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Gradient Projection for Sparse
Reconstruction: Application to Compressed
Sensing and Other Inverse Problems

Mario A. T. Figueiredo, Robert D. Nowak, Stephen J. Wright

Abstract—Many problems in signal processing and A, when trying to inferx from noiseless observa-
statistical inference involve finding sparse solutions to tionsy = Ax or from noisy observations as in (2).

under-determined, or ill-conditioned, linear systems of
equations. A standard approach consists in minimizing
an objective function which includes a quadratic ¢2)
error term combined with a sparseness-inducing {;)

The presence of thé, term encourages small
components ofx to become exactly zero, thus
promoting sparse solutions [11], [53]. Because of

regularization term. Basis Pursuit, the Least Absolute this feature, (1) has been used for more than three
Shrinkage and Selection Operator (LASSO), wavelet- decades in several signal processing problems where
based deconvolution, and Compressed Sensing are ag,arseness is sought; some early references are [12],
few weII-knowr] examp_les _of this approac_h. This paper [36], [49], [52]. In the 1990’s, seminal work on the
proposes gradient projection (GP) algorithms for the ’ ' : A N " .
bound-constrained quadratic programming (BCQP) Uuse of /1 sparseness-inducing penalties/log-priors
formulation of these problems. We test variants of appeared in the statistics literature: the now famous
this approach that select the line search parameters basis pursuit denoisindBPDN, [11, Section 5])
in different ways, including techniques based on the ojiarion and theleast absolute shrinkage and se-
Barzilai-Borwein method. Computational experiments lecti torLASSO. [53]). For brief historical
show that these GP approaches perform very well in a ection operator( , [53]). For ”_e IS erpa
wide range of applications, being significantly faster (in accounts on the use of thig penalty in statistics
and signal processing, see [40], [54].
Problem (1) is closely related to the following

terms of computation time) than competing methods.
convex constrained optimization problems:
I. INTRODUCTION

A. Background min [|x|[;  subjectto [y — Ax[3<e  (3)
There has been considerable interest in solvinghg
the convex unconstrained optimization problem
min ||y — Ax|3 subjectto x|, <t (4)
X

min Sly - Ax3+xl @ |

x where ¢ and ¢ are nonnegative real parameters.
wherex € R", y € R¥, A is ank x n matrix, 7 isa Problem (3) is aquadratically constrained linear
nonnegative parametdfy |, denotes the Euclideanprogram (QCLP) whereas (4) is @uadratic pro-
norm of v, and||v||; = 3, |v;| is the¢; norm ofv. gram (QP). Convex analysis can be used to show
Problems of the form (1) have become familiar ovethat a solution of (3) (for any such that this
the past three decades, particularly in statistical afdoblem is feasible) is eithexk = 0, or else is
signal processing contexts. From a Bayesian pe&-minimizer of (1), for somer > 0. Similarly, a
spective, (1) can be seen as a maximaposteriori  solution of (4) for anyt > 0 is also a minimizer
criterion for estimatingk from observations of (1) for somer > 0. These claims can be proved
using [48, Theorem 27.4].

The LASSO approach to regression has the form
(4), while the basis pursuit criterion [11, (3.1)] has

the form (3) withe = 0, i.e,, a linear program (LP)
=A||x]l1 + K) [1], [25], [53]. Problem (1) can also (5)
be viewed as a regularization technique to overcome
the ill-conditioned, or even singular, nature of matrix Problem (1) also arises in wavelet-based im-
age/signal reconstruction and restoration (namely
Department of Electrical and Computer Engineeritgstituto deconvolutlon); in those prob_lems, ma_trA has
Superior Técnico,1049-001 Lisboa,Portugal. R. Nowak is the form A = RW, whereR is (a matrix repre-
with the Department of Electrical and Computer Engineeringsentation of) the observation operator (for example,
University of Wisconsin, Madison, WI 53706)SA. S. Wright is . . .
convolution with a blur kernel or a tomographic pro-

with Department of Computer Sciences, University of Wision %" ! -
Madison, W1 53706 USA. jection), W contains a wavelet basis or a redundant

y =Ax+n, (2)

where n is white Gaussian noise of varianeé,
and the prior orx is Laplacian (that islog p(x) =

min||x||;  subjectto y = Ax.
X
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dictionary (that is, multiplying byW corresponds of the form Wv or W”v can be performed by
to performing an inverse wavelet transform), and fast wavelet transform (see Section IlI-G, for
x is the vector of representation coefficients of thdetails). Similarly, if R represents a convolution,
unknown image/signal [24], [25], [26]. then multiplications of the forrRv or R”v can be
We mention also image restoration problems umperformed with the help of the fast Fourier transform
der total variation (TV) regularization [10], [46]. In (FFT) algorithm. In some CS applications, if the
the one-dimensional (1D) case, a change of variabldsnension ofy is not too largeR can be explicitly
leads to the formulation (1). In 2D, however, thestored; howeverA is still not available explicitly,
techniques of this paper cannot be applied directlpecause the large and dense naturdAdfmakes it
Another intriguing new application for the opti- highly impractical to compute and stoRW.
mization problem (1) icompressed sensin@s') Homotopy algorithms that find the full path of
[71, [9], [18]. Recent results show that a relativelysolutions, for all nonnegative values of the scalar
small number of random projections of a sparsparameters in the various formulationsiq (1), €
signal can contain most of its salient informationin (3), andt in (4)), have been proposed in [22], [38],
It follows that if a signal is sparse or approximatelj45], and [56]. The formulation (4) is addressed in
sparse in some orthonormal basis, then an accurfg], while [56] addresses (1) and (4). The method
reconstruction can be obtained from random projea [38] provides the solution path for (1), for a
tions, which suggests a potentially powerful alternaange of values ofr. The least angle regression
tive to conventional Shannon-Nyquist sampling. IfLARS) procedure described in [22] can be adapted
the noiseless setting, accurate approximations ctmsolve the LASSO formulation (4). These are all
be obtained by finding a sparse signal that matchessentially homotopy methods that perform pivoting
the random projections of the original signal. Thi®perations involving submatrices & or AT A at
problem can be cast as (5), where again matroertain critical values of the corresponding parame-
A has the formA = RW, but in this caseR ter (r, t, or €). These methods can be implemented
represents a low-rank randomized sensing matrso that only the submatrix oA corresponding to
(e.g, a k x d matrix of independent realizationsnonzero components of the current vectomeed
of a random variable), while the columns &% be known explicitly, so that ifx has few nonze-
contain the basis over which the signal has a spam®s, these methods may be competitive even for
representatione(g, a wavelet basis). Problem (1)problems of very large scale. (See for example the
is a robust version of this reconstruction proces§olvelLasso function in the SparseLabtoolbox,
which is resilient to errors and noisy data, andvailable fromsparselab.stanford.edu JIn
similar criteria have been proposed and analyzed some signal processing applications, however, the
[8], [31]. Although some CS theory and algorithmswmber of nonzeraxc components may be signif-
apply to complex vectorsx € C*, y € C*, we icant, and since these methods require at least as
will not consider that case here, since the proposadany pivot operations as there are nonzeros in the

