
Network Inference from Co-Occurrences

Michael G. Rabbat, Ḿario A. T. Figueiredo, Robert D. Nowak,

Technical Report ECE-06-2
Department of Electrical and Computer Engineering

University of Wisconsin-Madison

April 16, 2006

Abstract

The study of networked systems is an emerging field, impacting almost every
area of engineering and science, including the important domains of communica-
tion systems, biology, sociology, and cognitive science. The recovery of network
structure from experimental data is a basic and fundamental problem. Unfortu-
nately, experimental data often do not directly reveal network structure due to in-
herent measurement limitations such as imprecision in timing or other observation
mechanisms. This paper considers the following problem. Suppose a number of
transmissions are made between a collection of senders and receivers. We observe
the subset of network elements (e.g., communication links, genes, actors, neuron
colonies) which carry each transmission, but the order in which these elements
appear in the transmission paths is not observable. Mathematically, the network
structure can be described by a graph whose vertices are the communicating el-
ements, senders and receivers. Each transmission is a directed path through the
graph, and without direct knowledge of the order in which vertices are traversed
there are generally an exponentially large number offeasiblegraphs which agree
with the observed data. Yet, the basic physical principles underlying most net-
works strongly suggest that all feasible graphs are not equally likely. Specifically,
vertices that co-occur frequently are probably closely connected.

To mathematically formalize this intuition, we model paths through the graph
as realizations of a random walk on the underlying graph. Each experimental ob-
servation is modelled as an independent sample of this random walk (a first-order
Markov chain) subjected to a random permutation which accounts for our lack of
order information. The problem of recovering network structure then reduces to
estimating the parameters of this Markov chain. In particular, we derive an ex-
actexpectation-maximization(EM) algorithm for finding themaximum likelihood

M.G. Rabbat and R.D. Nowak are with the Department of Electrical and Computer Engi-
neering, University of Wisconsin, Madison, WI, 53706. Email:rabbat@cae.wisc.edu,
nowak@engr.wisc.edu .

M.A.T. Figueiredo is withInstituto de Telecomunicaçõesand the Department of Electrical and Computer
Engineering,Instituto Superior T́ecnico, Lisboa, Portugal. Email:mario.figueiredo@lx.it.pt .

1

(ML) or maximum a posteriori(MAP) estimates by treating the random permu-
tations as missing data. For very long paths the E-step may be computationally
intractable, so we also propose Monte Carlo versions of the E-step and derive con-
ditions under which the Monte Carlo EM algorithm will converge with high prob-
ability. Simulations and experiments with Internet measurements demonstrate the
promise of this approach.

1 Network Reconstruction and Co-Occurrence Obser-
vations

The study of complex networked systems is an emerging field, impacting nearly every
area of engineering and science including the important domains of communication
systems, biology, sociology, and cognitive science. Analysis of network structure en-
ables:

Communication networks: A better understanding of routing, transmission patterns,
and information flow which can be used to predict routes, to diagnose failures,
to identify and trace back anomalous traffic, and to provision new infrastructure
[6,18];

Biological networks: A better understanding of the functional roles played by dif-
ferent genes and proteins in biological systems which can be used to provide
insights into human diseases and to identify potential drug targets [11,17];

Social networks: A better understanding of social interactions and dynamics which
can be used to uncover the organizational structure of communities and to predict
and analyze the spread of epidemics [16,21];

Brain networks: A better understanding of how functional regions within the brain
are interconnected which can be used to study brain-related illnesses and injuries
and to gain new insights into the nature of brain function [1,20].

Inferring the structure of networks from experimental data is thus a basic and funda-
mental task, critical to many applications. Unfortunately, measurements which directly
reveal network structure are often beyond experimental capabilities or are excessively
expensive. In this paper we consider a specific network inference problem: that of
learning the structure of a network from indirect observations arising from a subset of
simultaneously activated nodes. Mathematically, the underlying network structure is
represented as a directed graph and we assume that the nodes activated during one ob-
servation form a connected subgraph. Our observations reflect which subset of vertices
are activated during the measurement, but not the connectivity. Because the observed
vertices simultaneously “occur”, we refer to such measurements asco-occurrence ob-
servations. Co-occurrence observations arise naturally in each of the application areas
mentioned above.

Communication networks: Transmissions over communication networks corre-
spond to paths. The so-calledinternally-sensed network tomographyproblem specifi-
cally aims at recovering the network topology given a unordered lists of network ele-
ments along transmission paths [18]. It is impossible to observe order information in

2

practice in this setting. The sensors making observations are distributed over a wide ge-
ographic area and paths are constructed on a very short time-scale so extremely precise
time synchronization is required to measure order information.

Biological networks: Signal transduction networks describe fundamental cell func-
tions such as growth, metabolism, differentiation, and apoptosis (disintegration). High-
throughput measurement techniques such as microarrays have successfully been used
to identify the components of different signal transduction pathways. In particular, a
single microarray experiment reflects the strength at which genes are expressed or reg-
ulated under particular environmental conditions, and these conditions are changed in
different experiments. Then, cluster techniques are applied to identify groups of genes
which comprise a signaling pathway [23]. The cluster analysis identifies co-occurring
genes, but not their order in a pathway. Microarray data only reflects order information
at a very coarse level and may be unreliable. Experimental techniques exist which pro-
vide more precise order information but they only target a few genes at a time and are
both costly and time-consuming. Consequently, developing computational techniques
for inferring ordering is an active research area [14].

Social networks: Co-occurrence or transactional data may arise in the context of
social networks by considering which academic papers are co-cited by another paper,
which web pages are linked to or from another web page, which actors co-appear at an
event or are diagnosed with a common disease on the same day. Such measurements
are readily available, but do not necessarily reflect the temporal or other natural order
in which they appeared. Researchers in this area have considered the problem of re-
constructing networks from co-occurrence data and also of using the inferred network
to predict potential future co-occurrences [12].

Brain networks: Functional magnetic resonance imaging(fMRI) provides a
mechanism for measuring activity in the brain with high spatial resolution. By ob-
serving which regions of the brain activate while a patient is performing different tasks
we can obtain multiple co-occurrence observations. However, although fMRI offers
high spatial resolution it comes at the cost of low temporal resolution and so it is not
possible to obtain complete order information using such measurements. Magnetoen-
cephalography and electroencephalography measure activity in the brain with higher
temporal resolution but only provide coarse spatial resolution, and thus may not allow
one to determine precisely which functional regions are active during a given task.

In this article we focus on observations arising from transmissions through the net-
work. Specifically, each co-occurrence observation corresponds to a path1 through the
network. We observe the vertices comprising each path but not the order in which they
appear in the path. In certain applications the endpoints (source and destination) of the
path may also be observed.

Our goal is to identify which pairs of vertices are directly connected via an edge,
thereby learning the structure of the network. Afeasible graphis one which agrees
with the observations;i.e., a graph which contains a directed path through the vertices
in each co-occurrence observation. Given a collection of co-occurrence observations a
feasible graph is easily constructed by assigning an order – any order, in fact – to the

1Throughout this paper a “path” refers to a sequence of vertices(x1, x2, . . . , xN) such that there is
an edge between each adjacent pair of vertices,xi−1 andxi, and no node appears more than once in the
sequence.

3

vertices in each observation, and then inserting directed edges between vertices which
are adjacent in the assigned order. Because the number of possible orders of a sequence
is exponential in the sequence length, it is evident that there are generally an exponen-
tial number of feasible topologies. Without additional assumptions, side information,
or prior knowledge there is no reason to prefer any one feasible topology over the oth-
ers. Yet, the physical principles underlying most complex networks strongly suggest
that not all feasible networks are equally likely. This motivates adopting a model or op-
timality criterion by which to rank the feasible topologies. Still, it may not be easy to
compute an optimal solution even with a simple, well-defined criterion. For example,
to the best of our knowledge, the only way to find the set of sparsest feasible graphs
(i.e., feasible graphs with the fewest edges) is to search the entire solution space.

Previous work on related problems has involved heuristics using frequencies of
co-occurrence either to assign an order to each path [18] or to approximate the prob-
ability of transitioning from one vertex to another [12]. These approaches are simple
to compute in general, but in order to achieve computational tractability they make
stringent assumptions and sacrifice robustness. For example, thefrequency method
introduced in [18] is based on a model where paths from a particular source or to a
particular destination form a tree. This model coincides with the shortest-path routing
policy. When the network provides multiple paths between the same pair of endpoints
(e.g., in a load-balancing scenario) the algorithm may fail. ThecGraphalgorithm pro-
posed in [12] inserts weighted edges between every pair of vertices which co-occur in
some observation. This approach produces solutions which are typically much denser
than desired. Because both of these methods are based on heuristics, the results they
produce are not easily interpreted. Also, these heuristics do not readily lend them-
selves to incorporating side information. A different approach, introduced by Justice
and Hero in [10], involves averaging over an ensemble of feasible topologies sampled
uniformly from the feasible set. In general there is an enormous number of feasible
topologies (exponential in the problem dimensions) exhibiting a wide variety of char-
acteristics, and it is not clear that an average of feasible topologies will be optimal in
any sense. These observations have collectively motivated our development of a more
general approach to network reconstruction which we simply termnetwork inference
from co-occurrences, or NICO for short.

1.1 Network Inference from Co-Occurrences

This paper proposes a novel approach to estimating the structure of a network from
co-occurrences which 1) generates solutions which are easy to interpret, 2) is robust
to modelling assumptions, 3) admits efficient computation, and 4) provides a natural
mechanism for incorporating prior knowledge or side information. Our approach is
based on a generative model where paths are realizations of a random walk on the
underlying graph. A co-occurrence observation is obtained by randomly shuffling the
random walk realization, to account for our lack of observed order information. Based
on this model, the network reconstruction problem reduces to estimating the parameters
governing the random walk. Then we can use these parameter estimates to determine
the most likely order for each co-occurrence and reconstruct the network accordingly.

Now, we do not necessarily expect measured paths to be generated according to a

4

random walk in the real system. Nonetheless, the following interpretation motivates
our shuffled random walks as a robust and flexible model. Imagine sitting at a par-
ticular vertex in the network and observing a series of transmissions pass by. This
vertex is only connected to a handful of other vertices in the network, so regardless of
the final destination of each transmission, a transmission arriving at this vertex must
pass through one of the neighboring vertices next. Over a period of time, we could
record how many arriving transmissions are passed to each neighbor, and then calcu-
late an empirical probability distribution on which neighbor an incoming transmission
is passed to. The method proposed here formally develops a framework for estimating
local transition probabilities from a collection of co-occurrence observations, without
making any additional assumptions about routing behavior or properties of the under-
lying network structure. Experimental results on simulated topologies indicate that
good performance is obtained for a variety of operating conditions. Also, because our
method is couched in the theory of probabilistic/statistical inference it is easy to incor-
porate side information in the form of a prior on the inferred parameters.

The rest of the paper is organized as follows. In Section 2 we introduce notation
and formally state the problem setup. Section 3 reviews the standard approach to es-
timating the parameters of a random walk when fully observed (ordered) samples are
available. In Section 4, we derive the EM algorithm for estimating random walk param-
eters from shuffled observations. The Monte Carlo E-step is described in Section 5 for
situations where large observations do not admit exact E-step computation. Section 6
analyzes convergence of the Monte Carlo EM algorithm. Section 7 describes how prior
information can easily be incorporated into the inference procedure via a collection of
independent Dirichlet priors. Simulation results are presented in Section 8 and the
papers is concluded in Section 9.

2 Problem Formulation

Our goal is to reconstruct a network from co-occurrence observations. Formally, we
model the network as a simple directed graph on the vertex setS = {1, 2, . . . , |S|}.
The number of vertices,|S|, is known ahead of time, so the network reconstruction
amounts to determining the adjacency structure of the graph;i.e., identifying whether
or not there is an edge fromi to j for every pair of vertices.

A co-occurrence observation,y ⊆ S, is a subset of vertices in the graph which
simultaneously “occur” when a particular stimulus is presented to the network. For ex-
ample, when a transmission is made over a communication network, a subset of routers
and switches carry the transmission from the source to the destination. This activated
subset corresponds to a co-occurrence observation, with the stimulus being a trans-
mission between that particular source-destination pair. By repeating this procedureT
times with different stimuli we obtain the observation data,Y = {y(1),y(2), . . . ,y(T)},
which will be used to infer a network.

A feasible solution contains a path coinciding with each observed co-occurrence.
Let y = (y1, y2, . . . , yN) denote the elements of a length-N co-occurrence, indexed in
ascending order (really, any arbitrary order will do). Because we allow co-occurrences
to have different lengths, in what follows we will writeNm for the number of vertices

5

co-occurring in themth observation,y(m). Formally, a directed graphG is a feasi-
ble network reconstruction if for each unordered co-occurrence,y(m), there exists an
ordered pathz = (z1, z2, . . . , zNm

) and a permutationτ = (τ1, τ2, . . . , τNm
) such

thatzt = yτt
for eacht = 1, . . . , Nm, and there is an edge fromzt−1 to zt in G for

t = 2, . . . , Nm.
Notice that a co-occurrence observation does not explicitly contain information

about the order of vertices in its corresponding path, but if the order were known
then network reconstruction would be trivial. Suppose we observed ordered paths
z(1), . . . , z(T). Beginning with an empty graph of|S| vertices and no edges, the net-
work reconstruction would be obtained by inserting an edge fromz

(m)
t−1 to z

(m)
t for each

observation. Similarly, given the correct permutationτ (m) for each co-occurrence ob-
servationy(m) we could obtain ordered observationsz(m) by inverting the permutation,
and then use the same procedure.

In practice we do not make ordered observations nor do we have access to the cor-
rect permutations. However, we can obtain a feasible reconstruction by associating
anypermutation with each co-occurrence, and then following the procedure described
above. There areNm! ways to permute the elements ofy(m), and so simple combina-
torial calculations reveal that there may be as many as

∏T
m=1 Nm! feasible reconstruc-

tions. Clearly, for largeNm andT this is a huge set to search over. Moreover, without
making additional assumptions or adopting some additional criteria there is no reason
to prefer one feasible reconstruction over another. This motivates making additional
modelling assumptions or bringing in additional prior or side information to address
the ill-posed nature of this problem.

Physical principles governing the development of many natural and man-made net-
works suggest that not all feasible networks are equally plausible. Intuitively, if two
or more vertices appear collectively in multiple co-occurrences, we expect that their
order is probably the same in the corresponding paths. Likewise, we expect that each
vertex will generally only have a few neighbors. Based on these intuitions we pro-
pose the following probabilistic model. First, we model the unobserved, ordered paths,
z(m), as independent samples of a first-order Markov chain. The Markov chain is pa-
rameterized by an initial state distributionπ ∈ [0, 1]|S| whereπi = P [z1 = i], and
a probability transition matrix,A ∈ [0, 1]|S|×|S|, with Ai,j = P [zt = j|zt−1 = i].
These parameters must satisfy the constraints

|S|∑
i=1

πi = 1 and
|S|∑
j=1

Ai,j = 1 for eachi = 1, . . . , |S|. (1)

In addition, we assume that the support of the transition matrix is determined by the
adjacency structure of the underlying network;i.e., Ai,j > 0 if and only if the network
contains an edge fromi to j.

A co-occurrence observation,y, is generated by shuffling the elements of an or-
dered Markov chain sample,z = (z1, . . . , zN), according to a permutation,τ , drawn
uniformly fromΨN , the collection of all permutations ofN elements. We assume that
τ is independent of the Markov chain sample,z. Based on this model, we can write the
likelihood of a co-occurrence observationy conditioned on a particular permutationτ

6

as

P [y|τ ,A,π] = πyτ1

N∏
t=2

Ayτt−1 ,yτt
. (2)

By marginalizing over all permutations we obtain

P [y|A,π] =
∑

τ∈ΨN

P [y|τ ,A,π]P [τ] (3)

=
1

N !

