ECE901 Spring 2007 Statistical Learning Theory Instructor: R. Nowak

Lecture 12: Complexity Regularization for Squared Error Loss

1 Complexity Regularization in Regression

The Chernoff/Hoeffding bounds were central to our analysis of classifier errors. Hoeffding’s inequality states
that for a sum of i.i.d. random variables 0 < L; <1,i=1,....,n
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If L; = £(f(X;),Y;), the loss of f in the prediction of ¥; from X;, then we have

~

P(R(f)-R(f) > ¢) < e

When considering collection of candidate predictors, the union bound is used to obtain the following: with
probability at least 1 —§

log | F| + log(1/4)
n ’
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R(f) < R(f) + \/

Taking fn to be the minimizer of the upper bound above, with § = 1/4/n, leads to the following bound on
the expected excess risk of f,:

f, log |F| +1 2
E[R(fa)] —min R(f) < \/Ogl |+nogn+ .

More generally, if we have a countable collection of predictors and penalties ¢(f) assigned to each f € F
that satisfy the summability condition feF 2—<(f) <1, then we showed that

c(f)log2+ 3 logn N 1
2n vn

E[R(f,)] - R* < min R(f) — R* +

Consider the two terms in this upper bound: R(f) — R* is a bound on the approximation error of a model
f, and remainder is a bound on the estimation error associated with f. Thus, we see that complexity
regularization automatically optimizes a balance between approximation and estimation errors.

Note that the upper bound is at least n~'/2. This is the best one can expect, in general, when considering
the 0/1 or ¢; (absolute error) loss functions, but in regression we are often interested in the squared error or £3
loss (corresponding to the mean square error risk). The squared error decays faster than the 0/1 or absolute
error (since squaring small numbers makes them smaller yet). Unfortunately, the Chernoff/Hoeffding bounds
are not capable of handling such cases, and more sophisticated techniques are required. Before delving into
those methods, consider the following simple example.

Example 1 To illustrate the distinction between classification and regression, consider a simple, scalar
signal plus noise problem. Consider Y; =04+ W;, i =1,...,n, where 0 is a fired unknown scalar parameter
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and the W; are independent, zero-mean, unit variance random variables. Let Y = 1/n> " | Y;. Then we
have

2
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Thus, the mean square error decays like n=', notably faster than n . The convergence rate of n™' is called
the parametric rate, since it is the rate at which the MSE decays in simple parametric inference. A similar

conclusion can be arrived at through a large deviation analysis. According to the Central Limit Theorem, Y
is distributed approzimately N(0,1/n). A simple tail-bound on the Gaussian distribution gives us

_ 1
P(Y —60>¢)=P(W>¢) < 56—"62/2,

which implies that -
PY — 0] >¢) < e /2

This is a bound on the deviations of the squared error |§7 9|2 The squared error concentration inequality
implies that E[|Y — 60]*] = O(L) (just write E[(Y — 0)%] = [[° P 2> t)dt).
1.1 Risk Bounds for Squared Error Loss

Based on the example above, we hope to achieve a risk bound for squared error loss of the form

c(f)log2 + élogn}

2n

where C' > 0 is a constant. That is, the bound on the estimation error should be O(c(f)n~1), rather
than O(y/c(f)n—1). To begin our investigation into regression and function estimation, let us consider the
following. Let X = R? and Y = R. Take F such that f € F is a map f : R? — R. We have training data

{X., Y}, i Pxy. As our loss function, we take the squared error
I(f(X:),Y;) = (f(Xi) = Yi)*.

The empirical risk function is simply the sum of squared prediction errors

The risk is then the MSE
R(f) = BI(f(X) - Y)?.
We know that the function f* that minimizes the MSE is just the conditional expectation of Y given X:
ff=E[Y|X =z].
Now let R* = R(f*). We would like to select an f, € F using the training data {X;, Y;}" , such that the
excess risk R
E[R(fn)] —R* =0

is small. Let’s consider the difference between the empirical risks:

R(f) -

3\'—‘
3\>—‘
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Note that E[R(f) — R(f*)] = R(f) — R(f*). Hence, by the SLLN, we know that

R(f) = R(f*) — R(f) — R(f*)

as n — o0o. But how fast is this convergence? R R
We will derive a bound for the difference [R(f) — R(f*)] — [R(f) — R(f*)]. The following derivation is
due to Andrew Barrorﬂ The excess risk and it empirical counterpart will be denoted by

E(f) = R(f)—R(f")
E(f) = R(f)—R(f*)

Note that & (f) is the sum of independent random variables:
-1y
- n gt 19

where U; = —(Y; — f(X3))? + (Yi — [*(X;))2. Therefore, £(f) — E(f) = L S0 (U; — E[U)).
We are looking for a bound of the form

PE(f) = E(f) > €) < 6.