approach does not apply to it. solution, they may be less competitive on such
problems. The interior-point approach in [57], which
B. Previous Algorithms solves a generalization of (4), also requires explicit

S | onii i laorith d codes ha construction ofA” A, though the approach could in
everal optimization algorithms and codes hay rinciple modified to allow iterative solution of the

recently been proposed to solve the QCL_P (3), t fhear system at each primal-dual iteration.

QP (4), EEG fLP (I5)t" andl th\?v unco_nstrf;\rl]ned (btt Algorithms that require only matrix-vector prod-
NONSMoo ) ormuiation (1). We review this work, s involving A and A” have been proposed in
briefly here and identify those contributions tha number of recent works. In [11], the problems

ES) and (1) are solved by first reformulatlng them
“perturbed linear programs” (which are linear

f)rograms with additional terms in the objective
paper, the matrixA. cannot be stored explicitly, which are squared norms of the unknowns), then
and it is costly and impractical to access S|gn|f|car()it I
ing a standard primal-dual interior-point ap-
portions of A and AT A. In wavelet-based image PPyIng b b P

reconstruction and some CS problems, for WhiCElroaCh [59]. The linear equations or least-squares
- T roblems that arise at each interior-point iteration
A = RW, explicit storage ofA, R, or W is not P

tical f bl Fint " le. are then solved with iterative methods such as LSQR
practical for problems ot interesting scale. Howeve [217] or conjugate gradients (CG). Each iteration of
matrix-vector products involvin®® and W can be

q ite efficiently. F le. if th | %hese methods requires one multiplication each by
Oone guite etmcientl. For example, 1T the columnS Ol 5nq AT MATLAB implementations of related

W contain a wavelet basis, then any mumpl'cat'o%pproaches are available in tBearselLattoolbox:

A comprehensive repository of CS literature and software ca>c€ in pgrtlcular th_e routinedolveBP andpdco .
be fond inwww.dsp.ece.rice.edu/cs/ . For additional details see [50].
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Another interior-point method was proposeadnalization step, and is known to perform better than
recently (after submission of the first versiorstandard MP. Low computational complexity is one
of this paper) to solve a quadratic programef the main arguments in favor of greedy schemes
ming reformulation of (1), different from the like OMP, but such methods are not designed to
one adopted here. Each search step is comsolve any of the optimization problems posed above.
puted using preconditioned conjugate gradientdowever, ify = Ax, with x sparse and the columns
(PCG) and requires only products involving of A sufficiently incoherent, then OMP finds the
and AT [35]. The code, which is available fromsparsest representation [55]. It has also been shown
www.stanford.edu/"boyd/I1_Is/ , is re- that, under similar incoherence and sparsity condi-
ported to perform faster than competing codes dions, OMP is robust to small levels of noise [20].
the problems tested in [35].

The ¢,-magicsuite of codes (which is available at
www.l1-magic.org ) implements algorithms for
several of the formulations described in Section I-AC- Proposed Approach
In particular, the formulation (3) is solved by re-
casting it as asecond-order cone prograf®OCP),
then applying a primal log-barrier approach. Fo

each value of the log-barrier parameter, the smoo'ﬁ“ther than explicit access ta. It is essentially

unconstrained subproblem is solved using Newton gradlgnt prOJectlon (GP) algqnthm app_lled tp a
method with line search, where the Newton equ uadratic programming formulation of (1), in which

tions may be solved using CG. (Background on thi e search path from each iterate is obtained by

approach can be found in [6], [9], while detailst:Jrojecting the negative-gradient onto the feasible

of the algorithm are given in the User’s Guide foPet'. W.e refer o our approach as GPQj?a(jient
¢,-magic) As in [11] and [35], each CG iteration projection for sparse reconstructipnVarious en-

requires only multiplications byA and A7 these hancements to this basic approach, together with
matrices need not be known or stored ex'plicitly careful choice of stopping criteria and a final debias-