∑
τ∈ΨN

P [y|τ ,A,π]. (4)

Finally, based on the assumption that co-occurrence observations are independent, we
have

P [Y|A,π] =
T∏

m=1

P [y(m)|A,π]. (5)

Taking the logarithm gives

log P [Y|A,π] =
T∑

m=1

log

 ∑
τ∈ΨNm

P [y(m)|τ (m),A,π]

− log(Nm!)

 .(6)

Now the network reconstruction problem amounts to estimating the maximum like-
lihood Markov chain parameters,

(AML ,πML) = arg max
A,π

P [Y|A,π]. (7)

Then we can use(AML ,πML) to compute the most likely permutation for each co-
occurrence observation, and obtain a reconstruction using our procedure for ordered
observations described above. Alternatively, a network reconstruction may be obtained
by applying a threshold rule to the transition matrix.

Observe from (2) that each conditional likelihood involves a product of transition
matrix terms, and recall the constraints

∑|S|
j=1 Ai,j = 1. We can think of nodei being

assigned one unit of mass, and this unit is distributed over each of its neighbors in
the graph. If vertexi has more neighbors then this unit mass is being spread over a
larger number of terms so theAi,j will be smaller. Consequently, the likelihood of co-
occurrences containingi is smaller. This reasoning provides one explanation for why
our model encourages sparse reconstructions.

Of course, we could try to solve the optimization (7) directly, but (6) is generally
a complicated, non-convex function and so direct optimization is not a simple task.
Below we derive an EM algorithm for solving this optimization by treating the permu-
tations{τ (m)} shuffling each path as missing data. Before deriving the EM algorithm
we review the standard approach to estimating Markov chain parameters from ordered
observations.

7

3 Estimating Markov Chain Parameters from Direct
Observations

It is convenient to introduce another representation for the Markov chain samples,
z = (z1, . . . , zN); specifically, instead ofzt ∈ S, we use the equivalent binary repre-
sentationwt = (wt,1, ..., wt,|S|) ∈ {0, 1}|S| with (wt,i = 1) ⇔ (zt = i). One and
only one entry of each vectorwt is equal to1. With this notation, we can write

P [z1, ..., zN |A,π] = P [w1, ...,wN |A,π] (8)

=
|S|∏
i=1

(πi)w1,i

N∏
t=2

|S|∏
i=1

|S|∏
j=1

(Ai,j)wt−1,i wt,j , (9)

where, by convention00 = 1 (justifiable by continuity, sincelima→0 aa = 1). Thus,

log P [w1, ...,wN |A,π] =
|S|∑
i=1

w1,i log πi +
N∑

t=2

|S|∑
i=1

|S|∑
j=1

wt−1,i wt,j log Ai,j . (10)

Now, suppose that instead of one sequencew = (w1, ...,wN), we have a set
W with a total of T sequences which are assumed to be independent realizations
of this Markov process. Each sequence may have a different length, so we write
W = {w(1), ...,w(T)}, wherew(m) = (w(m)

1 , ...,w(m)
Nm

), for m = 1, ..., T . The
log-likelihood for the set of sequences (due to the independence assumption) is simply

log P [W|A,π] =
T∑

m=1

log P [w(m)|A,π]

=
T∑

m=1

|S|∑
i=1

w
(m)
1,i log πi +

T∑
m=1

Nm∑
t=2

|S|∑
i=1

|S|∑
j=1

w
(m)
t−1,i w

(m)
t,j log Ai,j .

=
|S|∑
i=1

log πi

T∑
m=1

w
(m)
1,i +

|S|∑
i=1

|S|∑
j=1

log Ai,j

T∑
m=1

Nm∑
t=2

w
(m)
t−1,i w

(m)
t,j . (11)

Maximum likelihood estimates ofπ and A are obtained my maximizing
log P [W|A,π] under the constraints in (1). Sincelog P [W|A,π] is a concave func-
tion of A andπ (it is a sum of logarithms of these variables), concave constrained
optimization using Lagrange multipliers leads to the following well-known estimates:

Âi,j =

T∑
m=1

Nm∑
t=2

w
(m)
t−1,i w

(m)
t,j

|S|∑
j=1

T∑
m=1

Nm∑
t=2

w
(m)
t−1,i w

(m)
t,j

π̂i =
1
T

T∑
m=1

w
(m)
1,i . (12)

8

4 Estimating Markov Chain Parameters from Shuffled
Observations Via the EM Algorithm

We are now interested in the case where we we have co-occurrences, not ordered sam-
ples. Rather than usingτ = (τ1, . . . , τN) to denote the shuffling permutation, we
introduce a more convenient representation; each shuffling is represented by apermu-
tation matrix, i.e., a matrix with one and only one 1 in each row and each column. Let
the shuffling matrix for sequencem be denoted asr(m) so that(r(m)

t,t′ = 1)⇔ (x(m)
t′ =

w(m)
t). Given bothr(m) andx(m), we could recover the unshuffled sequencew(m) by

applying

w
(m)
t,i =

Nm∏
t′=1

(
x

(m)
t′,i

)r
(m)
t,t′

, (13)

adopting the convention00 = 1. For example, withT = 2, N1 = 5, N2 = 4,

r(1) =

0 0 1 0 0
1 0 0 0 0
0 0 0 0 1
0 1 0 0 0
0 0 0 1 0

 , and r(2) =

0 1 0 0
0 0 1 0
1 0 0 0
0 0 0 1

 ,

we have thatw(1) = (w(1)
1 ,w(1)

2 ,w(1)
3 ,w(1)

4 ,w(1)
5) = (x(1)

3 ,x(1)
1 ,x(1)

5 ,x(1)
2 ,x(1)

4),
andw(2) = (w(2)

1 ,w(2)
2 ,w(2)

3 ,w(2)
4) = (x(2)

2 ,x(2)
3 ,x(2)

1 ,x(2)
4), that is, the position of

the unique 1 in rowt indicates which of the shuffled samples was produced at timet.
Denoting byR = {r(1), ..., r(T)} the collection of sorting matrices corresponding

toX = {x(1), ...,x(T)}, we can write the complete log-likelihood as follows. Start by
observing that

log P [X ,R|A,π] = log P [X|R,A,π] + log p[R],

and thatp[R] is just a constant (assuming uniform distribution over the set of all possi-
ble permutations), we have

log P [X ,R|A,π] ∝ log P [X|R,A,π] (14)

=
T∑

m=1

log P [x(m)|r(m),A,π] (15)

=
T∑

m=1

Nm∑
t=2

Nm∑
t′=1

Nm∑
t′′=1

|S|∑
i,j=1

r
(m)
t,t′ r

(m)
t−1,t′′ x

(m)
t′′,i x

(m)
t′,j log Ai,j

+
T∑

m=1

Nm∑
t′=1

|S|∑
i=1

r
(m)
1,t′ x

(m)
t′,i log πi. (16)

Next we treatR as missing data and address the problem of estimatingA andπ
via the EM algorithm. The EM algorithm proceeds by computing the expected value

9

of the complete log-likelihoodlog P [X ,R|A,π] with respect to the missing data, con-
ditioned on the observations and on the current estimate of the model parameters,Ak

andπk,
Q
(
A,π;Ak,πk

)
= E

[
log P [X ,R|A,π]

∣∣X ,Ak,πk
]
. (17)

The model parameter estimates are then updated according to(
Ak+1,πk+1

)
= arg max

A,π
Q
(
A,π;Ak,πk

)
, (18)

and the process in repeated cyclically until a convergence criterion is met. Equation
(17) is the E-step, and (18) the M-step.

4.1 The E-step

Rearranging the order of summation in (16), we can write

log P [X ,R|A,π] ∝
T∑

m=1

|S|∑
i,j=1

Nm∑
t′,t′′=1

Nm∑
t=2

r
(m)
t,t′ r

(m)
t−1,t′′x

(m)
t′′,ix

(m)
t′,j log Ai,j

T∑
m=1

|S|∑
i=1

Nm∑
t′=1

r
(m)
1,t′ x

(m)
t′,i log πi.

A key observation which facilitates the derivation of the E-step is that the complete
log-likelihood is linear with respect to simple functions of the missing variables:

• the first row of each matrixr(m), that is, r(m)
1,t′ , for m = 1, . . . , T and t′ =

1, . . . , Nm;

• sums of transition indicators:α(m)
t′,t′′ ≡

∑Nm

t=2 r
(m)
t,t′ r

(m)
t−1,t′′ , for m = 1, . . . , T ,

andt′, t′′ = 1, . . . , Nm.

Since the conditional expectation of a linear function of a random variable is simply
that linear function computed at the expected value of the random variable, in the E-
step we just have to compute the conditional expectations ofr

(m)
t,t′ andα

(m)
t′,t′′ and plug

them into the complete log-likelihood function. Denote by

r̄
(m)
1,t′ ≡ E

[
r
(m)
1,t′

∣∣X ,Ak,πk
]

= P
[
r
(m)
1,t′ = 1

∣∣X ,Ak,πk
]

(19)

ᾱ
(m)
t′,t′′ ≡ E

[
α

(m)
t′,t′′

∣∣X ,Ak,πk
]

= P
[
α

(m)
t′,t′′ = 1

∣∣X ,Ak,πk
]
, (20)

where we have used the fact that these variables are all binary2, thus their ex-
pected values coincide with the probability of being equal to one. The function
Q
(
A,π;Ak,πk

)
is obtained by plugginḡr(m)

1,t′ in the place ofr(m)
1,t′ , and ᾱ

(m)
t′,t′′ in

the place of
∑Nm

t=2 r
(m)
t,t′ r

(m)
t−1,t′′ in the complete log-likelihood (16).

2Note that sincer(m) is a permutation matrix,α(m)
t′,t′′ is also a binary variable.

10

To conclude the derivation of the E-step, we obtain exact expressions for these
conditional expectations. Let us start with̄r(m)

1,t′ , which is given by (19). From the
mutual independence among the several observed sequences,

r̄
(m)
1,t′ = P

[
r
(m)
1,t′ = 1

∣∣X ,Ak,πk
]

= P
[
r
(m)
1,t′ = 1

∣∣∣x(m),Ak,πk
]
.

Next, invoking Bayes law, we have that

r̄
(m)
1,t′ =

P
[
x(m)

∣∣r(m)
1,t′ = 1,Ak,πk

]
P
[
r
(m)
1,t′ = 1]

P [x(m)
∣∣Ak,πk

] .

Then, under the assumption that all permutations are equally likely, marginalizing over
permutations gives

r̄
(m)
1,t′ =

(
1

(Nm−1)!

∑
r∈ΨNm :r1,t′=1 P

[
x(m)|r,Ak,πk

]) ((Nm−1)!
Nm!

)
1

Nm!

∑
r∈ΨNm

P
[
x(m)

∣∣r,Ak,πk
]

=

∑
r∈ΨNm :r1,t′=1 P

[
x(m)

∣∣r,Ak,πk
]∑

r∈ΨNm
P
[
x(m)

∣∣r,Ak,πk
] .

The termsP
[
x(m)

∣∣r,Ak,πk
]

are easily computed as

P
[
x(m)

∣∣r,Ak,πk
]

= P
[
y(m)

∣∣τ ,Ak,πk
]

= πk

y
(m)
τ1

Nm∏
t=2

Ak

y
(m)
τt−1 ,y

(m)
τt

.

Defining summary statistics

γ
(m)
t′ ≡

∑
r∈ΨNm :r1,t′=1

P
[
x(m)

∣∣r,Ak,πk
]
, (21)

for eachm = 1, . . . , T andt′ = 1, . . . , Nm, we have

r̄
(m)
1,t′ =

γ
(m)
t′∑Nm

t′=1 γ
(m)
t′

.

11

We computēα(m)
t′,t′′ in a similar fashion and obtain

ᾱ
(m)
t′,t′′ = E

[
Nm∑
t=2

r
(m)
t,t′ r

(m)
t−1,t′′

∣∣∣∣∣x(m),Ak,πk

]

=
Nm∑
t=2

E
[
r
(m)
t,t′ r

(m)
t−1,t′′

∣∣x(m),Ak,πk
]

=
Nm∑
t=2

P
[
r
(m)
t,t′ r

(m)
t−1,t′′ = 1

∣∣x(m),Ak,πk
]

=
Nm∑
t=2

P
[
x(m)

∣∣r(m)
t,t′ r

(m)
t−1,t′′ = 1,Ak,πk

]
P
[
r
(m)
t,t′ r

(m)
t−1,t′′ = 1

]
P
[
x(m)

∣∣Ak,πk
]

=
Nm∑
t=2

(
1

(Nm−2)!

∑
r∈ΨNm :rt,t′rt−1,t′′=1 P

[
x(m)

∣∣r,Ak,πk
]) ((Nm−2)!

Nm!

)
1

Nm!

∑
r∈ΨNm

P
[
x(m)

∣∣r,Ak,πk
]

=

∑
r∈ΨNm

P [x(m)|r,Ak,πk]
∑Nm

t=2 rt,t′rt−1,t′′∑
r∈ΨNm

P [x(m)|r,Ak,πk]
.

Defining statistics

γ
(m)
t′,t′′ ≡

∑
r∈ΨNm

P [x(m)|r,Ak,πk]
Nm∑
t=2

rt,t′rt−1,t′′ , (22)

we have

ᾱ
(m)
t′,t′′ =

γ
(m)
t′,t′′∑Nm

t′=1 γ
(m)
t′

. (23)

Notice that for themth observation, storing all the statistics,{r̄(m)
1,t′ } and{ᾱ(m)

t,t′,t′′},
requiresN2

m memory units; there are2
(
Nm

2

)
= N2

m −Nm transition statistics,̄α(m)
t′,t′′ ,

andNm initial state statistics,̄r(m)
1,t′ . These quantities can be computed via the sum-

mary statistics{γ(m)
t′ } and{γ(m)

t′,t′′} using the same memory needed to store{r̄(m)
1,t′ } and

{ᾱt,t′,t′′}, in O
(
Nm!

)
operations;i.e., the number of operations required to enumerate

all permutations of the co-occurring vertices in this observation. For large observations
(largeNm) this can be a rather hefty load, and in Section 5 we suggest methods for
computing approximations tōr1,t′ andᾱt′,t′′ .

12

4.2 The M-step

As just shown in Section 4.1, the functionQ
(
A,π;Ak,πk

)
is

Q
(
A,π;Ak,πk

)
=

T∑
m=1

Nm∑
t′,t′′=1

|S|∑
i,j=1

ᾱ
(m)
t′,t′′ x

(m)
t′′,i x

(m)
t′,j log Ai,j

+
T∑

m=1

Nm∑
t′=1

|S|∑
i=1

r̄
(m)
1,t′ x

(m)
t′,i log πi. (24)

Maximization under the constraints in (1) leads to following simple update equations:

• Transition matrix:

Ak+1
i,j =

T∑
m=1

Nm∑
t′,t′′=1

ᾱ
(m)
t′,t′′x

(m)
t′′,ix

(m)
t′,j

|S|∑
j=1

T∑
m=1

Nm∑
t′,t′′=1

ᾱ
(m)
t′,t′′x

(m)
t′′,ix

(m)
t′,j

. (25)

• Initial probabilities:

πk+1
i =

T∑
m=1

Nm∑
t′=1

r̄
(m)
1,t′ x

(m)
t′,i

|S|∑
i=1

T∑
m=1

Nm∑
t′=1

r̄
(m)
1,t′ x

(m)
t′,i

. (26)

4.3 Known Endpoints

We have just derived the EM algorithm for the general case whereX is a collection of
fully shuffled sequences from a Markov chain. A special case arising in some applica-
tions described in the introduction is where (one or both of) the endpoints of each path
are known and only the internal nodes are unordered. This is the case in the context
of communication networks (i.e., internally-sensed network tomography), since the
source and destination in each path are known but the connectivity within the network
is unknown. For the purposes of estimating biological networks (signal transduction
pathways), a physical stimulus (e.g., hypotonic shock) causes a sequence of protein
interactions, resulting in another observable physical response (e.g., a change in cell
wall structure); in this setting, the stimulus and response act as fixed endpoints and our
goal is to infer the order of the sequence of protein interactions.

