
ECE901 Spring 2007 Statistical Learning Theory Instructor: R. Nowak

Lecture 12: Complexity Regularization for Squared Error Loss

1 Complexity Regularization in Regression

The Chernoff/Hoeffding bounds were central to our analysis of classifier errors. Hoeffding’s inequality states
that for a sum of i.i.d. random variables 0 ≤ Li ≤ 1, i = 1, . . . , n

P

(
1
n

n∑
i=1

E[Li]− Li > ε
)
≤ e−2nε2

If Li = `(f(Xi), Yi), the loss of f in the prediction of Yi from Xi, then we have

P
(
R(f)− R̂(f) > ε

)
≤ e−2nε2

When considering collection of candidate predictors, the union bound is used to obtain the following: with
probability at least 1− δ

R(f) ≤ R̂(f) +

√
log |F|+ log(1/δ)

2n
, ∀f ∈ F

Taking f̂n to be the minimizer of the upper bound above, with δ = 1/
√

n, leads to the following bound on
the expected excess risk of f̂n:

E[R(f̂n)]−min
f∈F

R(f) ≤
√

log |F|+ log n + 2
n

.

More generally, if we have a countable collection of predictors and penalties c(f) assigned to each f ∈ F
that satisfy the summability condition

∑
f∈F 2−c(f) ≤ 1, then we showed that

E[R(f̂n)]−R∗ ≤ min
f∈F

R(f)−R∗ +

√
c(f) log 2 + 1

2 log n

2n
+

1√
n

 .

Consider the two terms in this upper bound: R(f)− R∗ is a bound on the approximation error of a model
f , and remainder is a bound on the estimation error associated with f . Thus, we see that complexity
regularization automatically optimizes a balance between approximation and estimation errors.

Note that the upper bound is at least n−1/2. This is the best one can expect, in general, when considering
the 0/1 or `1 (absolute error) loss functions, but in regression we are often interested in the squared error or `22
loss (corresponding to the mean square error risk). The squared error decays faster than the 0/1 or absolute
error (since squaring small numbers makes them smaller yet). Unfortunately, the Chernoff/Hoeffding bounds
are not capable of handling such cases, and more sophisticated techniques are required. Before delving into
those methods, consider the following simple example.

Example 1 To illustrate the distinction between classification and regression, consider a simple, scalar
signal plus noise problem. Consider Yi = θ + Wi, i = 1, . . . , n, where θ is a fixed unknown scalar parameter
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and the Wi are independent, zero-mean, unit variance random variables. Let Ȳ = 1/n
∑n

i=1 Yi. Then we
have

E[|Ȳ − θ|2] = E

( 1
n

n∑
i=1

Wi

)2


=
1
n2

n∑
i=1

E[W 2
i ] = n−1

Thus, the mean square error decays like n−1, notably faster than n−1/2. The convergence rate of n−1 is called
the parametric rate, since it is the rate at which the MSE decays in simple parametric inference. A similar
conclusion can be arrived at through a large deviation analysis. According to the Central Limit Theorem, Ȳ
is distributed approximately N(θ, 1/n). A simple tail-bound on the Gaussian distribution gives us

P (Ȳ − θ > ε) = P (W > ε) ≤ 1
2
e−nε2/2,

which implies that
P (|Ȳ − θ|2 > ε) ≤ e−nε/2

This is a bound on the deviations of the squared error |Ȳ − θ|2. The squared error concentration inequality
implies that E[|Ȳ − θ|2] = O( 1

n ) (just write E[(Ȳ − θ)2] =
∫∞
0

P ((Ȳ − θ)2 > t)dt).

1.1 Risk Bounds for Squared Error Loss

Based on the example above, we hope to achieve a risk bound for squared error loss of the form

E[R(f̂n)]−R∗ ≤ C min
f∈F

{
R(f)−R∗ +

c(f) log 2 + 1
2 log n

2n

}
,

where C > 0 is a constant. That is, the bound on the estimation error should be O(c(f)n−1), rather
than O(

√
c(f)n−1). To begin our investigation into regression and function estimation, let us consider the

following. Let X = Rd and Y = R. Take F such that f ∈ F is a map f : Rd 7→ R. We have training data
{Xi, Yi}n

i=1
i.i.d.∼ PXY . As our loss function, we take the squared error

l(f(Xi), Yi) = (f(Xi)− Yi)2.

The empirical risk function is simply the sum of squared prediction errors

R̂(f) =
1
n

n∑
i=1

(f(Xi)− Yi)2.

