ECE901 Spring 2007 Statistical Learning Theory Instructor: R. Nowak

Lecture 13: Maximum Likelihood Estimation

1 Summary of Lecture 12

In the last lecture we derived a risk (MSE) bound for regression problems; i.e., select an f € F so that
E[(f(X)—=Y)?] = E[(f*(X) — Y)?] is small, where f*(z) = E[Y|X = z]. The result is summarized below.

Theorem 1 (Complexity Regularization with Squared Error Loss) Let X = R?, ) = [~b/2,b/2],
{X;,Y;}7, iid, Pxy unknown, F = {collection of candidate functions},

fiRY= Y, R(f) = B(f(X)-Y)2.

Let ¢(f), f € F, be positive numbers satisfying Zfe}‘ 2=<) <1, and select a function from F according to

fu= argmm{gn(f) L1 <f>1g2}

€ n

with € < £33 and Ra(f) = LS (f(Xi) = Y5)2. Then,

BlR - R < (102 ) yin{ ) - R+ 1 LEE2 L o)
where o = %

2 Maximum Likelihood Estimation

The focus of this lecture is to consider another approach to learning based on maximum likelihood estimation.
Consider the classical signal plus noise model:

1 )
Y;:f<) +WiaZ:]-a"' ,n
n
where W; are iid zero-mean noises. Furthermore, assume that W; ~ p(w) for some known density p(w).
sinceYi—f( ):Wi.

Then _
Yi~p (y— f <;>> =ps.(y)

A very common and useful loss function to consider is
1 n
Rn(f) = n Z(_ log py, (}/1))
i=1
Minimizing R,, with respect to f is equivalent to maximizing

1 n
= "logpy, (Yi)
n =1

[t
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or n
pri <Y;)
i=1

Thus, using the negative log-likelihood as a loss function leads to maximum likelihood estimation. If the W;
are iid zero-mean Gaussian r.v.s then this is just the squared error loss we considered last time. If the W;
are Laplacian distributed e.g. p(w) o e~ 1%l then we obtain the absolute error, or Ly, loss function. We can
also handle non-additive models such as the Poisson model

Yi ~ P (ylf (i/n)) = eI/ LG/

n
y!

In this case

—log P (Yilf (i/n)) = [(i/n)—Yilog(f (i/n)) + constant

which is a very different loss function, but quite appropriate for many imaging problems.
Before we investigate maximum likelihood estimation for model selection, let’s review some of the basis
concepts. Let © denote a parameter space (e.g., © = R), and assume we have observations

jid .
Y—iz'i“p(‘)*(y)v Z:L...,TL
where 6* € © is a parameter determining the density of the {¥;}. The ML estimator of 8* is

én = i
arg Ieneax | I1 po(Y:)
= argmax El ogpe(Y)

n
- in S — log po(Y5).
arg min ; og po(Y;)

6 maximizes the expected log-likelihood. To see this, let’s compare the expected log-likelihood of 8* with
any other 6 € ©.

B o po-(Y)
Ellogpe-(Y) —logpe(Y)] = E |:1 & po(Y) :|

B o po-(y) .

_ / log £ b (u)dy

= K(po,po~) the KL divergence

> 0 with equality iff pg~ = peg.

Why?
o] = e
= IOgEmi(éf))}

= 1og/pe(y)dy=0
= K(pg,po-) 20
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2.1 Likelihood as a Loss Function

We can restate the maximum likelihood estimator in the general terms we are using in this course. We have
n ii.d observations drawn from an unknown distribution

Y‘ ~ pg* ,i:{l,...,n}

where 6* € ©. We can view pg~ as a member of a parametric class of distributions, P = {ps}gco. Our goal
is to use the observations {Y;} to select an appropriate distribution (e.g., model) from P. We would like the
selected distribution to be close to pj in some sense.

We use the negative log-likelihood loss function, defined as 1(0,Y;) = —logpe(Y;). The empirical risk

= —*Zlogpa

We select the distribution that minimizes the empirical risk

is

in—S logp(¥;) = min—S logpe(Y,
min ;ogp() min ;0&09(

In other words, the distribution we select is p := P4, where

6, = arg mln Zlog po(Y;

The risk is defined as
R(0) = E[l(0,Y)] = —E[log pe(Y)].

And, the excess risk of 0 is defined as

R(6) — R(0") = /1 og pe@*((;/)) po~(y) dy = K (pg, po~ ) -

We recognized that the excess risk corresponding to this loss function is simply the Kullback-Leibler (KL)
Divergence or Relative Entropy, denoted by K (pg,,ps,). It is easy to see that K (pg,,ps,) is always non-
negative and is zero if and only if pg, = pp,. This shows that 6* minimizes the risk. The KL divergence
measures how different two probability distributions are and therefore is natural to measure convergence of
the maximum likelihood procedures.