Our EM algorithm can easily be modified to handle known endpoints. Observe that
knowledge of the endpoints of each path imposes the constraints

r
(m)
1,1 = 1 and r

(m)
Nm,Nm

= 1. (27)

13

Under the first constraint, estimates of the initial state probabilities are simply given by

π̂i =
1
T

T∑
m=1

x
(m)
1,i . (28)

Thus, the EM algorithm only needs to be used to estimate the transition matrix entries.
Let

Ψ̃N = {r ∈ ΨN : r1,1 = 1, rN,N = 1}, (29)

denote the collection of permutations ofN elements with fixed endpoints. The M-
step (update forAk+1) remains exactly the same. Similar to before, the E-step can be
computed using summary statistics

γ̃(m) =
∑

r∈Ψ̃Nm

P [x(m)|r, Â, π̂] (30)

γ̃
(m)
t′,t′′ =

∑
r∈Ψ̃Nm

P [x(m)|r, Â, π̂]
Nm∑
t=2

rt,t′rt−1,t′′ , (31)

for t′, t′′ = 1, . . . , Nm, and settinḡα(m)
t′,t′′ = γ̃

(m)
t′,t′′/γ̃.

5 Monte Carlo E-Step by Importance Sampling

Implementing the exact E-step is straightforward. However, for long sequences, the
combinatorial nature of (21) and (22), that is, the need to sum over all permutations of
the sequence, may render exact computation impractical. In this section, we consider
sampling-based approximate versions of the E-step, which avoid the combinatorial na-
ture of its exact version. To lighten the notation in this section, we focus on a particular
length-N pathx = {x1, . . . ,xN} and drop the superscript(m); due to the indepen-
dence of the paths, there is no loss of generality. We also drop the superscripts from
(Ak, πk) and use simply(A,π) to denote the current Markov chain parameter esti-
mates in the EM algorithm.

The E-step (see (19) and (20)) consists of computing the conditional expectations

r̄1,t′ = E
[
r1,t′

∣∣x,A,π
]

=
∑

r∈ΨN

r1,t′ P [r|x,A,π] (32)

ᾱt′,t′′ = E
[
αt′,t′′

∣∣x,A,π
]

=
∑

r∈ΨN

Nm∑
t=2

rt,t′ rt−1,t′′ P [r|x,A,π]. (33)

A näıve Monte Carlo approximation to these sums would be based on random per-
mutations, sampled from the uniform distribution overΨN (the collections of all per-
mutations ofN elements). However, the reason one may have to resort to approxi-
mation techniques in the first place is thatΨN is large; thus, typically only a small
fraction of these random permutations will have non-negligible posterior probability,

14

P [r|x,A,π], and so a very large number of uniform samples is needed to obtain a
good approximation tōr1,t′ andᾱt′,t′′ .

Ideally, we would sample permutations directly from the posterior distribution
P [r|x,A,π]; however, sampling from this distribution would require determining its
value for allN ! permutations inΨN . Instead, we employimportance sampling(IS):
we sampleL permutations,r1, . . . , rL, from a distributionR[r], from which it is easier
to sample thanP [r|x,A,π], and then apply a corrective re-weighting to obtain ap-
proximations tōr1,t′ andᾱt′,t′′ ; see, for example, [19] or [13] for an introduction to
IS. Note that we are now using the superscript onr to index the sample number, not to
identify the path. The importance sampling estimates are given by

r̄1,t′ '
∑L

i=1 zi ri
1,t′∑L

i=1 zi

, (34)

ᾱt,t′,t′′ '
∑L

i=1 zi

∑Nm

t=2 ri
t,t′ ri

t−1,t′′∑L
i=1 zi

, (35)

wherezi is the correction factor (or weight) for sampleri, given by

zi =
P [ri|x,A,π]

R[ri]
, (36)

the ratio between the desired distribution and the sampling distribution employed.
A relevant observation is that the target and sampling distributions only need to

be known up to normalizing factors. GivenR′[r] = ZR R[r] andP ′[r|x,A,π] =
ZP P [r|x,A,π], for constantsZR andZP , we can use

z′i =
P ′[ri|x,A,π]

R′[ri]
=

ZP

ZR
zi, (37)

instead ofzi in (34) and (35); these sums will remain unchanged since the factor
ZP /ZR will appear both in the numerator and denominator, thus cancelling out.

The remainder of this section contains the description of two IS schemes, includ-
ing the derivation of closed form expressions for both the sampling distribution,R, and
weights,zi, associated with each approach. In the first approach, permutations are gen-
erated sequentially by sampling the “next” element of each sequence according to our
current estimate of the transition matrix,A. The second sampler takes a more hierar-
chical approach, by first sampling likely transitions and then “gluing” these transitions
together to form a permutation. We conclude the section by describing other sampling
variants and presenting an empirical comparison of the various techniques discussed.

5.1 Causal Sampling

It is more convenient here to use they andτ representations for the shuffled paths and
permutations (see Section 2). Also, we will enforce the assumption that the observed
sequencey = {y1, . . . , yN} is indeed a path through a network, so it contains no
repeated elements.

15

Let us define a sequence of binary flags,f = {f1, f2, . . . , f|S|}, with fi ∈ {0, 1}.
Let (for now) these variables indicate the presence/absence of statei in y, that is,

fi = I{i∈y} =
{

1 ⇐ i ∈ y
0 ⇐ i 6∈ y for i = 1, 2, . . . , |S|, (38)

whereI{·} denotes the indicator function. Given some probability distributionp =
{p1, p2, . . . , p|S|} on the set of states,S, denote byp · f this distribution restricted to
those elements ofS that have corresponding flagfi set to 1, that is,

(p · f)i =
pifi∑|S|

j=1 pjfj

=
pifi

pT f
, for i = 1, 2, . . . , |S|. (39)

The sequential sampling scheme, in the most general case where the endpoints are
not known ahead of time, is defined as follows:

Step 1: Let f be initialized as in (38).

Obtain one sample fromS according to the distributionπ · f . Let the obtained
sample be denoteds; of course, one and only one element ofy is equal tos.

Locate the positiont of s in y; that is, findt such thatyt = s.

Setτ1 = t.

Setfs = 0 to preventyt from being sampled again.

Seti = 2.

Step 2: Let p = {As,1, . . . , As,|S|} be thesth row of the transition matrix.

Obtain a new samples′ from S according to the distributionp · f ; again, one and
only one element fromy is equal tos′.

Locate the positiont of s′ in y; i.e., findt such thatyt = s′.

Setτi = t.

Setfs = 0 to preventyt from being sampled again.

Step 3: If i < N , then sets← s′, i← i + 1, and go back to Step 2.

5.1.1 Sampling Distribution

Before deriving the form of the distributionR, let us begin by writing our target distri-
butionP [τ |y,A,π] explicitly. Using Bayes law, we have

P [τ |y,A,π] =
P [y|τ ,A,π]P [τ]

P [y|A,π]
, (40)

sinceτ does not dependa priori on A or π. Based on our assumption that all per-
mutations are equiprobable we haveP [τ] = I{τ∈ΨN}/N ! (any sequenceτ which is

16

not one of theN ! permutations of{1, ..., N} has probability zero). Noticing that the
denominator in (40) is just a normalizing constant independent ofτ , we have

P [τ |y,A,π] ∝ I{τ∈ΨN} P [y|τ ,A,π] = I{τ∈ΨN}

(
πyτ1

N∏
t=2

Ayτt−1 ,yτt

)
, (41)

since, givenτ , the shuffled sequencey can be unshuffled, and its probability under the
Markov model specified byA andπ can be computed.

Next we derive the distributionR[τ] corresponding to the sequential sampling pro-
cedure just described. Of course, this distribution also depends onA, π, andy, so
we should writeR[τ |y,A,π]; however, for the sake of simplicity, we will omit this
explicit dependence from the notation. The sequential nature of the sampling scheme
suggests a factorization of the form

R[τ] = R[τ1] R[τ2|τ1] R[τ3|τ2, τ1] · · · R[τN |τN−1, . . . , τ1]. (42)

Consider Step 1 of the sampling scheme; clearly, fors = 1, . . . , N ,

R[τ1 = s] =
πys∑N
t=1 πyt

.

Notice that the sum in the denominator would be incorrect if we were to allow repeti-
tions withiny; under the assumption that measurements correspond to paths through
the network this normalization is correct. In more compact notation, we have

R[τ1] ∝ πyτ1
, (43)

since the sum in the denominator does not depend onτ1.
Next, consider theR[τ2|τ1] term. From Step 2 of the sampling procedure, we have

R[τ2|τ1] = Ayτ1 ,yτ2
φ2(τ1) I{τ2 6=τ1}, (44)

where

φ2(τ1) =
1∑

t6=τ1
Ayτ1 ,yt

.

For the generali-th step of the sampling algorithm we have

R[τi|τi−1, . . . , τ1] = Ayτi−1 ,yτi
φi(τi−1, . . . , τ1) I{τi /∈{τi−1,...,τ1}}, (45)

with

φi(τi−1, . . . , τ1) =
1∑

t/∈{τi−1,...,τ1} Ayτi−1 ,yt

.

Inserting (43), (44), and (45) into (42), we finally have

R[τ] ∝

(
πyτ1

N∏
i=2

Ayτi−1 ,yτi

)(
N∏

i=2

φi(τi−1, . . . , τ1)

)(
N∏

i=2

I{τi /∈{τi−1,...,τ1}}

)
.

(46)

17

Observe that the third term in the r.h.s is simply the indicator thatτ is a permuta-
tion; i.e., for anyτ ∈ {1, ..., N}N ,

N∏
i=2

I{τi /∈{τi−1,...,τ1}} = I{τ∈ΨN}. (47)

Dividing (41) by (46) we obtain the correction factorz for a permutation sampleτ
generated using this sequential scheme as

z =

(
N∏

i=2

φi(τi−1, . . . , τ1)

)−1

=
N∏

i=2

∑
t/∈{τi−1,...,τ1}

Ayτi−1 ,yt
. (48)

With this quantity in hand, we have all the ingredients needed to implement the se-
quential importance sampling procedure for computing estimates ofr̄1,t′ andᾱt,t′,t′′ .
Notice that computing the termsφi, and thus computingz, is easy since each of these
factors are the normalization terms for the distributionsp ·f which we already compute
while performing each iteration of Step 2. Thus, we just need to store the product of
these normalizing constants as we sample sequentially to finally obtain the weightz.

5.1.2 Known Endpoints

The causal sampler can easily be modified for the situation when the path endpoints
are fixed. In this case, we initializeτ1 = 1, τN = N , setf1 = 0, fN = 0 in the
first step, and run the remainder of the procedure as before, sampling until we have
a complete permutation. Based on these constraints, the importance sampling weight
takes a slightly different form:

z = πy1

N−1∏
i=2

∑
t/∈{τi−1,...,τ1}

Ayτi−1 ,yt

AyτN−1 ,yN
. (49)

5.1.3 Remarks

Recall that the motivation behind the use of IS is to focus on gathering samples which
carry most of the mass of the target distributionP [r|x,A,π]. Simulation results re-
ported at the end of this section indicate that the sequential sampler performs very
well. However, it can still happen that the sequential sampler will draw permutations
which have negligible posterior probability. This occurs when the sampler gets “stuck”
at an intermediary node: the conditional distribution,p · f , from which we sample in
Step 2 vanishes at all the states inS. We find that this happens more frequently with
longer paths and when the probability transition matrix,A, is sparse. In some sense
this illustrates that the sequential scheme is biased towards choosing more likely tran-
sitions near the beginning of the path. This observation motivated us to develop the
hierarchical approach described next.

18

5.2 Two-Stage Hierarchical Sampling

This section describes a two-stage IS scheme which draws sample permutations in
a more holistic fashion. The first stage samples from the collection of all possible
transitions occurring in this path. The second stage samples from the distribution on
all arrangements of these transitions, to form a permutation.

5.2.1 Stage 1: Sampling Transitions

Assume, for the moment, that the lengthN of the path we are considering is even. Let

Γ =
{
(a, b) ∈ {1, 2, . . . , N} × {1, 2, . . . , N} : a 6= b

}
be a collection of|Γ| = N(N − 1) pairs of distinct integers. The first stage of the
sampling procedure will amount to sequentially drawing a collectionG of N/2 dis-
joint elements fromΓ, as described below. However, before introducing the sampling
scheme, some notation is needed. Adopting some order (e.g., lexicographic) for the
elements ofΓ, we can index them using the set of integers{1, ..., |T |}. This allows
defining a vector of probabilitiesp = (p1, p2, . . . , p|T |) on{1, ..., |T |}, given by

pi =
Ayai

,ybi∑|T |
j=1 Ayaj

,ybj

, (50)

where(ai, bi) is thei-th pair inT . Because we will design a sequential scheme, and
we want the elements of the sampleG to be disjoint, we will also need a mechanism
for “masking out” transitions we do not want to sample, conditioned on the current
members ofG. Let f denote a length-|T | binary vector (mask). As before,p · f will
denote the distributionp, masked byf , as in (39).

We can now describe the first stage of the hierarchical sampling scheme.

Step 1: Setp as in (50). Setfi = 1, for all i = 1, . . . , |T |. Setj = 1. SetG = U = ∅.

Step 2: Obtain a samplesj from {1, ..., |T |} \ U , according to the distributionp · f .

UpdateG ← G ∪ {(asj
, bsj

)}. UpdateU ← U ∪ {sj}.
For eachi = 1, . . . , |T |, if {ai, bi} ∩ {asj

, bsj
} 6= ∅, setfi ← 0.

Step 3: If j < N/2, setj ← j + 1 and go back to Step 2.

When the procedure terminatesG contains exactlyN/2 disjoint transitions which we
will permute in the next stage.

In the case thatN is odd, we still only need to repeat the sampling procedure while
j < N/2, but we will end up only samplingbN/2c transitions, leaving out one integer,
sayk, between 1 andN , which does not appear in any of the transitions inG. We do
one final update in which this singleton is appended toG, that isG ← G ∪ {k}. In
general,G will be a collection ofdN/2e elements (pairs, with possibly one singleton).

19

5.2.2 Stage 2: Permuting Transitions

In stage 2, we draw a sample permutationτ from ΨN , under the constraint that it
must include all transitions inG, the collection of transitions sampled in stage 1. Let
N ′ = dN/2e and letG = {(as1 , bs1), ..., (asN′ , bsN′)}. Observe that sampling from
the constrained distribution is equivalent to drawing a permutationτ ′ from ΨN ′ and
then definingτ by concatenating the elements ofG in the order prescribed byτ ′. That
is, we set

τ ≡ τ (τ ′,G) = (tτ ′1 , tτ ′2 , . . . , tτ ′N′
), (51)

where the notationτ (τ ′,G) is used to stress that the resulting permutationτ ∈ ΨN is
a function of the transitions sampled in the first stage,G, and the smaller permutation
τ ′ ∈ ΨN ′ drawn at stage 2. Here, we assume that(N/2)! is small enough to allow
enumeration of all permutationsτ ′ ∈ ΨN ′ . Thus, we calculate

P [τ ′|G,y,A,π] = P [τ (τ ′,G)|y,A,π] ∝ πyτ1

N∏
t=2

Ayτt−1 ,yτt
, (52)

Finally, we draw a permutationτ ′ according to the probability distribution defined by
(52), and setτ = τ (τ ′,G).