The risk is then the MSE
R(f) = E[(f(X)− Y )2].

We know that the function f∗ that minimizes the MSE is just the conditional expectation of Y given X:

f∗ = E[Y |X = x].

Now let R∗ = R(f∗). We would like to select an f̂n ∈ F using the training data {Xi, Yi}n
i=1 such that the

excess risk
E[R(f̂n)]−R∗ ≥ 0

is small. Let’s consider the difference between the empirical risks:

R̂(f)− R̂(f∗) =
1
n

n∑
i=1

(f(Xi)− Yi)2 −
1
n

n∑
i=1

(f∗(Xi)− Yi)2.
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Note that E[R̂(f)− R̂(f∗)] = R(f)−R(f∗). Hence, by the SLLN, we know that

R̂(f)− R̂(f∗) → R(f)−R(f∗)

as n →∞. But how fast is this convergence?
We will derive a bound for the difference [R(f) − R(f∗)] − [R̂(f) − R̂(f∗)]. The following derivation is

due to Andrew Barron1. The excess risk and it empirical counterpart will be denoted by

E(f) := R(f)−R(f∗)

Ê(f) := R̂(f)− R̂(f∗)

Note that Ê(f) is the sum of independent random variables:

Ê(f) = − 1
n

n∑
i=1

Ui,

where Ui = −(Yi − f(Xi))2 + (Yi − f∗(Xi))2. Therefore, E(f)− Ê(f) = 1
n

∑n
i=1(Ui − E[Ui]).

We are looking for a bound of the form

P (E(f)− Ê(f) > ε) < δ.

If the variables Ui are bounded, then we can apply Hoeffding’s inequality. However, a more useful bound for
our regression problem can be derived if the the variables Ui satisfy the following moment condition:

E[|Ui − E[Ui]|k] ≤ var(Ui)
2

k! hk−2 (1)

for some h > 0.
The moment condition can be difficult to verify in general, but it does hold, for example, for bounded

random variables. If (1) holds, then the Craig-Bernstein (CB) inequality (Craig 1933) states:

P

(
1
n

n∑
i=1

(Ui − E[Ui]) ≥
t

nε
+

nε var( 1
n

∑
Ui)

2(1− c)

)
≤ e−t,

for 0 < εh ≤ c < 1 and t > 0. This shows that the tail decays exponentially in t, rather than exponentially
in t2. Recall Hoeffding’s inequality:

P

(
1
n

n∑
i=1

(Zi − E[Zi]) ≥
t

n

)
≤ e

−2t2
n .

If t
n � 1, then t2

n � t, which implies e
−2t2

n � e−t. This indicates that the CB inequality may be much

tighter than Hoeffding’s, when the variance term nε var( 1
n

P
Ui)

2(1−c) is small. To use the CB inequality, we need
to bound the variance of 1

n

∑n
i=1 Ui. Note that

var(Ui) = var(−(Yi − f(Xi))2 + (Yi − f∗(Xi))2).

Assumption 1 The support of Y and the range f(X) is in a known interval of length b.

Proposition 1 With the above assumption, (1) holds with h = 2b2

3 .

1A. R. Barron, “Complexity regularization with application to artificial neural networks,” in Nonparametric Functional
Estimation and Related Topics. Kluwer Academic Publishers, 1991, pp. 561-576.
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Proposition 2 Again, with the above assumption, it may be shown that

var(Ui) ≤ 5b2E(f) (2)

Proof 1 You can write Ui as

Ui = 2Yif(Xi)− 2Yif
∗(Xi) + f∗(Xi)2 − f(Xi)2

= 2Yif(Xi)− 2Yif
∗(Xi) + 2f∗(Xi)2 − f∗(Xi)2 − f(Xi)2 + 2f(Xi)f∗(Xi)− 2f(Xi)f∗(Xi)

= 2 (Yi − f∗(Xi)) (f(Xi)− f∗(Xi))− (f(Xi)− f∗(Xi))
2

Note that the variance of Ui is upper-bounded by its second moment. Also note that the covariance of the
two terms above is zero:

E[2 (Yi − f∗(Xi)) (f(Xi)− f∗(Xi)) (f(Xi)− f∗(Xi))
2] = E[T1T2]

= EX [EY |X [T1T2]]
= EX [T2EY |X [T1]]
= EX [T2 ∗ 0]
= 0

This is evident when you recall that f∗(Xi) = E[Y |X = Xi]. Now we can bound the second moments of T1

and T2 :