2.2 Convergence of Log-Likelihood to KL Divergence

Since 6,, maximizes the likelihood over 6 € ©, we have

Zl pe* ' Zlogpa* —logp;, (Vi) <0

Therefore,

p* i
le - K(ps,,po-) + K(py, ,po-) <0

or re-arranging
po- (Vi)
ps, (Vi)

1 n
K(pg‘n,]?e*) < o Zlog

i=1

- ‘Kv(p@1 » Do+ )
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Notice that the quantity

1 & (Y;
> tos b

n <" py(Y;)

is an empirical average whose mean is K (pg, pg~). By the law of large numbers, for each 6 € O,

1 = Do+ (}/z) a.s.
~ lOg -K Do, Do+ -0
‘n 218wy K rere)
If this also holds for the sequence {f,,}, then we have
1 pe- (Vi)
K(p; ,pe+) < |— log — K(p; ,po)| — 0asn —
( (729 ) n Z pén (Y) ( 0. )

which implies that
Py, — Do~
which often implies that .
0, — 0*
in some appropriate sense (e.g., point-wise or in norm).
Example 1 Gaussian Distributions

Ly

iid

0= R7 {E}?:l ~ Do~ (y)

K(po.po+) = / log I;f;(;y)) po- (y)dy

J1w=07 = = 0"Ipe- )y

Eo-[(y — 0)*] — Ep-[(y — 0%)]

Eo-[Y? —2Y0 + 6% —1/2

= (0°)*+1/2—20%0+6%>—1/2
(0" —6)?

= 0" mazimizes Ellogpe(Y)] wrt 6 € ©

>
\

o= argmax{—) (¥; - 6)%}
= argmin{} (¥; - )}

1
= ﬁZYi

=1
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2.3 Hellinger Distance
The KL divergence is not a distance function.

K(p91ap92) 7é K(p925p91)

Therefore, it is often more convenient to work with the Hellinger metric,

tn.u) = (4, 24) )

The Hellinger metric is symmetric, non-negative and

H(p91ap92) = H(pazapfh)

and therefore it is a distance measure. Furthermore, the squared Hellinger distance lower bounds the KL
divergence, so convergence in KL divergence implies convergence of the Hellinger distance.

Proposition 1
H2(p91ap92) < K(p91 7p92)

Proof:

Hnp0) = [ (Voo ) = Vom ) dy
- / po, (4)dy + / Py (v)dly — 2 / Voo @V per @)y

= 272/\/p91(y)\/p92(y)dy, since /pg(y)dy: 1vo
2 (1 — By, [ Do (¥) /o, (Y)D

< 2 1Og <E92 [ Po, (Y)/p91 (Y):|) ; sincel —z < — 1Og T
< 2Ep, [log VDo, Y)/pe,(Y)|, Dby Jensen’s inequality

Ey, [log(pgz(Y)/pgl(Y))] = K(p917p92)

Note that in the proof we also showed that

Hipapm) =2 (1 [ Von Gy

and using the fact logx < x — 1 again, we have

H(po,,po,) < —2log (/ \/m\/mdy)

The quantity inside the log is called the affinity between py, and peg,:

A(poy poy) = / Voo @)V om0y

This is another measure of closeness between pg, and py, .
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Example 2 Gaussian Distributions
1 _( —0 2
e—(w=0)

2log / V00, @)/ per W)y

1 1
1 2 /1 2
_210g/ <ﬁ6_(y_91)2> (ﬁe_(y_92)2> dy
1 —|@=t? | (v=02)?
_210g (/ ﬁe |: 2 + 2 :|dy>

1 ,[(y,(M))ﬂ(M)?]
—2log (/ —e 2 2 dy
e

61 —6o )2

= —210ge_( 2
(61 — 62)?

1

2
1 2 . o

= —2log A(pg,,pe,) = 5(01 —03)°  for Gaussian distributions

1
= Hz(p017]992) < 5(91 — 92)2 for Gaussian.

Summary
iid
Yi ~ po-

1. Maximum likelihood estimator maximizes the empirical average
1 n
= "logps(Y3)
ni3

(our empirical risk is negative log-likelihood)
2. 6* maximizes the expectation

E

1 n
= "logps(Y7)
n =1

(the risk is the expected negative log-likelihood)

1« 0.8
~ D logps(¥;) 5 B
=1

1 n
= "logps(Y3)
n
i=1
so we expect some sort of concentration of measure.

4. In particular, since

n
1=

1 Do~ (}/’L) a.s.
- lo - K Do, Po~
w2108 oy K boper)
we might expect that K (p; ,pe~) — 0 for the sequence of estimates {p; }72;.

So, the point is that maximum likelihood estimator is just a special case of a loss function in learning. Due
to its special structure, we are naturally led to consider KL divergences, Hellinger distances, and Affinities.
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