5.2.3 Sampling Distribution

To use IS, we need the sampling distributionR[τ |y,A,π] of the two-stage hierarchical
sampler. Since the first stage is independent of the second one,R decomposes into

R[τ (τ ′,G)|y,A,π] = R[τ ′|G,y,A,π] R[G|y,A,π]. (53)

As in Section 5.1.1, we simplify the notation by omitting the explicit dependence on
y, A, andπ. Recall thatU = {s1, ..., sN ′} is the sequence of indices of pairs sampled
at the first stage of the algorithm; of course, knowingU is the same as knowingG. The
probabilityR[G] factors in a similar fashion to the causal sampling method due to the
sequential nature of the procedure:

R[G] = R[s1, ..., sN ′] = R[s1] R[s2|s1] · · ·R[sN ′ |sN ′−1, . . . , s1].

We start withR[s1]; with pi as defined in (50), it’s clear thatR[s1] = ps1 . Next,
considerR[s2|s1]; define the index set

I2(s1) =
{
i ∈ {1, . . . , |T |} : {ai, bi} ∩ {as1 , bs1} = ∅

}
,

containing the indices of “valid” transitions after one iteration of the first stage. Then,

R[s2|s1] =

{
ps2

(∑
j∈I2

pj

)−1

⇐ s2 ∈ I2(s1)
0 ⇐ s2 /∈ I2(s1).

(54)

In a more compact notation,

R[s2|s1] = ps2 φ2(s1) I{s2∈I2(s1)}, (55)

20

where

φ2(s1) =

 ∑
j∈I2(s1)

pj

−1

. (56)

For the generalk-th step of the first stage, we have

R[sk|sk−1, ..., s1] = psk
φk(sk−1, ..., s1) I{sk∈Ik(sk−1,...,s1)}, (57)

whereIk(sk−1, ..., s1) is the set of indices corresponding to nonzero entries off , prior
to samplingsk, and

φk(sk−1, ..., s1) =

 ∑
j∈Ik(sk−1,...,s1)

pj

−1

. (58)

Finally, notice that in the case of oddN , the last step of appending the remaining
node toG doesn’t affectR[G] because it is a deterministic operation.

Putting this all together, we have that the sampling distribution on collections of
transitions corresponding to the first stage is

R[G] = R[s1, ..., sbN/2c] =

bN/2c∏
k=1

psk

bN/2c∏
k=1

∑
j∈Ik(sk−1,...,s1)

pj

bN/2c∏
k=2

I{ik∈Ik(sk−1,...,s1)} (59)

Each term in the numerator comes directly from our current estimate of the probability
transition matrix,A, and the terms in the denominator correspond top · f at each
iteration of the first stage. All these quantities can easily be calculated and stored as
we generateG in the first stage. The product of indicator functions is just the indicator
function that guarantees thatG is “valid”, that is, it contains a set of disjoint pairs; thus,
it will equal one for any validG.

In the second stage of the algorithm, a permutationτ ′ is drawn with sampling
probability

R[τ ′|G] =
P [τ (τ ′,G)]∑

τ ′∈ΨN′ P [τ (τ ′,G)]
, (60)

whereP [τ (τ ′,G)] is defined in (52). Using (53), we have

R[τ |y,A,π] ∝

 P [τ (τ ′,G)]∑
τ ′∈ΨN′

P [τ (τ ′,G)]

bN/2c∏
k=1

psk

bN/2c∏
k=1

∑
j∈Ik(sk−1,...,s1)

pj

 . (61)

21

Finally, the weight for each sampled permutationτ = τ (τ ′,G), to be used in IS, is

z =
P [τ |y,A,π]
R[τ |y,A,π]

, (62)

whereR[τ |y,A,π] is given by (61) andP [τ |y,A,π] by (41)

5.2.4 Known Endpoints

When the endpoints of each path are known, we simply exclude these two elements in
the first stage and only consider transitions among internal nodes (indices2, . . . , N−1).
In the second stage, we form samplesτ by permuting the internal transitions sampled
in the first stage and applying the source and destination indices (1 and N) as a prefix
and suffix, respectively, in the permutation. The form of the weights does not change.

5.2.5 Other Variations

The two-stage scheme just described reduces the complexity of sampling a permuta-
tion from N ! (required to enumerate all possible orderings) to(N/2)! operations (re-
quired to enumerate all permutations of transitions in the second stage). For very long
paths, this reduction may still leave too many combinations to evaluate in an acceptable
amount of time. Rather than jumping directly from the first stage to the second one,
a natural way to extend this idea is to include additional intermediate stages similar to
the first where we sample larger2k-tuples constructed from the2k−1-tuples sampled
in the previous stage. That is, in the first stage we sample a suitable set of transitions,
sayG1. Then, in the next stage we sample a suitable collection of pairs of elementsG1,
yielding a collection of quadruples,G2, and so on.

Also, rather than sampling a permutation of transitions in the second stage, one
might consider using all such permutations, since we effectively need to calculate each
of their posterior probabilities in order to obtain a sample ordering.

5.3 Performance Comparison

A standard error metric for comparing two distributionsP andP̂ taking values on the
finite setΨN is the`1 distance, defined as

‖P − P̂‖1 =
∑

r∈ΨN

∣∣∣P [r]− P̂ [r]
∣∣∣ . (63)

Given a sequence of permutations,r1, . . . , rL, drawn from the importance sampling
distributionR along with the corresponding weights,z1, . . . , zL, we can compute the
empirical distributionP̂R induced onΨN according to

P̂R[r] =
∑L

i=1 ziI{ri=r}∑L
i=1 zi

. (64)

22

Notice that the Monte Carlo sufficient statisticsα̂
(m)
t′,t′′ andr̂

(m)
1,t′ are just sums of certain

termsP̂R[r]. For example,̂αt′,t′′ =
∑

r∈ΨN
P̂R[r]

∑Nm

t=2 rt−1,t′′rt,t′ . Thus,∣∣∣ᾱ(m)
t′,t′′ − α̂

(m)
t′,t′′

∣∣∣ ≤ ∥∥∥P − P̂R

∥∥∥
1

(65)∣∣∣r̄(m)
1,t′ − r̂

(m)
1,t′

∣∣∣ ≤ ∥∥∥P − P̂R

∥∥∥
1
. (66)

If the `1 error between the true distribution on permutations and the empirical impor-
tance sampling distribution is small then all of the estimated sufficient statistics will be
close to the corresponding exact value.

We have evaluated the performance of the various proposed sampling schemes via
simulation. To assess performance over a varying range of conditions, we consider
three scenarios: 1) the distribution over all permutations is roughly uniform, 2) the dis-
tribution is moderately peaked, and 3) the distribution is highly concentrated around
just a few of the possible permutations. These scenarios were chosen based on obser-
vations made while experimenting with the EM algorithm. The first scenario is typical
during the first few EM iterations, the second scenario is typical during intermediate
EM iterations, and the third scenario is typical when the algorithm has nearly con-
verged. We consider a length-8 path with known endpoints, so that there are6! = 720
possible path orderings. This path length is long enough to get a feel for how each
sampling scheme will perform for longer paths, while still allowing us to enumerate all
orderings.

Figure 1 depicts thè1 error between the true and importance sample-induced dis-
tributions on permutations as a function of the number of samples gathered for different
sampling schemes in each of the three scenarios considered. The curve labelled “True
Dist.” corresponds to sampling from the true distribution on permutations, is shown as
a reference and is only possible when we can enumerate all permutations. The “Causal
IS” curve corresponds to the causal importance sampling scheme described in Sec-
tion 5.1. The “Two Stage” curve denotes performance for the two stage hierarchical
scheme described in Section 5.2, “Hierarchical” corresponds to a completely hierar-
chical variation on this scheme, and “Random” refers to an approach where we sample
from a uniform distribution on permutations, which is shown as a baseline comparison.
Each curve in this figure was generated by averaging over 50 Monte Carlo simulations.
Note that these curves depict performance using up to 500 samples for a path with 720
possible orderings. This is actually quite a generous helping of samples! In our exper-
iments with Internet data we have encountered paths of up to length 27, and observed
good reconstruction performance using as few as2000 � 15! ≈ 1.31 × 1012 impor-
tance samples. Thus, performance for very few samples is of great interest. Note also
that all of the sampling schemes except for random sampling converge more rapidly
when the target distribution is more concentrated.

As expected, all of the sampling schemes give the same performance when the
Markov chain parameters are such that the distribution on all orderings is roughly uni-
form. However, as the distribution becomes more and more concentrated around just a
few orderings there is a noticeable difference between the various sampling schemes,
particularly in the 10-100 sample range. The uniform random sampling scheme clearly
performs the worst on more concentrated distributions, as would also be expected, since

23

the uniform distribution is not using any information about the target distribution. Of
the importance sampling schemes which are practical for long paths, our simulation re-
sults indicate that the causal sampling scheme performs the best, and is slightly better
than the two-stage sampler.

In terms of computational complexity, the causal sampler is the simplest and fastest
scheme to implement, requiring onlyO(N) operations per sample, whereN is the path
length. The two-stage sampler converges to the target distribution nearly as fast, but
requiresO

(
(N/2)!

)
operations per sample due to the enumeration of all transition

permutations in Stage 2 (see Section 5.2.2). Finally, the fully hierarchical scheme con-
verges to the target distribution slower than the causal or two-stage samplers, but offers
middle grounds as far as computational complexity atO(N2 log N) operations per
sample (required to compute the distribution on the elements ofGi at each stage). The
upshot is that the causal sampling procedure is simple to implement, fast, and it em-
pirically outperforms more computationally complex sampling schemes. Figures 2, 3,
and 4 depict the probability transition matrix, the true distribution on permutations,
and typical distributions estimated using each of the importance sampling schemes af-
ter 500 samples.

We have also compared the efficacy of each sampling scheme for estimating net-
work parameters within the EM algorithm. In this experiment we generated a random
network with 250 nodes and simulated 60 random sample paths through this network
ranging in length from 4 to 10 hops. Then we estimated a probability transition matrix
for the network using the EM algorithm with different approximate E-steps, assuming
the endpoints of each path to be known. Figure 5 depicts the marginal log-likelihood
of the data computed according to (6) using the probability transition matrices returned
by the EM algorithm. In our experiments we varied the number of samples-per-path
between 20 and 100, regardless of the length of the path being considered, to test the
behavior of each sampling scheme over a variety of conditions (100 � 10! ≈ 3 mil-
lion). The horizontal dashed line across the top of the figure marks the marginal log
likelihood value computed using a transition matrix derived from correctly ordered
paths. In addition to the sampling schemes described above, we also included a variant
of the two-stage sampling scheme which uses all permutations of the selected transi-
tions in Stage 2. This variant did a better job of maximizing the marginal log likelihood
than the other two-stage scheme for the same computational complexity, but still does
not perform as well as the causal sampling scheme in this experiment.

24

0 100 200 300 400 500
0.8

1

1.2

1.4

1.6

1.8

2

Number of Samples

l 1 E
rr

or

True Dist.
Causal IS
Two Stage
Hierarchical
Random

(a) Uniform distribution on permutations

0 100 200 300 400 500
0.6

0.8

1

1.2

1.4

1.6

1.8

2

Number of Samples

l 1 E
rr

or

True Dist.
Causal IS
Two Stage
Hierarchical
Random

(b) Moderately peaked distribution

0 100 200 300 400 500
0

0.5

1

1.5

2

Number of Samples

l 1 E
rr

or

True Dist.
Causal IS
Two Stage
Hierarchical
Random

(c) Highly concentrated distribution

Figure 1: `1 error as a function of the number of importance samples drawn for var-
ious sampling schemes in the following scenarios: (a) a roughly uniform distribution
on the permutations, (b) moderately peaked distribution, (c) highly concentrated distri-
bution. The curves in each figure were calculated by averaging over 50 Monte Carlo
simulations.

25

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

3.5

3.6

3.7

3.8

3.9

4

4.1

4.2

4.3

4.4

x 10−3

(a) Prob. Transition Matrix

0 200 400 600 800
0

0.5

1

1.5

2

2.5
x 10

−3

Permutation Index

P
ro

ba
bi

lit
y

(b) True Distribution

0 200 400 600 800
0

0.002

0.004

0.006

0.008

0.01

0.012

Permutation Index

E
st

im
at

ed
 P

ro
ba

bi
lit

y

(c) Causal Sampler

0 200 400 600 800
0

1

2

3

4

5

6

7

8

9
x 10

−3

Permutation Index

E
st

im
at

ed
 P

ro
ba

bi
lit

y

(d) Two-Stage Sampler

0 200 400 600 800
0

0.002

0.004

0.006

0.008

0.01

0.012

Permutation Index

E
st

im
at

ed
 P

ro
ba

bi
lit

y

(e) Hierarchical Sampler

0 200 400 600 800
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

Permutation Index

E
st

im
at

ed
 P

ro
ba

bi
lit

y

(f) Random Samples

Figure 2: Comparing sampling schemes for the scenario where all orderings are ap-
proximately uniformly distributed. This figure depicts the (a) probability transition
matrix, (b) true distribution on permutations, and estimates of the distribution using
500 samples from each of the (c) causal, (d) two-stage, (e) completely hierarchical,
and (f) uniform random permutation samplers.

26

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

0.05

0.1

0.15

0.2

0.25

(a) Prob. Transition Matrix

0 200 400 600 800
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

Permutation Index

P
ro

ba
bi

lit
y

(b) True Distribution

0 200 400 600 800
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

Permutation Index

E
st

im
at

ed
 P

ro
ba

bi
lit

y

(c) Causal Sampler

0 200 400 600 800
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

Permutation Index

E
st

im
at

ed
 P

ro
ba

bi
lit

y

(d) Two-Stage Sampler

0 200 400 600 800
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

Permutation Index

E
st

im
at

ed
 P

ro
ba

bi
lit

y

(e) Hierarchical Sampler

0 200 400 600 800
0

0.01

0.02

0.03

0.04

0.05

0.06

Permutation Index

E
st

im
at

ed
 P

ro
ba

bi
lit

y

(f) Random Samples

Figure 3: Comparing sampling schemes for the scenario where the distribution on
orderings is somewhat concentrated. This figure depicts the (a) probability transition
matrix, (b) true distribution on permutations, and estimates of the distribution using
500 samples from each of the (c) causal, (d) two-stage, (e) completely hierarchical,
and (f) uniform random permutation samplers.

27

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(a) Prob. Transition Matrix

0 200 400 600 800
0

0.1

0.2

0.3

0.4

0.5

Permutation Index

P
ro

ba
bi

lit
y

(b) True Distribution

0 200 400 600 800
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Permutation Index

E
st

im
at

ed
 P

ro
ba

bi
lit

y

(c) Causal Sampler

0 200 400 600 800
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Permutation Index

E
st

im
at

ed
 P

ro
ba

bi
lit

y

(d) Two-Stage Sampler

0 200 400 600 800
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Permutation Index

E
st

im
at

ed
 P

ro
ba

bi
lit

y

(e) Hierarchical Sampler

0 200 400 600 800
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Permutation Index

E
st

im
at

ed
 P

ro
ba

bi
lit

y

(f) Random Samples

Figure 4: Comparing sampling schemes for the scenario where the distribution on
orderings is somewhat concentrated. This figure depicts the (a) probability transition
matrix, (b) true distribution on permutations, and estimates of the distribution using
500 samples from each of the (c) causal, (d) two-stage, (e) completely hierarchical,
and (f) uniform random permutation samplers.

28

20 40 60 80 100
−470

−460

−450

−440

−430

−420

−410

Number of Samples

M
ar

gi
na

l L
og

 L
ik

el
ih

oo
d

True Dist.
Causal IS
Two−Stage
Two−Stage, All Permutations
Hierarchical

Figure 5: Using various approximate E-steps in the EM algorithm for estimating the
Markov transition matrix of a simulated network. The horizontal dashed line at the top
of the figure marks the marginal log likelihood of the data using the transition matrix
derived using the correctly ordered paths. The curves in this figure correspond to the
average over 10 Monte Carlo simulations.

