
ECE901 Spring 2007 Statistical Learning Theory Instructor: R. Nowak

Lecture 14: Maximum Likelihood and Complexity Regularization

Review : Maximum Likelihood Estimation We have n i.i.d observations drawn from an unknown distribution

Yi
i.i.d.∼ pθ∗ , i = {1, . . . , n}

where θ∗ ∈ Θ. We can view pθ∗ as a member of a parametric class of distributions, P = {pθ}θ∈Θ. Our goal
is to use the observations {Yi} to select an appropriate distribution (e.g., model) from P. We would like the
selected distribution to be close to p∗θ in some sense.

We use the negative log-likelihood loss function, defined as l(θ, Yi) = − log pθ(Yi). The empirical risk
is

R̂n(θ) = − 1
n

n∑
i=1

log pθ(Yi).

We select the distribution that minimizes the empirical risk

min
p∈P

−
n∑

i=1

log p(Yi) = min
θ∈Θ

−
n∑

i=1

log pθ(Yi)

In other words, the distribution we select is p̂ := pθ̂n
, where

θ̂n = arg min
θ∈Θ

−
n∑

i=1

log pθ(Yi)

The risk is defined as
R(θ) = E[l(θ, Y )] = −E[log pθ(Y )].

As shown above, θ∗ minimizes R(θ) over Θ.

θ∗ = arg min
θ∈Θ

−E[log pθ(Y )]

= arg min
θ∈Θ

−
∫

log pθ(y) · pθ∗(y) dy.

Finally, the excess risk of θ is defined as

R(θ)−R(θ∗) =
∫

log
pθ∗(y)
pθ(y)

pθ∗(y) dy ≡ K(pθ, pθ∗) .

We recognized that the excess risk corresponding to this loss function is simply the Kullback-Leibler (KL) Di-
vergence or Relative Entropy, denoted by K(pθ1 , pθ2). It is easy to see that K(pθ1 , pθ2) is always non-negative
and is zero if and only if pθ1 = pθ2 . KL divergence measures how different two probability distributions are
and therefore is natural to measure convergence of the maximum likelihood procedures. However, K(pθ1 , pθ2)
is not a distance metric because it is not symmetric and does not satisfy the triangle inequality. For this
reason, two other quantities play a key role in maximum likelihood estimation, namely Hellinger Distance
and Affinity.
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The Hellinger distance is defined as

H(pθ1 , pθ2) =
(∫ (√

pθ1(y)−
√

pθ2(y)
)2

dy

) 1
2

.

We proved that the squared Hellinger distance lower bounds the KL divergence:

H2(pθ1 , pθ2) ≤ K(pθ1 , pθ2)
H2(pθ1 , pθ2) ≤ K(pθ2 , pθ1) .

The affinity is defined as

A(pθ1 , pθ2) =
∫ √

pθ1(y)pθ2(y) dy .

we also proved that
H2(pθ1 , pθ2) ≤ −2 log (A(pθ1 , pθ2)) .

Example 1 (Gaussian Distribution) Y is Gaussian with mean θ and variance σ2.

pθ(y) =
1√

2πσ2
e−

(y−θ)2

2σ2

First, look at

log
pθ2

pθ1

=
1

2σ2
[(θ2

1 − θ2
2)− 2(θ1 − θ2)y]

Then,

K(pθ1 , pθ2) = Eθ2

[
log

pθ2

pθ1

]
=

θ2
1 − θ2

2

2σ2
− 2(θ1 − θ2)

2σ2

∫
y · pθ2(y) dy︸ ︷︷ ︸
E[Y ]=θ2

=
1

2σ2
(θ2

1 + θ2
2 − 2θ1θ2) =

(θ2
1 − θ2)2

2σ2
.

