote deterministic quantities.

Y Y1 T
Ys Y2 T2
Yn Yn Tn

Then,
pr(Y) =TI, p(Yilf(x:;)) (random)
pr(y) = H?:l p (yilf(z;)) (deterministic) .

With this notation, the empirical risk and the true risk can be written as

=
3
—
~
S—
Il

—% logp;(Y).
R() = —-Elogps(V)]

—% /logpf(y) pre(y)dy.

2 Error Bound

Suppose that we have a pool of candidate functions F, and we want to select a function f from F using the
training data. Our usual approach is to show that the distribution of RA,L( f) concentrates about its mean
as n grows. First, we assign a complexity ¢(f) > 0 to each f € F so that 22*6(” < 1. Then, apply the
union bound to get a wniform concentration inequality holding for all models in F. Finally, we use this
concentration inequality to bound the expected risk of our selected model.
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We will essentially accomplish the same result here, but avoid the need for explicit concentration inequal-
ities and instead make use of the information-theoretic bounds.

We would like to select an f € F so that the excess risk is small.
R(f) = R(f7)

1
= EE[logpf* (Y) —logps(Y)]

= et
1

iK .
" (pf,ps*)

0

IN

where
n

K(ps,ps) = Z </ log (@7 “Df* () (Yi) dy¢>

K(Ps(a;)Pr(a;)

is again the KL divergence.

Unfortunately, as mentioned before, K (ps,py+) is not a true distance. So instead we will focus on the
expected squared Hellinger distance as our measure of performance:

H?(pg,pg+) = zn:/(\/pf(m)(yi) - \/pf*(;w)(yi))2 dy;

3 Maximum Complexity-Regularized Likelihood Estimation

Theorem 1 (Li-Barron 2000, Kolaczyk-Nowak 2002) Let {z;,Y;}, be a random sample of training
data with {Y;} independent,

for some unknown function f*.
Suppose we have a collection of candidate functions F, and complexities c(f) > 0, f € F, satisfying

Z 2—<f) < 1.

fer

Define the complexity-regularized estimator

5 ) 1< 2¢(f)log2
" = I Y; — 5.
fn = arg ;rgjr__l{ ; og ps(Yi) +

n n

Then,

%E [1#2(0,.0p)] < *%E[log(A(pf“’pf*))}

. [1 2¢(f)log2
< —-K . — =2 5.
- ?gﬁ{n (pyops) + n

Before proving the theorem, let’s look at a special case.
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Example 3 (Gaussian noise) Suppose Y; = f(z;) +W; | W; s N(0,0?).

1 i f(=))?
2

D) (Yi) = W@ 3o

Using results from example 1, we have

n

2108 A (p, (V),ps (V) = 3 =2108.4 by, (1) (¥):Dp- (0 (V1))

=1

= Z —2log/\/pfn(zi)(yi) D) (Vi) dyi
i—1

2

- X (=)

Then,

—%E log A(pf“,pf*):| = 401271 iE [(fn(xz) - f*(xz))2] :

i=1

We also have,

1
K ) =
- K(ps,ps-) 572

1n xi—*xig
nz_;(f( ) = ()

202
i—1

Combine everything together to get

fo = argmin{iz (Vi — f(x:))? N 2c(f)10g2} '

fer

The theorem tells us that

or

n “ n

F 2| (frd - 1w0) ] < {2 () — £ (@) + W} .

Now let’s come back to the proof.

Proof:

o) = [ (Yo o)

af finity
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1

" [HQ <pf"7pf*)] =20l Py, () pr-(y)dy

Now, define the theoretical analog of fn:

I _argf}“g{lf((pf P )+20(f;llog2}.
Since
fo = arg mm{ % log pf(Y) + 2c(f2Llog2}
— angs { - Qompy(¥) - 26()log2)
= argmax{; logpf(Y) —2¢(f) 10g2)}

we can see that R
D (Y)e c(fn)log2

>1
Vpy, (Y)emeln)los2 =

Then can write

E{H2<pfnapf*>] < 2E_ (f\/pf—pfdy

pf;L (Y)e_c(fn,)10g2 1
pr, (Y)eetmloa2 [ pe—ppdy

IN

2F |log

Now, simply multiply the argument inside the log by E ; to get

for (V) \/P1, (Y) g=elfu) 0g2
E[H2(pf;,pf*)] < 2F |log ps-( sl B
Vs, Y \/pf* ) e cln f,/pfn “pp-(y)dy

E [10g (z;* g;)] 1 2¢(fa) log 2

n

N

Py, (Y) e—c(fu) log2
Vo (Y f \/pf pr(y) dy
= K (ps,,ps+) +2c(fn)log2
pg,(Y) o—c(f) log2

Vor () S \Jps @) pr-(v) dy

+2F |log

+2FE |log
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The terms K (py,,ps+) + 2¢(fn)log2 are precisely what we wanted for the upper bound of
the theorem. So, to finish the proof we only need to show that the last term is non-positive.
Applying Jensen’s inequality, we get

Py, (Y)
Py (Y)

I\/ps, (W) - pp-(y) dy

Both Y and fn are random, which makes the expectation difficult to compute. However, we
can simplify the problem using the union bound, which eliminates the dependence on f,:

ps,(Y) o—clfn)log2

Vor () f\/pfn(y) Py (y)dy

2F |log <2log| F e=c(fn)log2

ps (Y) —c(fn)log 2 2 (V)
2F |lo I . © < 2log | E e—c(f)log2 ppx(Y)
8 g
VoY) f\/pfn(y)-pf*(y) dy P I Vpr() - ps-(y) dy
E [ pr(Y)
_ ~ (V)
= 2log 2—<(f) P
J;f S Vrs(y) - pp-(y) dy
— 210g ZQiC(f)
feF
< 0.

where the last two lines come from

Z 2 <1,

fer

and
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