29

6 Monte Carlo EM Convergence

When exact computation of the E-step is used, our EM algorithm is guaranteed to
converge via well-known convergence results due to Wu and Boyles [4,22]. Letθk =(
Ak,πk

)
denote parameter estimates calculated at thekth EM iteration (using the

exact EM expressions). Because we chooseθk+1 =
(
Ak+1,πk+1

)
according to (18)

in the M-step, our iterates satisfy themonotonicity property:

Q
(
θk+1;θk

)
≥ Q

(
θk;θk

)
. (67)

The marginal log-likelihood (6) is continuous in its parametersA and π and it is
bounded above, thus the monotonicity property guarantees that the EM iterates con-
verge monotonically to a local maximum of the marginal likelihood.

Exact calculation of sufficient statistics is not always practical for co-occurrence
observations with many vertices which is why we propose the Monte Carlo schemes
described in the previous section. However, when Monte Carlo calculation of the suf-
ficient statistics is used we no longer have the monotonicity property. In particular, the
M-step now becomes

θ̂
k+1
≡
(
Âk+1, π̂k+1) = arg max

A,π
Q̂
(
A,π;Ak,πk

)
,

whereQ̂ is defined analogously toQ in (24), but with terms̄α(m)
t′,t′′ andr̄

(m)
1,t′ replaced

by α̂
(m)
t′,t′′ and r̂

(m)
1,t′ , their corresponding importance sample approximations. Conse-

quently, care must be taken to ensure thatQ̂ approximatesQ well enough so that the
EM algorithm is not swamped with error from the Monte Carlo estimates.

Consider the following toy example using simulated observations. We begin with
a network of 142 vertices and randomly generate 40 co-occurrence observations where
between 4 and 8 vertices co-occur in each observation. Then we run three versions of
the EM algorithm on this data set. Exact E-step computation is used in one version,
and in the other two versions causal importance sampling is used with10 and1000
importance samples per observation. Each version of the algorithm starts from the
same initial estimate. Figure 6(a) depictsQ(θk+1;θk) for the exact EM iterates, as

well asQ̂(θ̂
k+1

; θ̂
k
) andQ(θ̂

k+1
; θ̂

k
) for the 10 sample Monte Carlo iterates. Note

that for the Monte Carlo EM algorithm, even thougĥQ increases monotonically by
design,Q may not increase, and consequently the monotonicity property (67) may
not hold. Figure 6(b) shows the marginal log-likelihood for all three versions of the
algorithm. Performance of the Monte Carlo EM algorithm closely resembles that of
the exact EM algorithm when enough importance samples are used, however when too
few samples are used the resulting estimates may be of a much poorer quality.

30

2 4 6 8 10
−700

−600

−500

−400

−300

−200

Iteration, k

V
ar

io
us

 Q
s

Exact, Q
Monte Carlo (10 samples), Qhat
Monte Carlo (10 samples), Q

(a)

2 4 6 8 10

−420

−400

−380

−360

−340

−320

−300

−280

Iteration, k

M
ar

gi
na

l L
og

 L
ik

el
ih

oo
d

Exact
Monte Carlo (1000 samples)
Monte Carlo (10 samples)

(b)

Figure 6: An example with simulated observations illustrating that the Monte Carlo
EM algorithm may not result in monotonic increase of the marginal log-likelihood if
too few Monte Carlo samples are used. The solid line in (a) isQ(θk+1;θk) for exact

EM iterations, the dashed line iŝQ(θ̂
k+1

; θ̂
k
) and the dash-dot line isQ(θ̂

k+1
; θ̂

k
) for

Monte Carlo EM iterations using only 10 samples. Even thoughQ̂ increases mono-
tonically, Q may not be monotonic for the Monte Carlo EM algorithm. Figure (b)
depicts the marginal log-likelihood for exact EM iterates and for two versions of the
Monte Carlo EM. Monte Carlo EM performance closely resembles that of the exact
EM algorithm when sufficiently many importance samples are used.

31

In the recent literature researchers have considered the question of how many im-
portance samples must be used in a Monte Carlo E-step [3, 5, 9]. These studies seek
a balance between monotonicity and efficiency. We would like to use enough samples
to guarantee that monotonicity holds with sufficiently high probability while not using
unnecessarily many samples. Booth et al. argue that if the same number of importance
samples is used at each EM iteration then the algorithm will eventually be swamped
by Monte Carlo error and will not converge [3]. They also suggest requiring that a
convergence criterion be satisfied on multiple successive iterations since the criterion
may be met prematurely due to poor Monte Carlo approximations.

In [5], Caffo et al. propose a method for automatically adapting the number of
Monte Carlo samples used at each EM iteration. To lighten notation, we drop the
superscriptsk andk + 1. Let ∆(θ) = Q(θ;θ′) − Q(θ′;θ′) and∆̂(θ) = Q̂(θ;θ′) −
Q̂(θ′;θ′). Furthermore, let̂θ = arg minθ Q̂(θ;θ′), whereθ′ = θk is a fixed constant,
determined at the previous EM iteration. Recall thatL importance samples are used to
calculateQ̂. The algorithm of Caffo et al. is based on a Central Limit Theorem-like
approximation in which they show that

√
L
∣∣∆̂(θ̂)−∆(θ̂)

∣∣ converges in distribution to
the standard normal. Observe that the monotonicity property (67) is equivalent to the
condition∆(θ̂) ≥ 0, and although we cannot calculate this quantity without exactly
computing the sufficient statistics in the E-step, we can compute∆̂(θ̂). The scheme
proposed by Caffo et al. amounts to increasing the number of Monte Carlo samples
until ∆̂(θ̂) > ε for a user-specifiedε > 0. Then, via an asymptotic standard normal
tail approximation, they obtain a statement of the form

Pr
(∣∣∣∆̂(θ̂)−∆(θ̂)

∣∣∣ ≥ ε
)
≤ δ(ε).

Based on this statement they claim that monotonicity holds with probability at least
1−δ(ε). They further remark that ifεk is chosen at each iteration so that

∑∞
k=1 δ(εk) <

∞ then by the Borel-Cantelli Lemma,

Pr
(∣∣∣∆̂(θ̂)−∆(θ̂)

∣∣∣ ≥ εk i.o.
)

= 0,

and so eventually,
∣∣∆̂(θ̂)−∆(θ̂)

∣∣ < εk with probability 1. Of course, in practice only
a finite number of EM iterates are used and so we may never reach the stage where all
iterates are monotonic.

Notice that for the monotonicity condition∆(θ̂) ≥ 0 to hold in the above frame-
work, the events {∣∣∣∆̂(θ̂)−∆(θ̂)

∣∣∣ ≤ ε
}

and
{

∆̂(θ̂) ≥ ε
}

must occur simultaneously. Because the probabilistic bound above only addresses one
of these events we refer to this type of result as guaranteeing an(ε, δ)-probably ap-
proximately monotonicupdate, or PAM for short. More generally, an(ε, δ)-PAM result
states that with probability at least1−δ, the update will beε-approximately monotonic;
i.e.,

∣∣∆̂(θ̂)−∆(θ̂)
∣∣ ≤ ε implies∆(θ̂) ≥ −ε.

Rather than resorting to asymptotic approximations to obtain such a result, we can
take advantage of the specific form ofQ in our problem to obtain the following finite-
sample PAM result. Recall that the sufficient statistics computed in the E-step are

32

independently for each observation. That is, the importance samples used to compute

{α̂(m)
t′,t′′} are independent of those used to compute{α̂(m′)

t′,t′′} for m 6= m′. Denote byLm

the number of importance samples used to compute sufficient statistics for observation
x(m). Exact E-step computation for this observation requiresO(Nm!) operations. Sim-
ilarly, we should expect that larger observations will require more importance samples
for two reasons: 1) there are more sufficient statistics associated with this observation
(N2

m in total), and 2) there are more ways to shuffle these observations.
In the previous section we derived closed form expressions for the importance

sample weights,zi = P [r|x,A,π]
R[r|x,A,π] , whereP denotes the target distribution andR the

importance sampling distribution. One key assumption is thatP is absolutely con-
tinuous with respect toR; that is, P [r|x,A,π] = 0 for every permutationr with
R[r|x,A,π] = 0. We adopt the convention0/0 = 0 so thatzi = 0 for such samples,
and this guarantees thatzi < ∞. Because Hoeffding’s inequality is used to derive the
bound below, the number of importance samples required depends on the range ofzi.
For themth observation, define

bm = max
r∈ΨNm

P [r|x(m),A,π]
R[r|x(m),A,π]

. (68)

Because the setΨNm is finite,P andR have finite support and the maximum is well-
defined.

There is one other subtlety we will account for in our bounds. BecauseQ̂(θ;θ′)
has termslog Ai,j and log πi, in practice we typically boundAi,j andπi away from
zero to ensure that̂Q does not go to−∞. To this end, we will assume that̂Ai,j ≥ θmin

andπ̂i ≥ θmin for some0 < θmin < |S|−1. The upper bound onθmin ensures it is still
possible to satisfy the constraints (1). Generally we chooseθmin very close to zero; at
machine precision, for example.

We have the following finite-sample PAM result for our Monte Carlo EM algo-
rithm. Proofs of all results reported in this section appear in the appendix.

Theorem 1. Let ε > 0 andδ > 0 be given and assume there existsθmin ∈ (0, |S|−1)
such thatA′

i,j ≥ θmin andπ′i ≥ θmin for all i andj. If

Lm =
2T 2N4

mb2
m | log θmin|2

ε2
log
(

2N2
m

1− (1− δ)1/T

)
(69)

importance samples are used for themth observation then̂∆(θ̂) − ∆(θ̂) < ε with
probability greater than1− δ.

Remark 1. Becausê∆(θ̂) ≥ 0 by definition, this result guarantees that∆(θ̂) > −ε
with probability greater than1− δ.

Remark 2. Recall that the computational complexity of the exact E-step isO(Nm!)
operations for themth observation. In contrast,O(Nm) operations are required to gen-
erate one sample using the causal importance sampling scheme, and so onlyO(N5

m)
operations are needed to have a PAM update for themth observation using the Monte
Carlo E-step. This clearly demonstrates that the computational complexity of the

33

Monte Carlo E-step scales polynomially in the observation size, compared to expo-
nential scaling for the exact E-step.

Remark 3. The choiceLm is roughly a factor ofT off from the number of impor-
tance samples we would expect to need, based on an asymptotic variance calculation.
Observe that for fixedθ,

Var
(
∆̂(θ)

)
' Var

 T∑
m=1

Nm∑
t′,t′′=1

α̂
(m)
t′,t′′ +

T∑
m=1

Nm∑
t′=1

r̂
(m)
1,t′

=

T∑
m=1

Var

 Nm∑
t′,t′′=1

α̂
(m)
t′,t′′ +

Nm∑
t′=1

r̂
(m)
1,t′

 ,

since independent sets of importance samples are used to calculate sufficient statistics
for different observations. It is not too difficult to believe that the variance of an indi-
vidual approximate statistic decays according to the parametric rate;i.e., Var(α̂(m)

t′,t′′) '
1/Lm. In total, there areN2

m sufficient statistics for themth observation, and they
are all potentially correlated since they are functions of the same set of importance
samples. Then we have

Var
(
∆̂(θ)

)
'

T∑
m=1

(
N2

m

)2
Lm

.

Therefore, to have Var
(
∆̂(θ)

)
equal to a constant which is independent ofT and the

Nm we needLm ∝ TN4
m. The additional factor ofT in our bound is essentially an

artifact from our application of the union bound.

Remark 4. In practice, we do not knowbm explicitly for observations withNm large,
since calculatingbm essentially requires enumerating every permutation of the co-
occurrence. However,bm could potentially be very large. We could probably do better
using Bernstein’s inequality instead of Hoeffding’s inequality. Then, instead of de-
pendence onbm, the number of importance samples required would depend on the
variance of the importance sample weights which is a better measure of quality for our
importance sampling distribution. If the sampling distributionR is well matched to the
shape of the target distributionP , then the variance should be relatively small. Even if
the distributions are well matched,bm could still be very large in the “tails”.

While PAM results are encouraging, we would really like to havemonotonicity with
high probabilityand not justapproximatemonotonicity. Letθ∗ = arg maxθ Q(θ;θ′).
By bounding∆(θ̂)−∆(θ∗) instead of∆̂(θ̂)−∆(θ̂) we obtain the following stronger
result guaranteeing aprobably monotonic(PM) update. However, instead of restricting
Ai,j andπi ≥ θmin, we need to make a stronger assumption about the values ofᾱ

(m)
t′,t′′

andr̄
(m)
1,t′ .

34

Theorem 2. Let δ > 0 be given and assume there existsλ > 0 such thatᾱ(m)
t′,t′′ > λ

and r̄
(m)
1,t′ > λ for all t′ andt′′. If

Lm =
27bm

λ

(
2
∑T

m=1 Nm + ∆(θ∗)
∆(θ∗)

)2

log

(
4
∑T

m=1 N2
m

δ

)
(70)

importance samples are used for themth observation, then∆(θ̂) ≥ 0 with probability
at least1− δ.

Remark 5. Note the dependence on∆(θ∗). By definition,∆(θ∗) ≥ 0 at every it-
eration, and typically∆(θ∗) is larger at earlier EM iterations and approaches zero as
the algorithm converges. This dependence reflects the observation of Booth et al. men-
tioned earlier, that the number of importance samples ought to increase at each itera-
tion.

Remark 6. The main assumption of Theorem 2 is that the sufficient statistics are
bounded away from zero at each iteration. We motivate this assumption by observ-
ing that if the algorithm is properly initialized the sufficient statistics will not vanish in
a finite number of iterations. The need for these assumptions arises out of the fact that
∆(θ̂)−∆(θ∗) contains terms involvinglog Âi,j− log A∗

i,j . If Âi,j vanishes whileA∗
i,j

is non-zero then∆(θ̂)−∆(θ∗) diverges to−∞ and we run into problems (if botĥAi,j

andA∗
i,j vanish at the same rate then there is no problem sincelog 1 = 0).

Remark 7. The number of samples required for a PM increase in the marginal log-
likelihood also grows polynomially in the size of the observations, in comparison to
exponential computational complexity for exact E-step calculation. To gauge the qual-
ity of this result, consider the total computational complexity required for a PM update.
If we defineN̄ = 1

T

∑T
m=1 Nm to be the average observation size, then Theorem 2

dictates that, ignoring constant and log factors,

LPM
tot =

T∑
m=1

Lm '
T∑

m=1

(
TN̄

)2
λ∆2(θ∗)

(71)

=
T 3N̄2

λ∆2(θ∗)
(72)

importance samples are required, in total, for a PM update. We do not know the precise
values of the constantsλ and∆(θ∗) in practice, but the dependence onT 3N̄2 is a
useful guideline for how many importance samples to use.

Compared to the behavior required for a PAM update,T 3N̄2 seems to be about
as good as we could hope to do. If we approximateNm ≈ N̄ then according to
Theorem 1,

LPAM
tot =

T∑
m=1

Lm ' T 3N̄4 | log θmin|
ε2

(73)

35

importance samples are required to certify anε-approximate PAM update. In general
we chooseε and θmin very small in order to ensure an accurate, nearly monotonic
update. It seems reasonable thatλ∆2(θ∗) andε2/| log θmin| will be roughly on the
same order.

Remark 8. Note that if we use differentδk at each EM iteration, chosen such that∑∞
k=1 δk < ∞, then by the Borel-Cantelli Lemma we can argue thatPr

(
∆(θ̂) <

0 i.o.
)

= 0. In other words, eventually all EM iterates result in a monotonic increase
of the marginal log-likelihood.