−2 log A(pθ1 , pθ2) = −2 log

(∫ (
1√

2πσ2
e−

(y−θ1)2

2σ2

)1/2

·
(

1√
2πσ2

e−
(y−θ2)2

2σ2

)1/2

dy

)

= −2 log
(∫

1√
2πσ2

e−
(y−θ1)2

4σ2 − (y−θ2)2

4σ2 dy

)
= −2 log

(∫
1√

2πσ2
e
− 1

2σ2

h
(y− θ1+θ2

2 )2
+( θ1−θ2

2 )2i
dy

)
= −2 log e−

( θ1−θ2
2 )2

2σ2

=
(θ1 − θ2)2

4σ2
=

1
2
K(pθ1 , pθ2) ≥ H2(pθ1 , pθ2) .
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1 Maximum likelihood estimation and Complexity regularization

Suppose that we have n i.i.d training samples, {Xi, Yi}n
i=1

i.i.d.∼ pXY .
Using conditional probability, pXY can be written as

pXY (x, y) = pX(x) · pY |X=x(y) .

Let’s assume for the moment that pX is completely unknown, but pY |X=x(y) has a special form:

pY |X=x(y) = pf∗(x)(y)

where pY |X=x(y) is a known parametric density function with parameter f∗(x).

Example 2 (Signal-plus-noise observation model)

Yi = f∗(Xi) + Wi , i = 1, . . . , n

where Wi
i.i.d.∼ N (0, σ2) and Xi

i.i.d.∼ pX .

pf∗(x)(y) =
1√

2πσ2
e−

(y−f∗(x))2

2σ2

Y |X = x ∼ Poisson(f∗(x))

pf∗(x)(y) = e−f∗(x) [f
∗(x)]y

y!
.

The likelihood loss function is

l(f(x), y) = − log pXY (X, Y )
= − log pX(X)− log pY |X(Y |X)
= − log pX(X)− log pf(X)(Y ) .

The expected loss is

E[l(f(X), Y )] = EX

[
EY |X [l(f(X), Y )|X = x]

]
= EX [EY |X [− log pX(x)− log pf(x)(Y )|X = x] ]
= −EX [ log pX(X) ]− EX [EY |X [ log pf(x)(Y )|X = x ] ]
= −EX [ log pX(X) ]− E[ log pf(X)(Y ) ] .

Notice that the first term is a constant with respect to f .
Hence, we define our risk to be

R(f) = −E[ log pf(X)(Y ) ]
= −EX [EY |X [log pf(x)(Y )|X = x] ]

= −
∫ (∫

log pf(x)(y) · pf∗(x)(y) dy

)
pX(x) dx .

The function f∗ minimizes this risk since f(x) = f∗(x) minimizes the integrand.
Our empirical risk is the negative log-likelihood of the training samples:

R̂n(f) =
1
n

n∑
i=1

− log pf(Xi)(Yi)
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The value 1
n is the empirical probability of observing X = Xi.

Often in function estimation, we have control over where we sample X. Let’s assume that X = [0, 1]d

and Y = R. Suppose we sample X uniformly with n = md samples for some positive integer m (i.e., take m
evenly spaced samples in each coordinate).

Let xi, i = 1, . . . , n denote these sample points, and assume that Yi ∼ pf∗(xi)(y). Then, our empirical
risk is

R̂n(f) =
1
n

n∑
i=1

l(f(xi), Yi) =
1
n

n∑
i=1

− log pf(xi)(Yi) .

Note that xi is now a deterministic quantity.
Our risk is

R(f) = − 1
n

n∑
i=1

E
[
log pf(xi)(Yi)

]
= − 1

n

n∑
i=1

[∫
log pf(xi)(yi) · pf∗(xi)(yi) dyi

]
.

The risk is minimized by f∗. However, f∗ is not a unique minimizer. Any f that agrees with f∗ at the point
xi also minimizes this risk.

Now, we will make use of the following vector and shorthand notation. The uppercase Y denotes a
random variable, while the lowercase y and x denote deterministic quantities.

Y =


Y1

Y2

...
Yn

 y =


y1

y2

...
yn

 x =


x1

x2

...
xn


Then,

pf (Y ) =
∏n

i=1 p (Yi|f(xi)) (random)

pf (y) =
∏n

i=1 p (yi|f(xi)) (deterministic) .

With this notation, the empirical risk and the true risk can be written as

R̂n(f) = − 1
n

log pf (Y ) .

R(f) = − 1
n

E[log pf (Y )]

= − 1
n

∫
log pf (y) · pf∗(y) dy .