E[T1] = 4E[((Yi − f∗(Xi))(f(Xi)− f∗(Xi)))
2]

= 4E[(Yi − f∗(Xi))2(f(Xi)− f∗(Xi))2]
≤ 4E[b2(f(Xi)− f∗(Xi))2]

E[T2] = E[(f(Xi)− f∗(Xi))
4]

= E[(f(Xi)− f∗(Xi))
2 (f(Xi)− f∗(Xi))

2]

≤ E[b2 (f(Xi)− f∗(Xi))
2]

So var(Ui) ≤ 5b2E[(f(Xi)− f∗(Xi))
2]. The final step is to see that

E(f) = E[Ui] = EX [EY |X [Ui]] = E[(f(Xi)− f∗(Xi))
2].

Thus, n var( 1
n

∑n
i=1 Ui) ≤ 5b2E(f). And therefore, we can say that, with probability at least 1− e−t,

E(f)− Ê(f) ≤ t

n ε
+

5ε b2 E(f)
2(1− c)

.

In other words, with probability at least 1− δ (where δ = e−t),

E(f)− Ê(f) ≤
log 1

δ

n ε
+

5ε b2 E(f)
2(1− c)

. (3)

Now, suppose we have assigned positive numbers c(f) to each f ∈ F satisfying the Kraft inequality:∑
f∈F

2−c(f) ≤ 1.
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Note that (3) holds ∀δ > 0. In particular, we let δ be a function of f:

δ(f) = 2−c(f)δ.

So we can use this δ along with the procedure introduced in Lecture 9 (i.e., the union bound followed by the
Kraft inequality) to obtain the following. For any δ > 0, with probability at least 1− δ

E(f)− Ê(f) ≤
c(f) log 2 + log 1

δ

n ε
+

5ε b2 E(f)
2(1− c)

, ∀f ∈ F (4)

Now set c = ε h = 2b2 ε
3 and assume ε < 6

19b2 . Then define

α =
5ε b2

2(1− c)
< 1.

Now, after using α and rearranging terms, we have

(1− α)E(f) ≤ Ê(f) +
c(f) log 2 + log 1

δ

ε n
.

Let us choose f to minmize this upper bound. Recall that Ê(f) = R̂(f)− R̂(f∗), and so

f̂n = arg min
f∈F

{
R̂(f) +

c(f) log 2
nε

}
minimizes the upper bound. Thus, with probability at least 1− δ,

(1− α)E(f̂n) ≤ Ê(f̂n) +
c(f̂n) log 2 + log 1

δ

ε n

≤ Ê(f∗n) +
c(f∗n) log 2 + log 1

δ

ε n
(5)

where f∗n = arg minf∈F

{
R(f) + c(f) log 2

nε

}
.

Now we use the Craig-Bernstein inequality to bound the difference between Ê(f∗n) and E(f∗n). With
probability at least 1− δ,

Ê(f∗n) ≤ E(f∗n) + α E(f∗n) +
log(1

δ )
nε

. (6)

Now we can again use the union bound to combine (5) and (6). For any δ > 0, with probability at least
1− 2δ,

E(f̂n) ≤ 1 + α

1− α
E(f∗n) +

c(f∗n) log 2 + 2 log 1/δ

nε
.

Now set δ = e
−nε t

2 , then we have

P

(
E(f̂n)− 1 + α

1− α
E(f∗n) +

c(f∗n) log 2
nε

≥ t

)
≤ 2e

−nεt
2 .

Integrating, we get

E

[
E(f̂n)− 1 + α

1− α
E(f∗n) +

c(f∗n) log 2
nε

]
≤

∫ ∞

0

P ( ” ≥ t) dt

≤
∫ ∞

0

2e
−nεt

2

=
4
nε
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To sum up, we have shown that for ε < 6
19b2 we have α < 1 and

E[E(f̂n)] ≤
(

1 + α

1− α

)
E(f∗n) +

c(f∗n) log 2 + 4
nε

=
(

1 + α

1− α

)
min
f∈F

{
E(f) +

c(f) log 2
nε

}
+

4
nε

Or, in expanded form:

E[R(f̂n)]−R(f∗) ≤
(

1 + α

1− α

)
min
f∈F

{
R(f)−R(f∗) +

c(f) log 2
nε

}
+

4
nε

Notice that if f∗ ∈ F and if c(f∗) is not too large (e.g., c(f∗) ≈ log n), then we have E[R(f̂n)] − R(f∗) =
O(n−1 log n), within a logarithmic factor of the parametric rate of convergence!
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