Remark 9. In practical applications it may not be necessary to use Monte Carlo ap-
proximation for every observation. There may be a threshold,N ′ > 0, such that exact
E-step computation is performed for observations withNm ≤ N ′, and Monte Carlo
approximation is used whenNm > N ′. Accounting for this modification results in the
following change to the expressions forLm in each result.

• Let T̃ denote the number of observations for whichNm > N ′. Then eachT in
(69) can be replaced with̃T .

• LetM denote the set of indices of observations withNm > N ′. Then both of
the sums in (70) can be changed to sums over indicesm ∈ M rather than over
all m = 1, . . . , T .

Remark 10. Finally, when the endpoints of each path are known (in particular, we
need the destinations) then the following identity holds:

∑Nm

t′′=1 ᾱ
(m)
t′,t′′ = 1 for all t′ not

corresponding to the destination, and fort′ corresponding to the destination,ᾱ
(m)
t′,t′′ = 0

for all t′′. Consequently, we can strengthen Theorem 2 in the following fashion. First,
suppose that ift′ does not correspond to the destination of themth observation then
we enforcêα(m)

t′,t′′ ≥ αmin for some0 < αmin < N−1
m . Then it follows that∆(θ̂) ≥ 0

with probability greater than1− δ if

Lm =
27bm

αmin

(∑T
m=1 Nm + ∆(θ∗)

∆(θ∗)

)2

log

(
2
∑T

m=1 N2
m

δ

)
importance samples are used for themth observation. The main improvement here is
that nowαmin is a parameter we control, and we no longer need to make assumptions
aboutᾱ(m)

t′,t′′ being bounded away from zero.

In addition to demonstrating that the Monte Carlo EM algorithm has polynomial
computational complexity, these bounds give a useful guideline for determining how
many importance samples should be used. However, because they involve worst-case
analysis, the numbers of samples dictated by these bounds tend to be on the conserva-
tive side. For example, in the Internet experiments described in Section 8,T = 249 and
N̄ = 17. Theorem 2 suggests that roughly 72 million importance samples should be
used per observation. However, in our experiments we find that the algorithm exhibits
reasonable performance on this data set using as few as2, 000 samples per observation.
Of course, in practice, we do not have direct access to thebm’s, λ, or ∆(θ∗), so these
bounds cannot be used as explicit guidelines.

36

7 Incorporating Prior Information

Additional side information about the Markov chain parametersA andπ which we
are estimating can easily be incorporated into the algorithm by applying independent
Dirichlet priors to each row of the transition matrix and to the initial state distribution.
Hence, we have

P [π|u] ∝
|S|∏
i=1

πui−1
i (74)

P [A|v] ∝
|S∏

i=1

|S|∏
j=1

A
vi,j−1
i,j , (75)

where the parametersui andvi,j should be non-negative in order to have proper priors
[2]. The larger thatui is relative to the otherui′ , i′ 6= i, the greater our prior belief that
statei is an initial state rather than the others. Similarly, the largervi,j relative to other
vi,j′ for j′ 6= j, the more likely we expect,a priori, transitions from statei to statej
relative to transitions fromi to the other states.

Plugging (74) and (75) into our complete log-likelihood (16), we find that incorpo-
rating priors into the EM algorithm only results in a change to the M-step. In particular,
instead of (26) we have

(π̂i)new =
ui +

∑T
m=1

∑Nm

t′=1 r̄
(m)
1,t′ x

(m)
t′,i∑|S|

i=1

(
ui +

∑T
m=1

∑Nm

t′=1 r̄
(m)
1,t′ x

(m)
t′,i

) , (76)

and instead of (25) we have

(
Âi,j

)
new

=

vi,j +
T∑

m=1

Nm∑
t′=1

Nm∑
t′′=1

ᾱ
(m)
t′,t′′x

(m)
t−1,ix

(m)
t,j

|S|∑
j=1

(
vi,j +

T∑
m=1

Nm∑
t′=1

Nm∑
t′′=1

ᾱ
(m)
t′,t′′x

(m)
t−1,ix

(m)
t,j

) . (77)

Consider, for the moment, just the prior distribution on the initial state distribution.
Applying P [π|u] whereui = c > 1 for all i will encourage all of the states to have
some mass in the initial state distribution. On the other hand, setting0 < c < 1 in
this example will have a shrinkage effect, encouraging all of the mass to go to one (or
a few) of the states. Letting allui andvi,j tend uniformly to zero we are back to the
original problem formulation with no additional information. We can push even more
aggressively for a sparse solution by choosing negative parameters for the Dirichlet
distributions as was done in [7] for Gaussian mixtures. This results in an improper prior
and one must take care to threshold appropriately sinceπi andAi,j are probabilities.

37

When negative Dirichlet parameters are allowed, the M-step updates become

(π̂i)new =

(
ui +

∑T
m=1

∑Nm

t′=1 r̄
(m)
1,t′

)+

∑|S|
i=1

(
ui +

∑T
m=1

∑Nm

t′=1 r̄
(m)
1,t′

)+ (78)

(
Âi,j

)
new

=

(
vi,j +

T∑
m=1

Nm∑
t′=1

Nm∑
t′′=1

ᾱ
(m)
t′,t′′x

(m)
t−1,ix

(m)
t,j

)+

|S|∑
j=1

(
vi,j +

T∑
m=1

Nm∑
t′=1

Nm∑
t′′=1

ᾱ
(m)
t′,t′′x

(m)
t−1,ix

(m)
t,j

)+ . (79)

where(·)+ retains the positive part of its argument and is equal to zero otherwise.

8 Experimental Results

In this section we evaluate the performance of ournetwork inference from co-occurrences
(NICO) algorithm on both simulated data sets, and on data gathered from the public
Internet. In the results reported below we obtain a network reconstruction by first
estimating an initial state distribution and probability transition matrix via the EM al-
gorithm. Then we calculate the maximum likelihood ordering of elements in each path
according to the inferred model, and use this ordering on each path to reconstruct a
feasible network. The maximum likelihood optimization problem we are solving is not
convex, and so the EM algorithm cannot be guaranteed to converge to a global solution.
In general, there may also be multiple global maxima. Accordingly, we rerun the EM
algorithm from multiple different random initializations and report on the collective
results.

We compare the performance of our algorithm with that of theFrequency Method
(FM), defined in [18] and mentioned in the introduction. The FM also reconstructs
a network topology by estimating an order for the vertices in each transmission path.
This method determines each path ordering independently by sorting the elements in
the path according to a score computed from pair-wise co-occurrence frequencies in-
volving the source and destination of the path. It is possible that within a particular path
multiple vertices may receive identical FM scores, in which case the sorted order of
those elements would be arbitrary (one could exchange elements with identical scores
without violating the FM criteria). In fact, we observe this phenomena in many of our
experiments. We resolve ties by choosing a random order for elements with identical
scores, and then also perform multiple repetitions yielding different solutions.

The quality of a network reconstruction is determined by a quantity we term the
edge symmetric differenceerror. Because the nodes in the network have unique labels,
the goal of any reconstruction scheme is to determine which nodes are connected by an
edge. The edge symmetric difference error is defined as the sum of the number of false
positives (edges appearing in the reconstructed network which do not exist in the true
network) and the number of false negatives (edges in the true network not appearing in
the reconstructed network).

38

8.1 Simulated Networks

In this section we study the performance of our algorithm on simulated data. A network
is generated according to a random geometric graph model: 50 vertices are thrown at
random in the unit square, and two vertices are connected with an edge if the Euclidean
distance between them is less than or equal to

√
log(50)/50. This threshold guarantees

that the graph is connected with high probability. Groups of nodes are randomly chosen
as sources and destinations, a subset of edges (chosen randomly) in the network are
equipped with sensors, transmission paths are generated according to either a shortest
path or random routing model, and then co-occurrence observations are formed from
each path. The sources, destinations, and monitored edges then become the vertices
in our reconstructed graph. In all the experiments reported in this section we vary the
number of destination vertices between 5 and 40. This allows us to examine the effect
of increasing the number of observed paths. Also, since there are only 50 vertices total
in the graph, as the number of destinations increases there is more overlap between
different co-occurrence observations. Each experiment is repeated over 100 randomly
generated topologies, and 10 restarts of both the NICO and FM algorithms are run on
each configuration. The exact E-step is used for observations withNm ≤ 12, and
causal importance sampling is used for longer paths with 2000 Monte Carlo samples.
The largest observation in any simulation hasNm = 19.

The first set of simulations reported use a shortest path routing policy (Dijkstra’s
algorithm) to generate transmission paths through the network. Figures 7(a-d) depict
the average edge symmetric difference error for different levels of network coverage.
At 25% coverage, one quarter of all the edges in the original network (chosen at ran-
dom) are capable of sensing transmissions. At50% coverage, half of the edges sense,
and so on. Each data point shown is the average over 10 restarts of each algorithm on
100 different topologies. As a point of reference, at100% coverage the typical network
contains roughly 250 edges. Thus, although performance is consistent across the dif-
ferent levels of coverage in terms of absolute error, both algorithms actually perform
worse as the coverage decreases, relative to the number of edges in the network. For
a fixed level of coverage, there seems to be a general trend in that the performance of
both algorithms is the worst for a moderate-to-low number of destinations (10-20), and
performance improves at either extreme.

When there are very few destinations, the target network closely resembles a tree
which might explain why both algorithms perform well. In tree networks the relative
frequencies of co-occurrence accurately reflect the network distance of each internal
vertex from the sources and destinations. At the other extreme, when there are 40
destinations the FM performs essentially as well as NICO. A possible explanation for
this might be that when nearly all vertices in the network are available as destinations
(recall, there are only 50 vertices total in the generating network and 5 of these act as
sources), there is sufficient overlap among all of the observed co-occurrences so that
pairwise co-occurrence frequencies again accurately reflect the positions of vertices
within the network. Also, one reason the FM is not performing as well in this simula-
tion as one might expect (based on the shortest path routing policy) is that, even though
the routes from each source to all destinations form a tree, when the routes from dif-
ferent sources are combined to form the network some of this structure is lost and the

39

5 10 15 20 25 30 35 40
0

1

2

3

4

5

6

7

Num. Destinations

M
ea

n
E

dg
e

S
ym

m
et

ric
 D

iff
er

en
ce

Freq Meth
NICO

(a) 100% Coverage

5 10 15 20 25 30 35 40
0

1

2

3

4

5

6

7

Num. Destinations

M
ea

n
E

dg
e

S
ym

m
et

ric
 D

iff
er

en
ce

Freq Meth
NICO

(b) 75% Coverage

5 10 15 20 25 30 35 40
0

1

2

3

4

5

6

7

Num. Destinations

M
ea

n
E

dg
e

S
ym

m
et

ric
 D

iff
er

en
ce

Freq Meth
NICO

(c) 50% Coverage

5 10 15 20 25 30 35 40
0

1

2

3

4

5

6

7

Num. Destinations

M
ea

n
E

dg
e

S
ym

m
et

ric
 D

iff
er

en
ce

Freq Meth
NICO

(d) 25% Coverage

Figure 7: Average edge symmetric difference error for simulated networks with short-
est path routing. The coverage level indicates what percentage of edges in the network
sense transmissions. These results reflect the average over 10 random initializations of
each algorithm on 100 different topologies.

40

tree-based model is violated. In general, the frequency method seems to be much more
sensitive to the amount of data available, whereas NICO offers more consistent average
performance across various settings.

We perform multiple restarts because of the possibility that the EM algorithm will
get trapped at a local maximum. For each random initialization we potentially will
compute a different candidate solution. Once we have executed multiple restarts from
random initializations, we decide which of the reported solutions is superior by calcu-
lating the marginal log-likelihood of the data for each solution. Figure 8 depicts the
edge symmetric difference error for NICO when the most likely candidate is used for
reconstruction. In this figure performance is averaged over 100 topologies, but not
over restarts. Unfortunately, of the multiple solutions returned by the FM, there is no
obvious way to prefer one over the other. A potential heuristic might be to choose the
sparsest reconstruction candidate, however this doesn’t always result in the best per-
formance. In Figure 8 we display the error resulting from using both the sparsest can-
didate, and by clairvoyantly choosing the best FM candidate. For this simulation, the
most likely NICO candidate always also corresponded to one with best edge symmetric
difference error. Clearly, using the sparsest FM solution as a heuristic for picking one
of the candidate solutions does consistently better than just choosing one at random
(compare with the mean FM performance in the previous Figure), however it still is
not doing as well as possible with the FM. Moreover, the most likely NICO solution is
significantly more accurate than average.

We have also repeated the above experimental setup, but using a random route
generation scheme rather than shortest path routes. A random route for a given source
destination pair is found by first generating a random weight matrix for the edges in the
graph, and then running the shortest path algorithm, taking these weights into account.
Shortest path routes generated in the first set of simulations correspond to each edge
having the same weight. By varying the weight matrix, the only consistent character-
istics across routes are those arising from the underlying topological structure of the
graph. Figure 9 shows results for the sparsest and clairvoyant best FM candidates and
the maximum likelihood NICO candidate for 10 random initializations on 100 differ-
ent topologies. As might be expected, NICO handles random routes much better than
the FM. At the extreme numbers of destinations, performance of the FM is relatively
unchanged, however FM performance degrades for intermediate values, as compared
to the shortest path simulation results.

8.2 Internet Data

We have also studied the performance of our algorithm on co-occurrence observations
gathered from the Internet. Usingtraceroute we have collected data describing
roughly 250 router-level paths. Our motivation for using this type of data is two-fold.
First, traceroute allows us to measure the true order of elements in each path so
that we have a ground truth to validate our results against. Second, and more impor-
tantly, the data comes from a real network where, presumably, paths are not generated
according to a first-order Markov model. This allows us to gauge the robustness of the
proposed model and to evaluate how well it generalizes to realistic scenarios.

The data used in this experiment were collected on October 12, 2005.

41

5 10 15 20 25 30 35 40
0

1

2

3

4

5

6

7

Num. Destinations

E
dg

e
S

ym
m

et
ric

 D
iff

er
en

ce

Freq. Method (Sparsest)
Freq. Method (Best)
NICO (ML)

(a) 100% Coverage

5 10 15 20 25 30 35 40
0

1

2

3

4

5

6

7

Num. Destinations

E
dg

e
S

ym
m

et
ric

 D
iff

er
en

ce

Freq. Method (Sparsest)
Freq. Method (Best)
NICO (ML)

(b) 75% Coverage

5 10 15 20 25 30 35 40
0

1

2

3

4

5

6

7

Num. Destinations

E
dg

e
S

ym
m

et
ric

 D
iff

er
en

ce

Freq. Method (Sparsest)
Freq. Method (Best)
NICO (ML)

(c) 50% Coverage

5 10 15 20 25 30 35 40
0

1

2

3

4

5

6

7

Num. Destinations

E
dg

e
S

ym
m

et
ric

 D
iff

er
en

ce

Freq. Method (Sparsest)
Freq. Method (Best)
NICO (ML)

(d) 25% Coverage

Figure 8: Edge symmetric difference error for simulated networks with shortest path
routing at different coverage levels. Results are averaged over 100 different topologies.
Of the 10 candidate solutions corresponding to random initializations of each algo-
rithm, the sparsest and (clairvoyant) best FM solution and most likely NICO solution
are used.

