
ECE901 Spring 2007 Statistical Learning Theory Instructor: R. Nowak

Lecture 13: Maximum Likelihood Estimation

1 Summary of Lecture 12

In the last lecture we derived a risk (MSE) bound for regression problems; i.e., select an f ∈ F so that
E[(f(X)− Y )2]− E[(f∗(X)− Y )2] is small, where f∗(x) = E[Y |X = x]. The result is summarized below.

Theorem 1 (Complexity Regularization with Squared Error Loss) Let X = Rd, Y = [−b/2, b/2],
{Xi, Yi}n

i=1 iid, PXY unknown, F = {collection of candidate functions},

f : Rd → Y, R(f) = E[(f(X)− Y )2].

Let c(f), f ∈ F , be positive numbers satisfying
∑

f∈F 2−c(f) ≤ 1, and select a function from F according to

f̂n = arg min
{

R̂n(f) +
1
ε

c(f) log 2
n

}
,

with ε ≤ 3
5b2 and R̂n(f) = 1

n

∑n
i=1(f(Xi)− Yi)2. Then,

E[R(f̂n)]−R(f∗) ≤
(

1 + α

1− α

)
min
f∈F

{
R(f)−R(f∗) +

1
ε

c(f) log 2
n

}
+ O(n−1)

where α = εb2

1−2b2ε/3

2 Maximum Likelihood Estimation

The focus of this lecture is to consider another approach to learning based on maximum likelihood estimation.
Consider the classical signal plus noise model:

Yi = f

(
i

n

)
+ Wi, i = 1, · · · , n

where Wi are iid zero-mean noises. Furthermore, assume that Wi ∼ p(w) for some known density p(w).
Then

Yi ∼ p

(
y − f

(
i

n

))
≡ pfi(y)

since Yi − f
(

i
n

)
= Wi.

A very common and useful loss function to consider is

R̂n(f) =
1
n

n∑
i=1

(− log pfi(Yi)).

Minimizing R̂n with respect to f is equivalent to maximizing

1
n

n∑
i=1

log pfi(Yi)

1
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or
n∏

i=1

pfi(Yi).

Thus, using the negative log-likelihood as a loss function leads to maximum likelihood estimation. If the Wi

are iid zero-mean Gaussian r.v.s then this is just the squared error loss we considered last time. If the Wi

are Laplacian distributed e.g. p(w) ∝ e−|w|, then we obtain the absolute error, or L1, loss function. We can
also handle non-additive models such as the Poisson model

Yi ∼ P (y|f (i/n)) = e−f(i/n) [f(i/n)]y

y!

In this case
− log P (Yi|f (i/n)) = f (i/n)− Yi log (f (i/n)) + constant

which is a very different loss function, but quite appropriate for many imaging problems.
Before we investigate maximum likelihood estimation for model selection, let’s review some of the basis

concepts. Let Θ denote a parameter space (e.g., Θ = R), and assume we have observations

Yi
iid∼ pθ∗(y), i = 1, . . . , n

where θ∗ ∈ Θ is a parameter determining the density of the {Yi}. The ML estimator of θ∗ is

θ̂n = arg max
θ∈Θ

n∏
i=1

pθ(Yi)

= arg max
θ∈Θ

n∑
i=1

log pθ(Yi)

= arg min
θ∈Θ

n∑
i=1

− log pθ(Yi).

θ̂ maximizes the expected log-likelihood. To see this, let’s compare the expected log-likelihood of θ∗ with
any other θ ∈ Θ.

E[log pθ∗(Y )− log pθ(Y )] = E

[
log

pθ∗(Y )
pθ(Y )

]
=

∫
log

pθ∗(y)
pθ(y)

pθ∗(y)dy

= K(pθ, pθ∗) the KL divergence
≥ 0 with equality iff pθ∗ = pθ.

Why?

−E

[
log

pθ∗(y)
pθ(y)

]
= E

[
log

pθ(y)
pθ∗(y)

]
≤ log E

[
pθ(y)
pθ∗(y)

]
= log

∫
pθ(y)dy = 0

⇒ K(pθ, pθ∗) ≥ 0
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2.1 Likelihood as a Loss Function

We can restate the maximum likelihood estimator in the general terms we are using in this course. We have
n i.i.d observations drawn from an unknown distribution

Yi
i.i.d.∼ pθ∗ , i = {1, . . . , n}

where θ∗ ∈ Θ. We can view pθ∗ as a member of a parametric class of distributions, P = {pθ}θ∈Θ. Our goal
is to use the observations {Yi} to select an appropriate distribution (e.g., model) from P. We would like the
selected distribution to be close to p∗θ in some sense.