Iterative shrinkage/thresholdingST) algorithms ing phase (which finds the least squares fit over the

can also be used to handle (1) and only requifSeUpport set of the solution to (1)), are also important

matrix-vector multiplications involvingA and A7 n maklng the method practical and eff|C|ent_.
Initially, IST was presented as an EM algorithm, in Unlike the MM approz;ch, GPSR does not involve
the context of image deconvolution problems [44]P0unds on the matrbA”A. In contrasts with the
[25]. IST can also be derived in majorization- 'Nterior-point approaches discussed above, GPSR
minimization(MM) framework [16], [26] (see also !nvolves only one level of |_terat|pn. (The approaches
[23], for a related algorithm derived from a dif-in [11] and [35] have two iteration levels—an outer

ferent perspective). Convergence of IST algorithr§terior-point loop and an inner CG, PCG, or LSQR
was shown in [13], [16]. IST algorithms are baselPOP- The ¢1-magic algorithm for (3) has three
on bounding the matrixA”A (the Hessian of nest_ed Ioops—an outer Iog-barne_r loop, an inter-
ly — Ax|2) by a diagonaD (i.e, D — ATA is mediate Newton iteration, and an inner CG loop.)
positive semi-definite), thus attacking (1) by solving GPSR is able to solve a sequence of problems
a sequence of simpler denoising problems. Whild) efficiently for a sequence of values of Once
this bound may be reasonably tight in the case @f solution has been obtained for a particutarit
deconvolution (wher®. is usually a square matrix), can be used as a “warm-start” for a nearby value.
it may be loose in the CS case, where maffix Solutions can therefore be computed for a range
usually has many fewer rows than columns. For th@gf 7 values for a small multiple of the cost of
reason, IST may not be as effective for solving (1) igolving for a singler value from a “cold start.”
CS applications, as it is in deconvolution problemslhis feature of GPSR is somewhat related to that of
Finally, we mention matching pursuit (MP) and-ARS and other homotopy schemes, which com-
orthogonal MP (OMP) [17], [20], [55], which are Pute solutions for a range of parameter values in
greedy schemes to find a sparse representation oguccession. Interior-point methods such as those that
signal on a dictionary of basis functions. (Matex underlie the approaches in [11], [35], aAgdmagic
is seen as an-element dictionary of-dimensional have been less successful in making effective use of
signals). MP works by iteratively choosing the dicwarm-start information, though this issue has been
tionary element that has the highest inner produbtvestigated in various contexts (see for example
with the current residual, thus most reduces tH80l, [34], [60]). To benefit from a warm start,

representation error. OMP includes an extra ortho§jiterior-point methods require the initial point to be
not only close to the solution but also sufficiently

2Also known as bound optimization algorithms (BOA). For alnterior to the feasible set and close to a “central

general introduction to MM/BOA, see [32]. path,” which is difficult to satisfy in practice.

The approach described in this paper also requires
?nly matrix-vector products involving\ and A7,
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Il. PROPOSEDFORMULATION multiplication each byA and A7, assuming that,
A. Formulation as a Quadratic Program which depends ob = A'y, is pre-computed at
the start of the algorithm.

The first key step of our GPSR .appr.oach IS t(.) Another common operation in the GP algorithms
express (1) as a quadratic program; as in [28], thbs

. o . . . " escribed below is to find the scalaf’ Bz for a
is done by splitting the variable into its positive . T T .
. . ivenz = [u', v*|*. It is easy to see that
and negative parts. Formally, we introduce vector®
u andv and make the substitution 7z Bz = (u— V)TATA(u —v)=[A(u- V)Hg,

x=u—-v, u>0,v=>0. (6) indicating that this quantity can be calculated using
only a single multiplication byA. Since F(z) =
(1/2)z" Bz+c!'z, it follows that evaluation of’(z)
also requires only one multiplication b4.

These relationships are satisfied ¥y= (z;)+ and
v; = (—a;)4 foralli =1,2,...,n, where(-); de-
notes thepositive-part operatodefined agz); =
max{0,z}. We thus have|x|; = 11u + 1%v,
wherel, = [1,1,...,1]7 is the vector consisting C. A Note Concerning Non-negative Solutions

Ef " ((;nes, S0 .(1) c;:an bde re;wntten as tréech:LO\_N'ng It is worth pointing out that when the solution of
ound-constrained quadratic program (BCQP): (1) is known in advance to be nonnegative, we can

1 . :
min ; Iy = A(w— )2 +717u+717v, directly rewrite the problem as
u,v 1
s.t. u>0 7 min (71, — ATy)'x + 5 xTAT Ax,
v > 0. s.t. x > 0. (10)

Note that thel,-norm term is unaffected if we This problem s, as (8), a BCQP, and it can be solved
setu — u+sandv — v+ s, wheres > 0 is  wijth the same algorithms. However the presence of
a shift vector. However such a shift increases th@e constraink > 0 allows us to avoid splitting the

other terms by2717s > 0. It follows that, at the variables into positive and negative parts.
solution of the problem (7)u; = 0 or v; = 0,

fori =1,2,...,n, so that in factu; = (z;)+ and
v; = (—x;)4 forall i =1,2,...,n, as desired. . _ . .
Problem (7) can be written in more standard In this section we discuss GP teChanueS for

Ill. GRADIENT PROJECTIONALGORITHMS

BCQP form, solving (8). In our approaches, we move from iterate
1 z®) to iteratez(*+1) as follows. First, we choose
min cl'z+ 3 z'Bz = F(z), some scalar parametef*) > 0 and set

s.t. z >0, (8) wh) = (2 — T F(z*)) (11)
where We then choose a second scalét) € [0,1] and set
7 = |: 1’1 :| , b= ATy7 c=71ly,+ [ _bb ] Z(kJrl) — Z(k) + )\(k) (W(k) — Z(k)). (12)
and Our approaches described next differ in their choices

B_| ATA -ATA @@ Oof a® andA®).
T | —ATA  ATA

B. Dimensions of the BCQP A. Ba_\sm Gradient Projection: Th&PSR-Basic
be ob d that the di [ f probl pgorthm
It may be observed that the dimension of problem In the basic approach, we search from each it-

(8) is twice that of the original problem (1x € R™, . :
while z € R?". However, this increase in dimensionera_tez(_k) along the negative g_rad|en{VF(z(k>),
has only a minor impact. Matrix operations involy-Projecting onto the non-negative orthant, and per-

ing B can be performed more economically than it%)rmmg a backtracking line search until a sufficient

size suggests, by exploiting its particular structur efcreatse tﬁ att?mfd A (I?Xrtsgkas |[3’ Ip 22,3]]
9). For a giverz — [u? v7], we have refers to this strategy as “Armijo rule along the

projection arc.”) We use an initial guess fef*)

Bz—B| Y| = ATA(u—v) that would yield the exact minimizer df along this
—ATA(u-v) |’ direction if no new bounds were to be encountered.

indicating thatBz can be found by computing the SPecifically, we define the vecte/™) by

vector differencen — v a_md then multiplying once (VEERY),, if zl(k) >0 or

each by A and A”. Since VF(z) = c + Bz *) *)

(the gradient of the objective function in (8)), we & = (VE(z™)): <0,

conclude that computation oV F'(z) requires one 0, otherwise.