42

5 10 15 20 25 30 35 40
0

1

2

3

4

5

6

7

Num. Destinations

E
dg

e
S

ym
m

et
ric

 D
iff

er
en

ce

Freq. Method (Sparsest)
Freq. Method (Best)
NICO (ML)

(a) 100% Coverage

5 10 15 20 25 30 35 40
0

1

2

3

4

5

6

7

Num. Destinations

E
dg

e
S

ym
m

et
ric

 D
iff

er
en

ce

Freq. Method (Sparsest)
Freq. Method (Best)
NICO (ML)

(b) 75% Coverage

5 10 15 20 25 30 35 40
0

1

2

3

4

5

6

7

Num. Destinations

E
dg

e
S

ym
m

et
ric

 D
iff

er
en

ce

Freq. Method (Sparsest)
Freq. Method (Best)
NICO (ML)

(c) 50% Coverage

5 10 15 20 25 30 35 40
0

1

2

3

4

5

6

7

Num. Destinations

E
dg

e
S

ym
m

et
ric

 D
iff

er
en

ce

Freq. Method (Sparsest)
Freq. Method (Best)
NICO (ML)

(d) 25% Coverage

Figure 9: Edge symmetric difference error for simulated networks with randomly gen-
erated transmission paths. Of the 10 candidate solutions corresponding to random ini-
tializations of each algorithm, the sparsest and (clairvoyant) best FM solution and most
likely NICO solution are used.

43

Traceroute probes were initiated from three sources located at the University of
Wisconsin-Madison, theInstituto Superior T́ecnicoin Lisbon, and at Rice University,
and probes were transmitted to 83 web servers affiliated with a mixture of corpora-
tions, universities, and governments around the world. The shortest path was eight
hops long, between two machines located in Madison, and the longest path was 27
hops long, stretching from Lisbon to a site in Australia. The exact E-step is used to
computeᾱ for paths of up to 9 hops. For paths longer than 9 hops we use the causal
importance sampling described in Section 5.1 to approximate the E-step calculations.
The ground truth topology derived from the ordered routes is depicted in Figure 10.
The network contains a total of 1105 vertices and 1317 edges.

A Matlab implementation of the EM algorithm typically runs for roughly one hour
on this data set, converging after 19 iterations. A faster C implementation performs
the same computation in 10 minutes. The frequency method requires two passes over
the data: one to collect pair-wise co-occurrence frequency statistics, and a second to
compute orders for each path. A Matlab implementation runs in under a minute for this
data set.

The minimum, median, and maximum edge symmetric difference errors are shown
in Figure 11. Both algorithms have seemingly high error rates, as there are roughly
1300 links in the true network. However keep in mind that each reconstruction scheme
is attempting to fill in the entries of a roughly1100 × 1100 matrix. For 50 networks
constructed by choosing a random order for the elements of each path, the average edge
symmetric difference error was 4300, so both algorithms are indeed doing considerably
better than random guessing. Moreover, performance of the proposed NICO approach
is noticeably better than that for the frequency method; the NICO average error is
better than that of the best FM reconstruction, and the worst case NICO reconstruction
is on par with the average FM performance. We also note that the number of false
positives and false negatives in a reconstruction using either scheme tend to be roughly
equal (each constituting half of the edge symmetric difference error). From a detection-
theoretic standpoint, the Type-I and Type-II errors are more or less balanced.

Figure 12 shows statistics for the number of edges in the reconstructed networks.
There is an interesting correlation between the number of edges and accuracy of re-
construction in this example. As seen above, the typical NICO reconstruction is more
accurate, in terms of edge errors, than a FM reconstruction. NICO also consistently
returns a sparser estimate. The median number of links in a NICO reconstruction was
1329, whereas the median number of links in a FM reconstruction was 1426. There
are 1317 edges in the true network, so it seems that the reconstructions generated using
NICO more accurately reflect the level of complexity in the true network.

The marginal log-likelihood values for each of the 50 NICO estimates are depicted
in Figure 13. The marginal log-likelihood, given by (6), is the cost function being opti-
mized by the EM algorithm. Often, for non-convex problems such as ours where there
are local maxima, multiple runs of the EM algorithm will be performed with different
random initializations. Then the solution with the maximum marginal likelihood will
be used. However, in contrast to the experiments with simulated data reported above,
for this example there is not an exact correlation between higher marginal likelihood
values and lower edge symmetric difference error. The topology with the highest like-
lihood value results in an edge symmetric difference error of 627. This is better than

44

339

340

338

699

795

761

722

711

700

337 326

698

721

807

336

697

913

259

335

696

334

695

256

333

694

332

693

331

692

330

691

643

705

690

246

329

328

689

234

327

441

575

393

375

688

232

687

325 315

686

324 969

685

226

323

684

203

322

683

321

1097

682

320

570

681

680

748

319318

679

184

181

317

678

206

316

436

677

173

676

314 304

675

170

313

674

312

501

673

311

672

310

401

671

159

670

155

309308

669

779

739

852

811

307 509

668

743

729

710

877

306

587

563

667

135

305

346

666 138

131

665

100

303 287

664

302

663

93

301

662

300

661

660659

658
36

657

656 250

69

655

654

640

621

653

618

801

652

160

91

68

63

8

651

104

56

23

650

649

53

648

647 50

646

192

645

45

644

642

641

639

616

817

638

28

999
381

637

998

636 628

997

635

25

996

634

995

633

994

368

632

993

631

12

992

630

991

990 363

199

200

198197196

195

194

189

193

191

190

629

111

810

989

627

988

626

9

987

625

986

624

985 759

623

984
1002

622

983

982

620

981

751

980

188 183187186185

182 176

180

619

979

617

978

977

615

820

976

614

218

975

613

974

612

973

611

972

610

971

970

942

1051

1016

179

205

178

212

177

453

175 171174

172 162

609

608

604

607

968

606

967

605 588

966

965

603

595

964 846

602

892

963

1004

601

962

600

961

960

169168167

166

165

164

163

161

959

1096

1092

958

957

719

956
955

954

953

952

951

950

276

158 142

157156154

153
152

151
150

949

948

947

946

945

1072

944

943

273

1037

1056

941

940

1069

1006

1003

1001

149

148

147

435

369

146

461

288

271

515

145

144

414

405

277

533

528

386

358

143

343

141140

939

776

1086

1079

1044

1031

1021

938

1007

937

257

936

935

217

934

933

211

932

931930

139

499 494

498

137

130

497

136

496

495

134 124133

493 489

132

492

491490

929928

927
926

925924923

1042

922

921

920 1093

129128

488 485

127

487

126

523

486

1057

125

484 478

123 118

483

122

482

121

481

120

480

919
918

917

916

915

914

912

911

910 74

119

479 551

117 108

477

474

116

476

115

475

114113

473

112

472 460471

110

224

216

470

909

72

908

13

907

906
239

57

905

904

48

903

83

76

902

901

39

900

109

469

468

107 103

467

106

466

105

465

464

463

102

462

101

272

11051104

459 452

1103
1062

458

1102

457

1101

456

1100

455

454

451 440450449

448447446

809

445

444

443

442

439

434

438

799

800

437

798

893
829

596

797796

433 426

794

421

432

793

431

792

430

791

854

790

412

429

428

789

427

788

787

425 413

786

424

785

423

784

422

783

843

782

420

781780

419

418

842

417

778

399

416

777

744

828

415

390

1000

775774

404

773

411

772

871

410

771
770

409
408

769

407

768

406

767

766
765

403

400

764

365

402

763

359

1005

762

860

760 345

758 397

757

756755

754

753

344
752

750749

866

849

747

746

745

890

822

730

833

742

741

740

738737736

735734

733

732

881

731

299

298

297

296
295294

293292291

290

728727

726

579

847

725724

723
884

720

289

286285
284

283282281280

718

717716715

714

713

712

279

278

275 270
274

544

709

708

707
706

704

703

702

826

701

876

269 264268267266265

263

258

262261

260

253

255
254

252

249

251

248 244247

245

243
238

242
241240

599

237 233

598

236

597

235

594 586

229

593

231

592

230

591

590

228 223

589

227

225

585 574584

222 215

583

221

582

220

581580

219

578577
576

214213

573

569

572

571

210 204209208

568

562

207

567

566

565

564

202

201

561

550

560559558

557

556

555

554553552

549 543548

547546

545

1084

542 532541540

539

538

899

537

898

536

897

535

896

534

895

894

531

527

530

891

529

889

888

526

522

887

525

886

524

885

883

521

520

514
859

882

1099

880

1098

1090

1095

1094

1091

519

858

518

879

517

878

516

875

513

508

874

512

873

511

872

510

1089

870

1088

1087

1085

1083

10821081

1080

99 96

98

97

869 1078

507 503

868

506

95 90

867

505

94

504

865

92

864

502

500

863

862

861

1077

1076

1075

1074

1073

1071

1070

89 86

88

87

85 82

857

84

856

855

81 75

853

80

851

850

1068

1067

1066

1065
1064

1063

832

10611060

797877

848

67

73

845844

71

70

841

1059

840

1058

1055105410531052

1050

839

66

62

838

65

837

64

836835

834

61 55
60

831

1049

830

1048

1047

1046

1045

392

1043

818

398

1041

396

1040

395394

391 385

5958

827

54 47

825

52

824

51

823

821

1039

1038

1036

1035

1034

389

1033

388

1032

387

1030

384 374383382

380

49

819

46 35

44

816

43

815

42

814

41

813

40

812

102910281027
1026

10251024

379

1023

378

1022

377

376
1020

373

372

371

370

38

37

808

34 27

806

33

805

32

804

31

803

30

802

1019

1018

1017

1015101410131012

367 357

1011

366

1010

364

362

361

360

29

26 20

24
22

21

1009

1008

2

7

11

6

356

5

355

4

354

3

353

352

1

351

350

19 101817
16

1514

349

348

347

342

341

Figure 10: Internet topology obtained usingtraceroute from three sources to 83
destinations around the world.

45

NICO Freq. Meth
400

450

500

550

600

650

700

E
dg

e
S

ym
m

et
ric

 D
iff

er
en

ce

Min
Median
Max

Figure 11: Edge symmetric difference error comparison of NICO and FM on Internet
data. The reported values come from 50 random initializations of each algorithm.

NICO Freq. Meth
1000

1100

1200

1300

1400

1500

N
um

. R
ec

on
st

ru
ct

ed
 E

dg
es

Min
Median
Max

Figure 12: Number of edges in networks reconstructed using each method. The me-
dian number of edges per reconstruction is 1329 for NICO and 1426 for FM. The true
network has 1317 edges, and so it appears that NICO does a better job of capturing the
complexity of the true network.

46

0 10 20 30 40 50
−7815

−7810

−7805

−7800

−7795

Random Initialization

M
ar

gi
na

l L
og

 L
ik

el
ih

oo
d

Figure 13: Marginal log likelihood values for different random initializations of NICO,
sorted in ascending order. The three hollow circles correspond to the solutions which
achieve the lowest edge symmetric difference error of all NICO trials. The red line
shows the marginal log likelihood value computed using the true path orders to es-
timate a Markov transition matrix. Many candidate solutions have higher marginal
log-likelihood than the true topology, suggesting that our generative model may not be
the best match for Internet topology data.

the clairvoyant best FM error, but only average for NICO. The three repetitions which
returned a topology with the lowest symmetric difference error had the next highest
likelihood value, as indicated by the three hollow circles in the figure. The dashed line
shows the likelihood value based on a transition matrix estimated using the true path
orders as measured bytraceroute . Notice that a majority of the candidate solutions
returned by NICO have a higher marginal likelihood than the true topology. This sug-
gests that our generative model may not be the best match for Internet topology data.
Still the overall performance of our algorithm is encouraging.

9 Conclusion and Discussion

This paper presents a novel approach to network reconstruction from co-occurrence
observations. A co-occurrence observation reflects which vertices are activated by a
particular transmission through the network, but not the order in which they are acti-
vated. We model transmission paths as i.i.d. random walks on the underlying graph
structure. The parameters for this model are the initial state distribution and transi-
tion matrix of a first-order Markov chain governing the random walk. Co-occurrence
observations are then modelled as samples of the random walk, subjected to a ran-
dom permutation which accounts for the fact that we do not observe the activation

47

order. Treating the random permutations as latent variables, we derive anexpectation-
maximization(EM) algorithm for efficiently computing maximum likelihood estimates
of the Markov chain parameters. Because the marginal log-likelihood is not convex (in
general it is multi-modal), we only guarantee that the EM algorithm will converge to a
local maximum. Multiple restarts from different initializations are typically used, and
of these solutions, the one with the largest marginal log-likelihood is taken as the best.
Our algorithm is easily modified to compute the maximuma posterioriestimates, al-
lowing a user to incorporate additional side information in a natural, Bayesian fashion.

The complexity of the EM algorithm is dominated by the E-step calculation which
requiresO(Nm!) operations for themth observation, whereNm is the number of ver-
tices in that observation. IfNm is larger than 10 or 15, exact computation of the E-step
may not be tractable. For such situations we describe faster approximation methods
based on importance sampling and Monte Carlo techniques. Care must be taken to use
enough samples, or else the EM algorithm will be swamped by Monte Carlo error and
will not converge. On the other hand, one would like to avoid using too many sam-
ples and incurring greater complexity than necessary. We derive concentration-style
bounds, characterizing the quality of the Monte Carlo approximation in terms of the
problem dimensions and the number of samples used. Based on these bounds, we can
guarantee that the EM algorithm will converge with high probability using a number of
samples which depends polynomially onNm, as opposed to exponential dependence
required for exact E-step calculation.

To obtain a network reconstruction, we determine the most likely order for each
co-occurrence observation according to the Markov chain parameter estimates, and
then insert edges in the graph based on these ordered transmission paths. This pro-
cedure always produces a feasible reconstruction (one which is consistent with the
observations). The parameter estimates can also be used to assign likelihoods to dif-
ferent permutations of a co-occurrence observation, guiding an expert to alternative
reconstructions. The parameter estimates may be also useful for other tasks such as
predicting new, unobserved, paths through the network [10]. Alternatively, one could
analyze properties of an ensemble of solutions, obtained by running the EM algorithm
from different initializations, and then posit a new set of experiments to be conducted
based on this analysis.

The transition matrix parameterAi,j can be interpreted as estimates of the proba-
bility a transmission will be passed from vertexi to j, conditioned on the path passing
reachingi; that is,Ai,j = P [Zk+1 = j|Zk = i]. In particular, theyare not esti-
mates of the probability of a link existing fromi to j. SinceA is a stochastic matrix,
each row must sum to 1, and so if vertexi is connected to many other nodes then
the unit mass is being spread over more entries. We can obtain joint probabilities,
P [Zk = i, Zk+1 = j], via Bayes theorem,

P [Zk+1 = j|Zk = i] =
P [Zk = i, Zk+1 = j]

P [Zk = i]
,

whereP [Zk = i] is the stationary distribution of the chain (not necessarily equal to the
initial state distribution). These joint probabilities (appropriately scaled versions of the
transition matrix entries) more accurately reflect the likelihood of there being an edge
from i to j, based on our estimates.

48

Our future work involves extending and generalizing both algorithmic and theoreti-
cal aspects of this work. Co-occurrence observations naturally arise from transmission
pathsin communication network applications and, to a degree, in biological, social,
and brain networks as well. However the physical mechanisms driving interactions
in the latter three applications may also correspond to more general connected sub-
graph structures such as trees or directed acyclic graphs. Extending our methods in
this fashion is easily accomplished in theory, however the computational complexity
is significantly amplified when more general structures are considered. In this paper
we have also restricted our attention to noise-free observations. We are also extending
our algorithm to handle the case where observations reflect a soft probability that a
given vertex occurred in the path rather than hard, ”active” or ”not active”, binary ob-
servations. This extension is relevant in many applications including the inference of
signal transduction networks (in systems biology) where co-occurrence observations
are themselves the result of inference procedures run on experimental data.