We use the negative log-likelihood loss function, defined as l(θ, Yi) = − log pθ(Yi). The empirical risk
is

R̂n = − 1
n

n∑
i=1

log pθ(Yi).

We select the distribution that minimizes the empirical risk

min
p∈P

−
n∑

i=1

log p(Yi) = min
θ∈Θ

−
n∑

i=1

log pθ(Yi)

In other words, the distribution we select is p̂ := pθ̂n
, where

θ̂n = arg min
θ∈Θ

−
n∑

i=1

log pθ(Yi)

The risk is defined as
R(θ) = E[l(θ, Y )] = −E[log pθ(Y )].

And, the excess risk of θ is defined as

R(θ)−R(θ∗) =
∫

log
pθ∗(y)
pθ(y)

pθ∗(y) dy ≡ K(pθ, pθ∗) .

We recognized that the excess risk corresponding to this loss function is simply the Kullback-Leibler (KL)
Divergence or Relative Entropy, denoted by K(pθ1 , pθ2). It is easy to see that K(pθ1 , pθ2) is always non-
negative and is zero if and only if pθ1 = pθ2 . This shows that θ∗ minimizes the risk. The KL divergence
measures how different two probability distributions are and therefore is natural to measure convergence of
the maximum likelihood procedures.

2.2 Convergence of Log-Likelihood to KL Divergence

Since θ̂n maximizes the likelihood over θ ∈ Θ, we have

n∑
i=1

log
pθ∗(Yi)
pθ̂n

(Yi)
=

n∑
i=1

log pθ∗(Yi)− log pθ̂n
(Yi) ≤ 0

Therefore,
1
n

n∑
i=1

log
pθ∗(Yi)
pθ̂n

(Yi)
−K(pθ̂n

, pθ∗) + K(pθ̂n
, pθ∗) ≤ 0

or re-arranging

K(pθ̂n
, pθ∗) ≤

∣∣∣∣∣ 1n
n∑

i=1

log
pθ∗(Yi)
pθ̂n

(Yi)
−K(pθ̂n

, pθ∗)

∣∣∣∣∣
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Notice that the quantity
1
n

n∑
i=1

log
pθ∗(Yi)
pθ(Yi)

is an empirical average whose mean is K(pθ, pθ∗). By the law of large numbers, for each θ ∈ Θ,∣∣∣∣∣ 1n
n∑

i=1

log
pθ∗(Yi)
pθ(Yi)

−K(pθ, pθ∗)

∣∣∣∣∣ a.s.→ 0

If this also holds for the sequence {θ̂n}, then we have

K(pθ̂n
, pθ∗) ≤

∣∣∣∣∣ 1n ∑ log
pθ∗(Yi)
pθ̂n

(Yi)
−K(pθ̂n

, pθ∗)

∣∣∣∣∣→ 0 as n →∞

which implies that
pθ̂n

→ pθ∗

which often implies that
θ̂n → θ∗

in some appropriate sense (e.g., point-wise or in norm).

Example 1 Gaussian Distributions

pθ∗(y) =
1√
π

e−(y−θ∗)2

Θ = R, {Yi}n
i=1

iid∼ pθ∗(y)

K(pθ, pθ∗) =
∫

log
pθ∗(y)
pθ(y)

pθ∗(y)dy

=
∫

[(y − θ)2 − (y − θ∗)2]pθ∗(y)dy

= Eθ∗ [(y − θ)2]− Eθ∗ [(y − θ∗)2]
= Eθ∗ [Y 2 − 2Y θ + θ2]− 1/2
= (θ∗)2 + 1/2− 2θ∗θ + θ2 − 1/2
= (θ∗ − θ)2

⇒ θ∗ maximizes E[log pθ(Y )] wrt θ ∈ Θ

θ̂n = arg max
θ
{−
∑

(Yi − θ)2}

= arg min
θ
{
∑

(Yi − θ)2}

=
1
n

n∑
i=1

Yi
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2.3 Hellinger Distance

The KL divergence is not a distance function.