SUBMITTED FOR PUBLICATION; 2007. 5

We then choose the initial guess to be each step by the formuld®) = —H 'V F(z*),
where Hy, is an approximation to the Hessian bf
atz(*®), Barzilai and Borwein propose a particularly
which we can compute explicitly as simple choice for the approximatidi: They set it
to be a multiple of the identityd;, = n*)I, where
(g Tgk) (k) | . L i
s ) 5 (13) n'" is chosen so that this approximation has similar
(g®)TBg® behavior to the true Hessian over the most recent
To protect against values of, that are too small or step, that is,
too large, we confine it to the i_nterv&tmm,_amax], VF(z(k)) _ VF(z(kfl)) ~ n(k) 25 _ z(’“*”}
where 0 < amin < amax (In this connection, we ’
define the operator mid,b,c) to be the middle wijth ,(*) chosen to satisfy this relationship in the

value of its three scalar arguments.) This techniqugast-squares sense. In the unconstrained setting, the
for settingay is apparently novel, and produces agpdate formula is

acceptable step much more often than the earlier B
choice of oy as the minimizer of F along the 2 =20 — () IV F (),
direction—V F(z*)), ignoring the bounds. this step is taken even if it yields an increasefin
The complete algorithm is defined as follows. This strategy is proved analytically in [2] to be ef-
Step 0 (initialization): Givenz(®), choose param- fective on simple problems. Numerous variants have
etersg € (0,1) andy € (0,1/2); setk = 0. been proposed recently, and subjected to a good deal
Step 1: Computeaq from (13), and replaceyy by of theoretical and computational evaluation.
mid(amin, 0, Cmax)- The BB approach has been extended to BCQPs
Step 2 (backtracking line search): Choose a(*) in [15], [51]. The approach described here is es-
to be the first number in the sequenceentially that of [S1, Section 2.2], where we choose
ap, Bag, fag, ... such that A in (12) as the exact minimizer over the interval
0,1] and chooseg(*) at each iteration in the manner
F((® —a®VF(EY).) < PE") ([jes]cribed above, except that®) = (n®)=1! is
—uVE (") (2™ — (2 — oM VF@E*)),),  restricted to the intervdbimin, amad. In defining the
and setz*+1) = (z(H) — oWV F(zM)),. value of a**+1 in Ste_zp 3 _below, we make use of
e fact that forF’ defined in (8), we have

oo = argmin F(z¥) — ag®),

g =

Step 3: Perform convergence test and terminatd
with approximate solutiors™ 1) if it is sat-  vF(z®) - VF(z+D) =B (z(k) _ Z(kfl)) _
isfied; otherwise sek — k + 1 and return to

Step 1 Step 0 (initialization): Given z(®), choose param-
Termination tests used in Step 3 are discussed etersamin, amax @© € [amin, @may, and set
below in Subsection 11I-D. k=0.

The computation at each iteration consis:,Fts dtep 1: Compute step:

matrix-vector multiplications involvingA and A*,

together with a few (less significant) inner products 5" = (Z(k) - Oé(k)VF(Z(k)))+—Z(k)- (14)

involving vectors of lengtm. Step 2 requires eval-

uation of F for each value ofv*) tried, where each - f .

such evaluation requires a single multiplication by |rr(1]i)zes F(z") + /\(k)(kfl())) O(r]l) the(klgwte(sc\gal

A. Once the value ofi*) is determined, we can AP €0, 1], a}nd set: =zV+AT 8

find z*+1) and thenVF(z(*+1)) with one more Step 3 (updatea): compute

multiplication by AZ. Another multiplication by B = (s*NTB sk, (15)

A suffices to calculate the denominator in (13) at

the start of each iteration. In total, the nhumber of

multiplications byA or AT per iteration is two plus JRCTET {a 6%)3 N }
- min, sy YYmax .

Step 2 (line search):Find the scalaA*) that min-

if v =0, let a**1) = qnax Otherwise

the number of values af(®) tried in Step 2. (k)

B. Barzilai-B in Gradi Proiection: Th Step 4: Perform convergence test and terminate
- Barzilai-Borwein - Gradient  Projection: € with approximate solutiorz*t1) if it is sat-

GPSR-BB Algorithm isfied; otherwise sek <+ k& + 1 and return to
Algorithm GPSR-Basic ensures that the objective  Step 1
function ' decreases at every iteration. Recently, Since F' is quadraticy the line search parameter

considerable attention has been paid to an approagh) i Step 2 can be calculated simply using the