2 Error Bound

Suppose that we have a pool of candidate functions F , and we want to select a function f from F using the
training data. Our usual approach is to show that the distribution of R̂n(f) concentrates about its mean
as n grows. First, we assign a complexity c(f) > 0 to each f ∈ F so that

∑
2−c(f) ≤ 1. Then, apply the

union bound to get a uniform concentration inequality holding for all models in F . Finally, we use this
concentration inequality to bound the expected risk of our selected model.
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We will essentially accomplish the same result here, but avoid the need for explicit concentration inequal-
ities and instead make use of the information-theoretic bounds.

We would like to select an f ∈ F so that the excess risk is small.

0 ≤ R(f)−R(f∗)

=
1
n

E[log pf∗(Y )− log pf (Y )]

=
1
n

E

[
log

pf∗(Y )
pf (Y )

]
≡ 1

n
K(pf , pf∗)

where

K(pf , pf∗) =
n∑

i=1

(∫
log

pf∗(xi)(yi)
pf(xi)(yi)

· pf∗(xi)(yi) dyi

)
︸ ︷︷ ︸

K(pf(xi),pf∗(xi))

is again the KL divergence.

Unfortunately, as mentioned before, K(pf , pf∗) is not a true distance. So instead we will focus on the
expected squared Hellinger distance as our measure of performance:

H2(pf , pf∗) =
n∑

i=1

∫ (√
pf(xi)(yi)−

√
pf∗(xi)(yi)

)2

dyi

3 Maximum Complexity-Regularized Likelihood Estimation

Theorem 1 (Li-Barron 2000, Kolaczyk-Nowak 2002) Let {xi, Yi}n
i=1 be a random sample of training

data with {Yi} independent,
Yi ∼ pf∗(xi)(yi) , i = 1, . . . , n

for some unknown function f∗.
Suppose we have a collection of candidate functions F , and complexities c(f) > 0, f ∈ F , satisfying∑

f∈F

2−c(f) ≤ 1.

Define the complexity-regularized estimator

f̂n ≡ arg min
f∈F

{
− 1

n

n∑
i=1

log pf (Yi) +
2c(f) log 2

n

}
.

Then,

1
n

E
[
H2(pf̂n

, pf∗)
]

≤ − 2
n

E
[
log
(
A(pf̂n

, pf∗)
)]

≤ min
f∈F

{
1
n

K(pf , pf∗) +
2c(f) log 2

n

}
.

Before proving the theorem, let’s look at a special case.
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Example 3 (Gaussian noise) Suppose Yi = f(xi) + Wi ,Wi
i.i.d.∼ N (0, σ2).

pf(xi)(yi) =
1√

2πσ2
e−

(yi−f(xi))
2

2σ2

Using results from example 1, we have

−2 log A
(
pf̂n

(Y ), pf∗(Y )
)

=
n∑

i=1

−2 log A
(
pf̂n(xi)

(Yi), pf∗(xi)(Yi)
)

=
n∑

i=1

−2 log
∫ √

pf̂n(xi)
(yi) · pf∗(xi)(yi) dyi

=
1

4σ2

n∑
i=1

(
f̂n(xi)− f∗(xi)

)2

.

Then,

− 2
n

E
[
log A(pf̂n

, pf∗)
]

=
1

4σ2n

n∑
i=1

E

[(
f̂n(xi)− f∗(xi)

)2
]

.

We also have,

1
n

K(pf , pf∗) =
1
n

n∑
i=1

(f(xi)− f∗(xi))
2

2σ2

− log pf (Y ) =
n∑

i=1

(Yi − f(xi))2

2σ2
.

Combine everything together to get

f̂n = arg min
f∈F

{
1
n

n∑
i=1

(Yi − f(xi))2

2σ2
+

2c(f) log 2
n

}
.

The theorem tells us that

1
4n

n∑
i=1

E


(
f̂n(xi)− f∗(xi)

)2

σ2

 ≤ min
f∈F

{
1
n

n∑
i=1

(f(xi)− f∗(xi))
2

2σ2
+

2c(f) log 2
n

}

or
1
n

n∑
i=1

E

[(
f̂n(xi)− f∗(xi)

)2
]
≤ min

f∈F

{
2
n

n∑
i=1

(f(xi)− f∗(xi))
2 +

8σ2c(f) log 2
n

}
.