K(pθ1 , pθ2) 6= K(pθ2 , pθ1)

Therefore, it is often more convenient to work with the Hellinger metric,

H(pθ1 , pθ2) =
(∫ (

p
1
2
θ1
− p

1
2
θ2

)2

dy

) 1
2

The Hellinger metric is symmetric, non-negative and

H(pθ1 , pθ2) = H(pθ2 , pθ1)

and therefore it is a distance measure. Furthermore, the squared Hellinger distance lower bounds the KL
divergence, so convergence in KL divergence implies convergence of the Hellinger distance.

Proposition 1
H2(pθ1 , pθ2) ≤ K(pθ1 , pθ2)

Proof:

H2(pθ1 , pθ2) =
∫ (√

pθ1(y)−
√

pθ2(y)
)2

dy

=
∫

pθ1(y)dy +
∫

pθ2(y)dy − 2
∫ √

pθ1(y)
√

pθ2(y)dy

= 2− 2
∫ √

pθ1(y)
√

pθ2(y)dy, since
∫

pθ(y)dy = 1∀θ

= 2
(
1− Eθ2

[√
pθ1(Y )/pθ2(Y )

])
≤ 2 log

(
Eθ2

[√
pθ2(Y )/pθ1(Y )

])
, since 1− x ≤ − log x

≤ 2Eθ2

[
log
√

pθ2(Y )/pθ1(Y )
]
, by Jensen’s inequality

= Eθ2 [log(pθ2(Y )/pθ1(Y ))] ≡ K(pθ1 , pθ2)

Note that in the proof we also showed that

H(pθ1 , pθ2) = 2
(

1−
∫ √

pθ1(y)
√

pθ2(y)dy

)
and using the fact log x ≤ x− 1 again, we have

H(pθ1 , pθ2) ≤ −2 log
(∫ √

pθ1(y)
√

pθ2(y)dy

)
The quantity inside the log is called the affinity between pθ1 and pθ2 :

A(pθ1 , pθ2) =
∫ √

pθ1(y)
√

pθ2(y)dy

This is another measure of closeness between pθ1 and pθ2 .
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Example 2 Gaussian Distributions

pθ(y) =
1√
π

e−(y−θ)2

−2 log
∫ √

pθ1(y)
√

pθ2(y)dy

= −2 log
∫ (

1√
π

e−(y−θ1)
2
) 1

2
(

1√
π

e−(y−θ2)
2
) 1

2

dy

= −2 log

(∫
1√
π

e
−
�

(y−θ1)2

2 +
(y−θ2)2

2

�
dy

)

= −2 log
(∫

1√
π

e
−
h
(y−(

θ1+θ2
2 ))2

+(
θ1−θ2

2 )2
i
dy

)
= −2 log e−(

θ1−θ2
2 )2

=
1
2
(θ1 − θ2)2

⇒ −2 log A(pθ1 , pθ2) =
1
2
(θ1 − θ2)2 for Gaussian distributions

⇒ H2(pθ1 , pθ2) ≤
1
2
(θ1 − θ2)2 for Gaussian.

Summary

Yi
iid∼ pθ∗

1. Maximum likelihood estimator maximizes the empirical average

1
n

n∑
i=1

log pθ(Yi)

(our empirical risk is negative log-likelihood)

2. θ∗ maximizes the expectation

E

[
1
n

n∑
i=1

log pθ(Yi)

]
(the risk is the expected negative log-likelihood)

3.
1
n

n∑
i=1

log pθ(Yi)
a.s.→ E

[
1
n

n∑
i=1

log pθ(Yi)

]
so we expect some sort of concentration of measure.

4. In particular, since
1
n

n∑
i=1

log
pθ∗(Yi)
pθ(Yi)

a.s.→ K(pθ, pθ∗)

we might expect that K(pθ̂n
, pθ∗) → 0 for the sequence of estimates {pθ̂n

}∞n=1.

So, the point is that maximum likelihood estimator is just a special case of a loss function in learning. Due
to its special structure, we are naturally led to consider KL divergences, Hellinger distances, and Affinities.
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