not have this property. This approach was originally (T *)
developed in the context of unconstrained minimiza- A® —mid {0 (6) VF(z"Y)
tion of a smooth nonlinear functiof. It calculates T IrBsk
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(When (6(’“))TB6(’“) = 0, we setA® = 1)) of the formulation (1) and that a debiasing step
The use of this paramete*) removes one of the may be carried out in a postprocessing phase (see
salient properties of the Barzilai-Borwein approacttubsection IlI-E), we wish the nonzero components
namely, the possibility that’ may increase on someof the approximate solutiom to be close to the
iterations. Nevertheless, in our problems, it appearenzeros of a true solutios*.
to improve performance over the more standard These considerations motivate a number of pos-
non-monotone variant, which set§®*) = 1. We sible termination criteria. A standard criterion that
also tried other variants of the Barzilai-Borweinhas been used previously for BCQP problems is
approach, including one proposed in [15], which _
alternates between two definitions @f*). The dif- Iz = (2= aVF(z): || < to1p (16)
ference in performance were very small, so we foc#@heretolP is a small parameter andis a positive
our presentation on the method described above.constant). This criterion is motivated by the fact
In earlier testing, we experimented with othethat the left-hand side is zero if and only if is
variants of GP, including the GPCG approach odptimal. A second, similar criterion is motivated
[42] and the proximal-point approach of [58]. Theby perturbation results for linear complementarity
GPCG approach runs into difficulties because theroblems (LCP). There is a constdritcp such that

proj_e_ction of the HgssiaB onto_mo_st faces of the dist(z, S) < Crop ||min(z, VF(2))||
positive orthant defined by > 0 is singular, so the ) o
inner CG loop in this algorithm tends to fail. where S denotes the solution set of (8), digtis

the distance operator, and thén on the right-hand
side is taken component-wise [14]. With this bound

C. Convergence ; . ' o
in mind, we can define a convergence criterion as
Convergence of the methods proposed above Cgjjows:

be derived from the analysis of Bertsekas [3] and

lusem [33], but follows most directly from the [min(z, VF(z))| < tolP. (17)
results of Birgin, Martinez, and Raydan [4] and A third criterion proposed recently in [35] is
Serafini, Zanghirati, and Zanni [51]. We summabased on duality theory for the original formulation

rize convergence properties of the two algorithmgl). It can be shown that the dual of (1) is
described above, assuming that termination occurs

1
only whenz*+1) = z(*) (which indicates thaz(*) max 3 s's—y's
is optimal). s.t. -71, < ATs < 71,. (18)

Theorem 1:The sequence of iteratés(*)1 gen- _ _
erated by the either the GPSR-Basic of GPSR-BE s is feasible for (18), then
algorithms either terminates at a solution of (8), or 1

1
Z _ 2 - T T
else converges to a solution of (8) at an R-Iinear2Hy Axlz + il + 9% s+y's=0, (19

rate. with equality attained if and only ik is a solution
Proof: Theorem 2.1 of [51] can be used to showf (1) and s is a solution of (18). To define a
that all accumulation points dfz(*)} are stationary termination criterion, we invert the transformation

points. (This result applies to an algorithm in whichin (6) to obtain a candidate, and then construct a
the o(¥) are chosen by a different scheme, but thRasibles as follows:

only relevant requirement on these parameters in Ax—y
the proof of [51, Theorem 2.1] is that they lie in §= T”AT(AX_y)Hoo

the range[amin, amax], @s is the case here.) Sinc

e . .
the objective in (8) is clearly bounded below (b)ﬂsee [3.5])' Substituting these values mto -the left-

hand side of (19), we can declare termination when
zero), we can apply [51, Theorem 2.2] to deduc

convergence to a solution of (8) at an R-linear rat %!S quantl_ty f_aIIs below a threshotd|P . Note that
is quantity is an upper bound on the gap between
F(z) and the optimal objective valug(z*).
o None of the criteria discussed so far take account
D. Termination of the nonzero indices of or of how these have
The decision about when an approximate solutiochanged in recent iterations. In our fourth criterion,
is of sufficiently high quality to terminate the algo-termination is declared when the set of nonzero
rithms is a difficult one. We wish for the approxi-indices of an iteratez(*) changes by a relative
mate solutionz to be reasonably close to a solutioramount of less than a specified threshalelA.
z* and/or that the function valuB(z) be reasonably Specifically, we define
close to F(z*), but at the same time we wish to Io = fil.®
avoid the excessive computation involved in finding R U
an overly accurate solution. For the problem (7), Cr = {il(i €Iy andi ¢ I) or
given that variable selection is the main motivation (i ¢ I andi € T,_1)},
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and terminate if depends on the closeness of the valuesr aind
the closeness of the solutions. Using this warm-
Cil/1Zx| < tolA. (20) start technique, we can solve for agsequence of
This criterion is well suited to the class of probvalues of 7, moving from one value to the next
lems addressed in this paper (where we expect thiethe sequence in either increasing of decreasing
cardinality of Z, in later stages of the algorithm,order. It is generally best to solve in order of
to be much less than the dimensionz)f and to increasing, as the number of nonzero components
algorithms of the gradient projection type, whichof x in the solution of (1) typically decreases as
generate iterates on the boundary of the feasible siicreases, so the additional steps needed in moving
However, it does not work for general BCQRsg, between two successive solutions usually take the
in which all the components af are nonzero at the form of moving some nonzere components to the
solution) or for algorithms that generate iterates théoundary and adjusting the other nonzero values.
remain in the interior of the feasible set. We note that it is important to use the non-debiased
It is difficult to choose a termination criterionsolution as starting point; debiasing may move the
from among these options that performs well on alterates away from the true minimizer of (1) and
data sets and in all contexts. In the tests describédtherefore generally of lower quality as a starting
in Section IV, unless otherwise noted, we use (17point for the next value of.
with tolP = 102, which appeared to yield fairly —Our motivation for solving for a range afvalues
consistent results. We may also impose some largethat it is often difficult to determine an appropriate
upper limitmaxiter on the number of iterations. value a priori. Theoretical analysis may suggest a
certain value, but it is beneficial to explore a range
E. Debiasing of solutions surrounding this value and to examine
gae sparsity of the resulting solutions, possibly using

some test based on the solution sparsity and the

using one of the algorithms above, we optionall :
9 the alg pton %oodness of least-squares fit to choose the “best”
perform adebiasingstep. The computed solutlonSolution from among these possibilities

z = [ul, vT]T is converted to an approximate
solution xgp = u — v. The zero components of
xgp are fixed at zero, and the least-squares objeG. Analysis of Computational Cost

tive “y._ AX.”2 is then m'””.“'zeo' subject to this It is not possible to accurately predict the number
restriction using a CG algorithm (see fgr examp.lgf GPSR-Basic and GPSR-BB iterations required to
E43’ _Ch?p()jterhS]). In our code, the CG iteration Jind an approximate solution. As mentioned above,
erminated when this number depends in part on the quality of the

ly — Ax||2 < tolD ||y — Axgp|3, (21) initial guess. We can however analyze the cost of

h D i I . We al each iteration of these algorithms. The main compu-
whereto IS a small positive parameter. We aSQational cost per iteration is a small number of inner

rehstrlct the number of CG steps in the debiasing s vector-scalar multiplications, and vector
phase tamaxiterD additions, each requiring: or 2n floating-point