If the variables U; are bounded, then we can apply Hoeffding’s inequality. However, a more useful bound for
our regression problem can be derived if the the variables U; satisfy the following moment condition:

var(U;)
2

E[|U; — E[U;]|*] < k! hF—2 (1)

for some h > 0.
The moment condition can be difficult to verify in general, but it does hold, for example, for bounded
random variables. If (1)) holds, then the Craig-Bernstein (CB) inequality (Craig 1933) states:

1< t  mnevar(SU)

Pl - U —E[U]) > —+ ———0= "7 | <e

(n;( [ ])_ne+ 2(1—¢) =¢

for 0 < eh < c¢ < 1 and t > 0. This shows that the tail decays exponentially in t, rather than exponentially
in t2. Recall Hoeffding’s inequality:

P (i Sz - Elz) > ;) <o
=1

o2

If % < 1, then % < t, which implies e %= > e~'. This indicates that the CB inequality may be much
15y,

tighter than Hoeffding’s, when the variance term %ﬁ%ﬂm is small. To use the CB inequality, we need

to bound the variance of L 3" | U;. Note that

var(Uy) = var(—(Y; — f(X3))* + (Yi — f*(X0))%).

Assumption 1 The support of Y and the range f(X) is in a known interval of length b.

Proposition 1 With the above assumption, holds with h = %.

1A. R. Barron, “Complexity regularization with application to artificial neural networks,” in Nonparametric Functional
Estimation and Related Topics. Kluwer Academic Publishers, 1991, pp. 561-576.
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Proposition 2 Again, with the above assumption, it may be shown that

var(U;) < 5b%E(f) (2)

Proof 1 You can write U; as

Ui = 2V;f(Xi) = 2Yif"(X:) + f7(X0)? = f(X3)?
= 2Vif(Xy) —2Yif*(Xu) + 2 (X:)? — f(X0)® = F(X0)? + 2f(X) f*(Xs) — 2f(X3) 5 (Xa)
= 2(Y; - (X)) (f(X2) — F(X0) — (f(X0) — f*(X0)°

Note that the variance of U; is upper-bounded by its second moment. Also note that the covariance of the
two terms above is zero:

B2(Yi — f*(X2) (F(X:) = £7(X0) (f(Xi) = f7(X0)’] = E[ITy
= Ex[Byx[T"T3]]
= Ex[TyEy x[T1]]
= Ex|Ty 0]

This is evident when you recall that f*(X;) = E[Y|X = X;]. Now we can bound the second moments of Ty
and Ty :

E[TY] = 4E[(Y; — f*(X)(f(X:) = f*(X:))?]
= AE[(Y: — f* (X)) (f(X3) — f(X4)7]
< 4B (f(X) = (X))
E[T] = E[(f(X;)— (X))
= E[(f(X3) — ["(X)* (f(X5) = (X))
[ 2

< B (F(X) ~ (X))
So var(U;) < 5b2E[(f(X;) — f*(X;))?]. The final step is to see that

E(f) = E[Ui] = Ex[Ey x[Ui]] = E[(f(Xi) — F5(X))7).

|
Thus, n var(% S Us) < 5b%E(f). And therefore, we can say that, with probability at least 1 — e,
e -8 < L+ 25D
In other words, with probability at least 1 — § (where § = e™?),
() - E(p) < B0 4 B IEU) ®

ne 2(1—¢) °

Now, suppose we have assigned positive numbers ¢(f) to each f € F satisfying the Kraft inequality:

Z 9—c(f) < 1.

feF
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Note that holds V§ > 0. In particular, we let § be a function of f:
8(f) =2"<Ws.

So we can use this § along with the procedure introduced in Lecture 9 (i.e., the union bound followed by the
Kraft inequality) to obtain the following. For any § > 0, with probability at least 1 — ¢

~ c(f)log2+log% 5¢ b2 £(f)
— < 4
e(f)-E(p) < TEEETIEE L RS e ()
Now set c=¢€¢ h = Qb; ¢ and assume € < %. Then define
5¢ b2 <1
o= .
2(1—-c¢)

Now, after using « and rearranging terms, we have

c(f)log2 +log 3
en '

1-a)E(f) < E(f)+

~

Let us choose f to minmize this upper bound. Recall that £(f) = R(f) — j%(f’")7 and so

fn = argmin{fz(f) n C(f)logQ}

fer ne

minimizes the upper bound. Thus, with probability at least 1 — 4,

o~

1-a)é(fn) < g(ﬁ)+c(ﬁz)10g2+log%

en
N c(f;)log2+log%
eEn

< & (5)

where fr = argminscr {R(f) 4 M} .

ne

Now we use the Craig-Bernstein inequality to bound the difference between E(f7) and £(f7). With
probability at least 1 — 4,
o px * * log(%)
E(fn) < E(fa) +a&(fi) + ~ (6)

ne

Now we can again use the union bound to combine and @ For any § > 0, with probability at least
1—26,

~ 1+a,, ., c(fr)log2+2logl/d
£ < (g 4 U )
-« ne
Now set § = e%d, then we have
N 1 * 1 2 —net
P(g(fn)— +a€(f;)+m 2t> < 22
1l-«a ne
Integrating, we get
> 14a

IN
N
8
DO
a
i
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To sum up, we have shown that for € < 19% we have o < 1 and

c(fi)log2+4

Ble) = (1oo) e + Ut
= (12) mn{ew + o822

Or, in expanded form:

ne

l—«a/) feF

BIR(F.)) - R(f) < C+“>mm{mﬂ3gm+¢qgﬁ}+4

Notice that if f* € F and if ¢(f*) is not too large (e.g., ¢(f*) & logn), then we have E[R(f,)] — R(f*) =
O(n~'logn), within a logarithmic factor of the parametric rate of convergence!
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