Now let’s come back to the proof.

Proof:

H2
(
pf̂n

, pf∗

)
=

∫ (√
pf̂n

(y)−
√

pf∗(y)
)2

dy

≤ −2 log
(∫ √

pf̂n
(y) · pf∗(y) dy

)
︸ ︷︷ ︸

affinity
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⇒

E
[
H2
(
pf̂n

, pf∗

)]
≤ 2 E

log

 1∫ √
pf̂n

(y) · pf∗(y) dy

 .

Now, define the theoretical analog of f̂n:

fn = arg min
f∈F

{
1
n

K (pf , pf∗) +
2c(f) log 2

n

}
.

Since

f̂n = arg min
f∈F

{
− 1

n
log pf (Y ) +

2c(f) log 2
n

}
= arg max

f∈F

{
1
n

(log pf (Y )− 2c(f) log 2)
}

= arg max
f∈F

{
1
2

(log pf (Y )− 2c(f) log 2)
}

= arg max
f∈F

{
log
(√

pf (Y ) · e−c(f) log 2

)}
= arg max

f∈F

{√
pf (Y ) · e−c(f) log 2

}
we can see that √

pf̂n
(Y )e−c(f̂n) log 2√

pfn(Y )e−c(fn) log 2
≥ 1 .

Then can write

E
[
H2
(
pf̂n

, pf∗

)]
≤ 2 E

log

 1∫ √
pf̂n

(y) · pf∗(y) dy


≤ 2 E

log


√

pf̂n
(Y )e−c(f̂n) log 2√

pfn
(Y )e−c(fn) log 2

· 1∫ √pf̂n
· pf∗ dy

 .

Now, simply multiply the argument inside the log by
√

pf∗ (Y )

pf∗ (Y ) to get

E
[
H2
(
pf̂n

, pf∗

)]
≤ 2 E

log

√pf∗(Y )√
pfn

(Y )

√
pf̂n

(Y )√
pf∗(Y )

e−c(f̂n) log 2

e−c(fn) log 2
· 1∫ √

pf̂n
(y) · pf∗(y) dy


= E

[
log
(

pf∗(Y )
pfn

(Y )

)]
+ 2c(fn) log 2

+2E

log


√

pf̂n
(Y )√

pf∗(Y )
· e−c(f̂n) log 2∫ √

pf̂n
(y) · pf∗(y) dy


= K (pfn

, pf∗) + 2c(fn) log 2

+2E

log


√

pf̂n
(Y )√

pf∗(Y )
· e−c(f̂n) log 2∫ √

pf̂n
(y) · pf∗(y) dy

 .
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The terms K (pfn
, pf∗) + 2c(fn) log 2 are precisely what we wanted for the upper bound of

the theorem. So, to finish the proof we only need to show that the last term is non-positive.
Applying Jensen’s inequality, we get

2E

log


√

pf̂n
(Y )√

pf∗(Y )
· e−c(f̂n) log 2∫ √

pf̂n
(y) · pf∗(y) dy

 ≤ 2 log

E

e−c(f̂n) log 2 ·

√
pf̂n

(Y )

pf∗ (Y )∫ √
pf̂n

(y) · pf∗(y) dy


 .

Both Y and f̂n are random, which makes the expectation difficult to compute. However, we
can simplify the problem using the union bound, which eliminates the dependence on f̂n:

2E

log


√

pf̂n
(Y )√

pf∗(Y )
· e−c(f̂n) log 2∫ √

pf̂n
(y) · pf∗(y) dy

 ≤ 2 log

E

∑
f∈F

e−c(f) log 2 ·

√
pf (Y )
pf∗ (Y )∫ √

pf (y) · pf∗(y) dy



= 2 log

∑
f∈F

2−c(f)
E
[√

pf (Y )
pf∗ (Y )

]
∫ √

pf (y) · pf∗(y) dy


= 2 log

∑
f∈F

2−c(f)


≤ 0.

where the last two lines come from

E

[√
pf (Y )
pf∗(Y )

]
=
∫ √

pf (y)
pf∗(y)

· pf∗(y) dy =
∫ √

pf (y) · pf∗(y) dy

and ∑
f∈F

2−c(f) ≤ 1.
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