Essen“tially, the prcgblem (1) is being used to S%perations, plus a modest number of multiplications
lect the “explanatory” variables (componentsx)f b% A and A”. When A — RW, these operations
t

while the debiasing step chooses the optimal valug ail a small number of multiplications B, R”
for these components according to a Ieast-squar@§ and W7 : ’

criterion (without the regularization term||x||1).

Once an approximate solution has been obtain

. The cost of each CG iteration in

Simil hi h b 4 in othebased the debiasing phase is similar but lower; just one
imilar techiques have been used in othebase multiplication by each oR, R”, W, andW7 plus

algorithms,e.g, [41]. It is also worth pointing out a number of vector operations

that debiasing is not always desirable. Shrinking We next analyze the cost of multiplications by
the selected coefficients can mitigate unusually Iargﬁ RT, W, andW7 for various typical problems;
noise deviations [19], a desirable effect that may bg; | o l')egi’n by recalling thah — RW is a k x n '

undone by debiasing. matrix, and thatc € R”, y € R*. Thus, if R has
dimensionsk x d, thenW must be a x n matrix.
E. Efficiently Solving For a Seguence of Regulariza- | W contains an orthogonal wavelet basis=
tion Parametersr: Warm Starting n), matrix-vector products involvin§v or W7 can
The gradient projection approach benefits from lae implemented using fast wavelet transform algo-
good starting point. We can use the non-debiasethms with O(n) cost [39], instead of the)(n?)
solution of (1) to initialize GPSR in solving an-cost of a direct matrix-vector product. Consequently,
other problem in whichr is changed to a nearbythe cost of a product b or A7 is O(n) plus that
value. The second solve will typically take fewenf multiplying by R or R” which, with a direct
iterations than the first one; the number of iterationisnplementation, isO(k n). When using redundant
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Original (n = 4096, number of nonzeros = 160)

LTI QI L L I
it i

1 | M 1
0 500 1000 1500 2000 2500 3000 3500 4000
GPSR reconstruction (k = 1024, tau = 0.08, MSE = 0.0072)

1F T T T ™
. LU Iy‘ TR, R T I Y
LR LR RN LU
1 I I I I

0 500 1000 1500 2000 2500 3000 3500 4000
Debiased (MSE = 3.377e-005)

0 500 1000 1500 2000 2500 3000 3500 4000
Minimum norm solution (MSE = 1.568)

10 T T T T T T T T
5]
2 U
0 500 1000 1500 2000 2500 3000 3500 4000

Fig. 1. From top to bottom: original signal, reconstructiga the minimization of (1) obtained by GPSR-BB, reconginrc after
debiasing, the minimum norm estimate obtained usingntldivide  function of MATLAB.

translation-invariant wavelet system3V is d x the ¢;-magic toolbox and the homotopy method

d(logy(d) + 1), but the corresponding matrix-vectorfrom [21]. The algorithms discussed in Section IlI

products can be done wit®(dlogd) cost, using are written in MATLAB and are freely available for

fast undecimated wavelet transform algorithms [39Hownload fromwww.Ix.it.pt/"mtf/GPSR/

Similar cost analyses apply wha@N correspondsto  For the GPSR-BB algorithm, we setmn =

other fast transform operators, such as the FFT. 1073, amax = 103°; the performance is insensitive
As mentioned above, direct implementations db these choices, similar results are obtained for

products byR andR” haveO(k d) cost. However, other small settings afmin and large values afmax.

in some cases, these products can be carried OM¢ discuss results also for a nonmonotone version

with significantly lower cost. For example, in imageof the GPSR-BB algorithm, in which, = 1. In

deconvolution problems [25R is ak x k (d = k) GPSR-Basic, we used = 0.5 andu = 0.1.

block-Toeplitz matrix with Toeplitz blocks (repre-

senting 2D_convo|u_tions) and these proc_iucts_ can be Compressed Sensing

performed in the discrete Fourier domain using the

FFT, with O(k log k) cost, instead of th&(k?) cost

of a direct implementation. If the blur kernel suppor

In our first experiment we consider a typical
{:ompressed sensing (CS) scenario (similar to the

one in [35]), where the goal is to reconstruct a

is very small (sayl pixels) these products can be| . ) ) i
. . : ength« sparse signal (in the canonical basis) from
done with even lower cosQ(kl), by implementing k. observations, wherk < n. In this case, thé x n

the corresponding convolution. Also, in certain ap-

plications of compressed sensing, such as MR imagéatrix A is obtained by first filling it with inde-
reconstruction [37]R is formed f'rom a subset of endent samples of a standard Gaussian distribution

the discrete Fourier transform basis, so the cost ‘?Qd then orthonormalizing .th_e FOWS. In this ex"’?mp'e'
O(klog k) using the FFT. n = 4096, k = 1024, the o_r|g|nal signalk contalnf_s
160 randomly placed-1 spikes, and the observation
y is generated according to (2), with? = 10~
IV. EXPERIMENTS Parameter is chosen as suggested in [35]:
. This section describes some experiments testify- 7= 0.1 |ATy|w: 22)

g to the very good performance of the proposed
algorithms in several types of problems of the fornthis value can be understood by noticing that for
(1). These experiments include comparisons with > ||Ay|/., the unique minimum of (1) is the
state-of-the-art approaches, namely IST [16], [25kero vector [29], [35].
and the recenkl_Is package, which was shown in The original signal and the estimate obtained
[35] to outperform all previous methods, includingoy solving (1) using the monotone version of the
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GPSR-BB (which is essentially the same as that pro:
duced by the nonmonotone GPSR-BB and GPSR:
Basic) are shown in Fig. 1. Also shown in Fig.
1 is the reconstruction obtained after the debias-_ g
ing procedure described in Section llI-E; although
GPSR-BB does an excellent job at locating the gt
spikes, the debiased reconstruction exhibits a muclg‘%’
lower mean squared erfofMSE) with respect to

the original signal. Finally, Fig. 1 also depicts the
solution of minimal/s-norm to the undetermined
systemy = Ax, obtained with themldivide 10 e N
function of MATLAB. oM 02 O it (secondyy 0 ¥ %8

20,

unction

Debiasing

14r

0.04

n=4096, k=1024, tau=0.08
22 T T T T T T
—— GPSR-BB monotone 0.03%
- - - GPSR-BB non—-monotoné
201 . GPSR-Basic 1 0.03-

Debiasing

Objective function
B
[o)]

—
=

12r

. . . . . ! E
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
CPU time (seconds)

10,
1

2 3 4 E i 6 7 8 9 10 Fig. 3. Evolution of the objective function and reconstimct
erations MSE, vs CPU time, including the debiasing phase, correspgnd

n=4096, k=1024, tau=0.08 to the experiment illustrated in Fig. 1.

22

—— GPSR-BB monotone
3 - - - GPSR-BB non—-monoton:
20l -+ GPSR-Basic g TABLE |
E CPUTIMES (AVERAGE OVER 10 RUNS) OF SEVERAL
ALGORITHMS ON THE EXPERIMENT OFFIG. 1.

S 18- -
g [ Algorithm [ CPU time (seconds)
© 16 i GPSR-BB monotone 0.59
5 GPSR-BB nonmonotone 0.51
= GPSR-Basic 0.69
O 141 1 GPSR-BB monotone + debias 0.89
GPSR-BB nonmonotone + debids 0.82
12 ] GPSR-Basic + debias 0.98
11_ls 6.56
IST 2.76

10 . . . . . .
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
CPU time (seconds)

Fig. 2. The objective function plotted against iteratiominer Table | reports average CPU times (over 10 ex-
and CPU time, for GPSR-Basic and the monotone and nonmong-

tone versions of the GPSR-BB, corresponding to the expeltimeperiments) reqUired by the three GPSR algorithms
illustrated in Fig. 1. as wellas by1_Isand IST. To perform this compar-

ison, we first run thél_Is algorithm and then each
In Fig. 2, we plot the evolution of the objectiveOf the other algorithms until each reaches the same

function (without debiasing) versus iteration numbeyalue of the objective function reached ly Is. The
and CPU time, for GPSR-Basic and both versiorf€sults in this table show that, for this problem, all
of GPSR-BB. The GPSR-BB variants are slightl)gPSR variants are ab_out one order of magnitude
faster, but the performance of all three codes f@ster thanl_Is and 5 times faster than IST.
quite similar on this problem. Fig. 3 shows how the An indirect performance comparison with other
objective function (1) and the MSE evolve in thecodes on this problem can be made by referring to
debiasing phase. Notice that the objective functid®5, Table 1], which shows thdf_Is outperforms
(1) increases during the debiasing phase, since e homotopy method from [21] (6.9 second vs 11.3
are minizing a different function in this phase.  seconds). It also outperfornig-magicby about two
orders of magnitude and thgglco algorithms from
SMSE = (1/n)||X — x||3, wherex is an estimate ok. SparselLalby about one order of magnitude.
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and SolveOMP until they reach the same value of
residual. Finally, we compute average MSE (with
respect to the true) and average CPU time, over
the 10 runs.

Fig. 4 plots the reconstruction MSE and the CPU
time required by GPSR-BB and OMP, as a function
of the number of nonzero components xn We
observe that all methods basically obtain exact re-
constructions forn up to almost 200, with the OMP
solutions (which are equal up to some numerical
fluctuations) starting to degrade earlier and faster
than those produced by solving (1). Concerning
computational efficiency, which is our main focus
in this experiment, we can observed that GPSR-BB
is clearly faster than both OMP implementations,
except in the case of extreme sparseness<( 50
non-zero elements in th&96-vectorx).

C. Scalability Assessment

To assess how the computational cost of the
GPSR algorithms grows with the size of matex
we have performed an experiment similar to the
one in [35, Section 5.3]. The idea is to assume
that the computational cost i©(n*) and obtain
empirical estimates of the exponentWe consider
random sparse matrices (with the nonzero entries
normally distributed) of dimension$0.1n) x n,

Fig. 4. Evolution of the objective function and reconstiot ; ) 1 6 L
MSE, vs CPU time, including the debiasing phase, correspgnd With n ranging from10* to 10°. Each matrix is

to the experiment illustrated in Fig. 1. generated with aboutn nonzero elements and the
original signal withn/4 randomly placed nonzero
) ) components. For each value of we generate 10
B. Comparison with OMP random matrices and original signals and observed
Next, we compare the computational efficiency oflata according to (2), with noise varianegé =
GPSR algorithms against OMP, often regarded asl@~*. For each data sei.€., each pairA, y), 7
highly efficient method that is especially well-suiteds chosen as in (22). The results in Fig. 5 (which
to very sparse cases. We use two efficient MATLARre average for 10 data sets of each size) show
implementations of OMP: thegreed_omp_qr that all GPSR algorithms have empirical exponents
function of the Sparsifﬂ toolbox (based on QR below 0.9, thus much better thah Is (for which
factorization [5], [17]), and the functioBolveOMP  we founda = 1.21, in agreement with the value2
included in theSparseLabtoolbox (based on the reported in [35]); IST has an exponent very close
Cholesky factorization). Becauggeed_omp_qr to that of GPSR algorithms, but a worse constant,
requires each column of the matriX to have unit thus its computational complexity is approximately

norm, we use matrices with this property in all oup constant factor above GPSR. Finally, notice that,
comparisons. according to [35]/;-magichas an exponent close to

Since OMP is not an optimization algorithm forl.3, while all the other methods considered in that
minimizing (1) (or any other objective function), itPaper have exponents no less than 2.
is not obvious how to compare it with GPSR. In
our experiments, we fix matrix siza (24 x 4096) D. Warm Starting
and consider a range of degrees of sparseness: th&s mentioned in Section IlI-F, GPSR algorithms
number m of non-zeros spikes ik (randomly can benefit from being warm-started., initialized
located values oft1) ranges from 5 to 250. For at a point close to the solution. This property can be
each value ofn we generate 10 random data setsxploited to find minima (1) for a sequence of values
i.e, triplets , y, R). For each data set, we first runof ~, at a modest multiple of the cost of solving only
GPSR-BB (the monotone version) and store the fingdr one value ofr. We illustrate this possibility in a
value of the residual; we then rgreed_omp_gr  problem withk = 1024, n = 8192, which we wish

to solve for9 different values ofr,

7 €{0.05,0.075,0.1, ...,0.275} | ATy|| o

4Available atwww.see.ed.ac.uk/
Isparsify.html

“tblumens/sparsify
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G Empirical asymptotic exponents Gin several other recent works on this topic. Rather, our
goal is to compare the speed of the proposed GPSR
algorithms against the competing IST.

We consider three standard benchmark problems
summarized in Table I, all based on the well-
known Cameraman image; these problems have
been studied in [25], [26] (and other papers). In this
experiments,W represents the inverse orthogonal

wavelet transform, with Haar wavelets, all is
+ GPSR-BB monotona(= 0.861) a matrix representation of the blur operation; we
GPSR-BB non-monotone: = 0.882) .
% GPSR-Basid - 0.974) havek = n = 2562, and the difficulty comes not
" et ome form the indeterminacy of the associated system,
w5 G ¢ but from the very ill-conditioned nature of matrix
Problem size (n) RW. Parametet- is hand-tuned for the best SNR
Fig. 5. Assessment of the empirical growth exponent of tthprovemem' In eac_h case, W,e first run IST and then
computational complexity of several algorithms. run the GPSR algorithms until they reach the same
final value of the objective function; the final values
of MSE are essentially the same. Table Il lists
The results reported in Fig. 6 show that warnthe CPU times required by GPSR-BB algorithms
starting does indeed significantly reduce the CPBInd IST, in each of these experiments, showing that
time required by GPSR. The total CPU time of th&sPSR-BB is two to three times faster than IST.
9 runs was aboué.5 seconds, thus less than twice
that of the first run (which can not be warm started)
which is about3.7 CPU seconds. The total time

10°

10'

Average CPU time

TABLE Il
IMAGE DECONVOLUTION EXPERIMENTS.

required using a cold-start for each valuerofvas Experiment | blur kernel o? ,
about17.5 seconds. Notice that the CPU times for ; zxi‘f}'{gﬁ ) 050
the cold-started algorithms decreases a@screases, Y e e

3 hij =1/(*+4°) | 8

since larger values of lead to sparser solutions.

4 Warm versus cold start TABLE Il
. ‘ ‘ ‘ ‘ "5 codsar CPU TIMES (IN SECONDS) FOR THEIMAGE DECONVOLUTION
35 , EXPERIMENTS.
3k i Experiment | GPSR-BB | GPSR-BB IST
o monotone | nonmonotone
2.5 ] 1 1.69 1.04 3.82
p o 2 111 0.84 2.63
S 2 s k! 3 1.21 1.01 2.38
S
1.5 o B
1k R i
L V. CONCLUSIONS
0.5 q . .
A T In this paper we have proposed gradient pro-
s 05T obs  0sr 0ok 055 Oom oo jection.algorithms _to address the quadratic pro-
Value oft gramming formulation of a class of convex non-
Fig. 6. CPU times for a sequence of valuesrofvith warm .SmO.Oth unconsmzmed o_pt|m|zgt|or;] pr(_)blems arlsl;
starting and without warm starting (cold starting). Ing In compressed sensing and other inverse prob-

lems in signal processing and statistics. In exper-
imental comparisons to state-of-the-art algorithm,
the proposed methods appear to be significantly
faster (in some cases by orders of magnitude),
In this subsection, we illustrate the use of thespecially in large-scale settings. Furthermore, the
GPSR-BB algorithm in image deconvolution. Recalhew algorithms are very easy to implement, work
that (see Section I-A) wavelet-based image decomell across a large range of applications, and do
volution, under a Laplacian prior on the wavelehot require application-specific tuning. Our exper-
coefficients, can be formulated as (1). We stress thiatents also evidenced the importance of a so-
the goal of these experiments is not to assess tballed debiasingphase, in which we use a linear
performance €.g, in terms of SNR improvement) CG method to minimize the least squares cost of
of the criterion form (1). Such an assessment halse inverse problem, under the constraint that the
been comprehensively carried out in [25], [26], andero components of the sparse estimate produced

E. Image Deconvolution Experiments
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by the GP algorithm remain at zero. Finally, wg22] B. Efron, T. Hastie, I. Johnstone, and R. Tibshiranige#ist
mention that the MATLAB implementations of the
algorithms herein proposed are publicly available ¥
www. IX.it.pt " mtf/ GPSR
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