A Proofs of Monotonicity Theorems

A.1 Proof of Theorem 1

There are two main steps to the proof of Theorem 1. First, we derive a concentration
inequality for the importance sample approximations,α̂

(m)
t′,t′′ and r̂

(m)
1,t′ . Then we use

these concentration inequalities to construct a bound for∆̂(θ̂)−∆(θ).
Recall the expressions (35) and (34) of importance sample approximations calcu-

lated in the Monte Carlo E-step. More generally, we will consider self-normalizing
sums of the form

µ̂L =
∑L

i=1 Z(ri)X(ri)∑L
i=1 Z(ri)

, (80)

whereZ : ΨN → [0, b] correspond to the importance sample weights, andX : ΨN →
{0, 1} indicates whether or not theith importance sample exhibits the event of interest.
For example, if we are approximatinḡr1,t′ thenX(ri) = ri

1,t′ . Denoting byP the
target distribution and byR the importance sampling distribution, we haveZ(ri) =
P [ri|x,A,π]/R[ri|x,A,π]. Now, we are trying to approximate

µ =
∑

r∈ΨN

X(r)P [r|x,A,π]. (81)

Note thatE[µ̂L] 6= µ, so we cannot directly apply standard concentration results such
as Hoeffding’s inequality or McDiarmid’s bounded-differences inequality. To see why
this is true, consider the caseL = 1:

E
[
Z(r1)X(r1)

Z(r1)

]
=

∑
r∈ΨN

X(r)R[r|x,A,π] (82)

6=
∑

r∈ΨN

X(r)P [r|x,A,π]. (83)

49

We can, however, show that the approximationµ̂L is asymptotically consistent. Ob-
serve that

E[Z(ri)] =
∑

r∈ΨN

P [r|x,A,π]
R[r|x,A,π]

R[r|x,A,π] (84)

=
∑

r∈ΨN

P [r|x,A,π] (85)

= 1, (86)

sinceP is a probability distribution onΨN , and

E[Z(ri)X(ri)] =
∑

r∈ΨN

P [r|x,A,π]
R[r|x,A,π]

X(r)R[r|x,A,π] (87)

=
∑

r∈ΨN

X(r)P [r|x,A,π] (88)

= µ. (89)

Then, by a strong law of large numbers argument, it follows thatµ̂L → µ asL→∞.
We have the following finite-sample concentration inequality demonstrating that

the approximation error,̂µN − µ decays exponentially with the number of importance
samples,L.

Proposition 1. Let{(Xi, Zi)} be a sequence of independent and identically distributed
random variables withXi ∈ {0, 1} and Zi ∈ [0, b]. Assume thatE[Zi] = 1 and
E[ZiXi] = µ, and define

µ̂L =
∑L

i=1 ZiXi∑L
i=1 Zi

. (90)

Then for anyε > 0,

Pr (µ̂L − µ ≥ ε) ≤ 2 exp

{
−2L

b2

(
ε

1 + µ + ε

)2
}

. (91)

Proof. We haveZi ∈ [0, b], andXi ∈ {0, 1} soZiXi ∈ [0, b] also. Then by Hoeffd-
ing’s inequality [8], for anyt > 0,

Pr

(
L∑

i=1

ZiXi − Lµ ≥ Lt

)
≤ e−2Lt2/b2 , (92)

and for anyt > 0,

Pr

(
L∑

i=1

Zi − L ≤ −Lt

)
≤ e−2Lt2/b2 . (93)

50

Define the event,

Et =

{
L∑

i=1

ZiXi − Lµ ≥ Lt

}⋃{
L∑

i=1

Zi − L ≤ −Lt

}
. (94)

Then by the union bound,Pr(Et) ≤ 2e−2Lt2/b2 for any t > 0. Next consider the
complement,

Ēt =

{
L∑

i=1

ZiXi − Lµ < Lt

}⋂{
L∑

i=1

Zi > L(1− t)

}
. (95)

The eventĒt implies that

µ̂L − µ =
∑L

i=1 ZiXi − Lµ∑L
i=1 Zi

+
Lµ∑L
i=1 Zi

− µ (96)

<
Lt

L(1− t)
+

Lµ

L(1− t)
− µ (97)

=
t(1 + µ)

1− t
. (98)

It follows that {
µ̂L − µ ≥ t(1 + µ)

1− t

}
⊆ Et, (99)

and so

Pr
(

µ̂L − µ ≥ t(1 + µ)
1− t

)
≤ Pr(Et) (100)

≤ 2e−2Lt2/b2 . (101)

Setε = t(1 + µ)/(1− t) to obtain the desired result.

Before proceeding we slightly weaken the result of Proposition 1 to simplify com-
putations below. We note that this relaxation only effects the constants and does not
change the rate of convergence. Sinceµ̂L ≤ 1 andµ ≥ 0, µ̂L−µ ≤ 1 with probability
1. That is, ifε > 1− µ, then

Pr (µ̂L − µ ≥ ε) = 0, (102)

and Proposition 1 holds trivially. Thus, it suffices to considerµ + ε ≤ 1 in which case
1 + µ + ε ≤ 2. Let

δ = 2 exp
{
−Lε2

2b2

}
. (103)

Then with probability at least1− δ,

µ̂L − µ <

√
2b2 log 2

δ

L
. (104)

51

Next, we will use this result to construct a bound for∆̂(θ̂)−∆(θ̂).
Consider the collection of Monte Carlo sufficient statistics for themth observation,

{α̂(m)
t′,t′′} and{r̂(m)

1,t′ }. By assumption, we have

bm = max
r∈ΨNm

P [r|x(m),A′,π′]
R[r|x(m),A′,π′]

, (105)

which exists because the collectionΨNm
is finite, andP is absolutely continuous with

respect toR by assumption. Define

Bm
δ′,Lm

=

⋃
t′,t′′

α̂
(m)
t′,t′′ − ᾱ

(m)
t′,t′′ ≥

√
2b2

m log 2
δ′

Lm

⋃⋃
t′

r̂
(m)
1,t′ − r̄

(m)
1,t′ ≥

√
2b2

m log 2
δ′

Lm

 , (106)

which is a union of2
(
Nm

2

)
+ Nm = N2

m events, each of which holds with probability
at mostδ′. By the union bound it follows thatPr(Bm

δ′,Lm
) ≤ N2

mδ′. Next, define

Cm
δ′,Lm

=

Nm∑

t′,t′′=1

(
α̂

(m)
t′,t′′ − ᾱ

(m)
t′,t′′

)
+

Nm∑
t′=1

(
r̂
(m)
1,t′ − r̄

(m)
1,t′

)
≥ N2

m

√
2b2

m log 2
δ′

Lm

 .

(107)
Observe that̄Bm

δ′,Lm
impliesC̄m

δ′,Lm
. Therefore,Cm

δ′,Lm
⊆ Bm

δ′,Lm
andPr(Cm

δ′,Lm
) ≤

Pr(Bm
δ′,Lm

) ≤ N2
mδ′. Let δ′′ = N2

mδ′. Also let L > 0 be a value to be determined
later, and for eachm = 1, . . . , T , set

Lm =
2LN4

mb2
m log 2N2

m

δ′′

log 1
δ′′

, (108)

so that

N2
m

√
2b2

m log 2
δ′

Lm
= N2

m

√
2b2

m log 2N2
m

δ′′

Lm
=

√
log 1

δ′′

L
. (109)

Then with probability greater than1− δ′′,

Nm∑
t′,t′′=1

(
α̂

(m)
t′,t′′ − ᾱ

(m)
t′,t′′

)
+

Nm∑
t′=1

(
r̂
(m)
1,t′ − r̄

(m)
1,t′

)
<

√
log 1

δ′′

L
. (110)

By the independence of importance sample estimates for different observations, with
probability greater than(1− δ′′)T ,

T⋂
m=1

Nm∑

t′,t′′=1

(
α̂

(m)
t′,t′′ − ᾱ

(m)
t′,t′′

)
+

Nm∑
t′=1

(
r̂
(m)
1,t′ − r̄

(m)
1,t′

)
<

√
log 1

δ′′

L

 , (111)

52

which implies

T∑
m=1

Nm∑
t′,t′′=1

(
α̂

(m)
t′,t′′ − ᾱ

(m)
t′,t′′

)
+

T∑
m=1

Nm∑
t′=1

(
r̂
(m)
1,t′ − r̄

(m)
1,t′

)
< T

√
log 1

δ′′

L
.(112)

Recall that the variablesx(m)
t′,i are indicators such that for fixedt′, x

(m)
t′,i = 1 for

exactly one value ofi, andx
(m)
t′,j = 0 for all otherj 6= i. Thus,

∑|S|
i,j=1 x

(m)
t′′,ix

(m)
t′,j = 1

and
∑|S|

i=1 x
(m)
t′,i = 1, and so with probability greater than(1− δ′′)T ,

T

√
log 1

δ′′

L

>
T∑

m=1

Nm∑
t′,t′′=1

(
α̂

(m)
t′,t′′ − ᾱ

(m)
t′,t′′

)
+

T∑
m=1

Nm∑
t′=1

(
r̂
(m)
1,t′ − r̄

(m)
1,t′

)

=
T∑

m=1

Nm∑
t′,t′′=1

(
α̂

(m)
t′,t′′ − ᾱ

(m)
t′,t′′

) |S|∑
i,j=1

x
(m)
t′′,ix

(m)
t′,j +

T∑
m=1

Nm∑
t′=1

(
r̂
(m)
1,t′ − r̄

(m)
1,t′

) |S|∑
i=1

x
(m)
t′,i

=
T∑

m=1

|S|∑
i,j=1

Nm∑
t′,t′′=1

(
α̂

(m)
t′,t′′ − ᾱ

(m)
t′,t′′

)
x

(m)
t′′,ix

(m)
t′,j +

T∑
m=1

|S|∑
i=1

Nm∑
t′=1

(
r̂
(m)
1,t′ − r̄

(m)
1,t′

)
x

(m)
t′,i .

Finally, set1 − δ = (1 − δ′′)T and multiply through by| log θmin| > 0. Then with
probability greater than1− δ,

T | log θmin|

√
log 1

1−(1−δ)1/T

L

>
T∑

m=1

|S|∑
i,j=1

Nm∑
t′,t′′=1

(
α̂

(m)
t′,t′′ − ᾱ

(m)
t′,t′′

)
x

(m)
t′′,ix

(m)
t′,j | log θmin|

+
T∑

m=1

|S|∑
i=1

Nm∑
t′=1

(
r̂
(m)
1,t′ − r̄

(m)
1,t′

)
x

(m)
t′,i | log θmin|. (113)

53

To complete the proof, observe that

∆̂(θ̂)−∆(θ̂)

=

 T∑
m=1

|S|∑
i,j=1

Nm∑
t′,t′′=1

α̂
(m)
t′,t′′x

(m)
t′′,ix

(m)
t′,j

(
log Âi,j − log A′

i,j

)

+
T∑

m=1

|S|∑
i=1

Nm∑
t′=1

r̂
(m)
1,t′ x

(m)
t′,i (log π̂i − log π′i)

−

 T∑
m=1

|S|∑
i,j=1

Nm∑
t′,t′′=1

ᾱ
(m)
t′,t′′x

(m)
t′′,ix

(m)
t′,j

(
log Âi,j − log A′

i,j

)

+
T∑

m=1

|S|∑
i=1

Nm∑
t′=1

r̄
(m)
1,t′ x

(m)
t′,i (log π̂i − log π′i)

 (114)

=
T∑

m=1

|S|∑
i,j=1

Nm∑
t′,t′′

(
α̂

(m)
t′,t′′ − ᾱ

(m)
t′,t′′

)
x

(m)
t′′,ix

(m)
t′,j

(
log Âi,j − log A′

i,j

)
T∑

m=1

|S|∑
i=1

Nm∑
t′=1

(
r̂
(m)
1,t′ − r̄

(m)
1,t′

)
x

(m)
t′,i (log π̂i − log π′i) . (115)

Sinceθmin ≤ Âi,j , A
′
i,j ≤ 1 by assumption, fori, j = 1, . . . , |S|,

log Âi,j − log A′
i,j ≤ − log θmin (116)

= | log θmin|. (117)

Similarly, log π̂i − log π′i ≤ | log θmin| for i = 1, . . . , |S|. Thus,

∆̂(θ̂)−∆(θ̂) ≤
T∑

m=1

|S|∑
i,j=1

Nm∑
t′,t′′

(
α̂

(m)
t′,t′′ − ᾱ

(m)
t′,t′′

)
x

(m)
t′′,ix

(m)
t′,j | log θmin|

T∑
m=1

|S|∑
i=1

Nm∑
t′=1

(
r̂
(m)
1,t′ − r̄

(m)
1,t′

)
x

(m)
t′,i | log θmin|, (118)

and by (113), with probability greater than1− δ,

∆̂(θ̂)−∆(θ̂) < T | log θmin|

√
log 1

1−(1−δ)1/T

L
. (119)

Set

ε = T | log θmin|

√
log 1

1−(1−δ)1/T

L
, (120)

solve forL, and plug the resulting value back into (108) withδ′′ = 1 − (1 − δ)1/T to
obtain the desired result.

54

A.2 Proof of Theorem 2

Theorem 1, our probablyapproximatelymonotonic result, was based on showing that∣∣∆̂(θ̂)−∆(θ̂)
∣∣ ≤ ε with high probability. In order to remove the “approximately” and

obtain aprobably monotonicresult we will show that∆(θ̂) concentrates, in a relative
sense, about∆(θ∗); i.e., our goal is to show that with high probability,

∆(θ̂) > (1− ε)∆(θ∗).

Recall that∆(θ∗) ≥ 0 by definition, so the relative bound implies that∆(θ̂) ≥ 0 with
high probability.

We need two preliminary results before we can get to the proof of the theorem.
First, we again need to derive concentration inequalities for the Monte Carlo sufficient
statistics. Then we use these bounds to show that the corresponding M-step parameter
estimates,Âi,j and π̂i, concentrate about their asymptotic means,A∗

i,j andπ∗i,j . At

that point we have everything we need to construct the desired bound on∆(θ̂) >
(1− ε)∆(θ∗).

The proof of Theorem 1 made use ofadditiveconcentration inequalities, bounding
the probability of deviations of the form̂µL−µ ≥ t. In this proof we will needrelative
concentration inequalities to ensure thatµ̂L > (1 + ε)µ with high probability.

Proposition 2. Let{(Xi, Zi)} be a sequence of independent and identically distributed
random variables withXi ∈ {0, 1} and Zi ∈ [0, b]. Assume thatE[Zi] = 1 and
E[ZiXi] = µ, and definêµL = (

∑L
i=1 ZiXi)/(

∑L
i=1 Zi), as before. Then forε ∈

(0, 1),

Pr (µ̂L ≥ (1 + ε)µ) ≤ 2 exp

−Lµ

3b

 ε

1 +
√

2
3µ + ε

√
2
3µ

2
 ,

and forε ∈ (0, 1),

Pr (µ̂L ≤ (1− ε)µ) ≤ 2 exp

{
−Lµ

3b

(
ε

1 +
√

µ− ε
√

µ

)2
}

.

Proof. SinceXi ∈ {0, 1} andZi ∈ [0, b], ZiXi ∈ [0, b] also. Applying the relative
form of Hoeffding’s inequality (see,e.g., Theorem 2.3 in [15]), we have that for any
β > 0,

Pr

(
L∑

i=1

ZiXi ≥ (1 + β)Lµ

)
≤ exp

{
−Lµβ2

2b(1 + β/3)

}
. (121)

If β ≤ 1 then2(1 + β/3) < 3, and so forβ ∈ (0, 1],

Pr

(
L∑

i=1

ZiXi ≥ (1 + β)Lµ

)
≤ exp

{
−Lµβ2

3b

}
, (122)

55

which suffices for our application. Also, for anyγ > 0,

Pr

(
L∑

i=1

Zi ≤ (1− γ)L

)
≤ exp

{
−Lγ2

2b

}
. (123)

Suppose the events{
L∑

i=1

ZiXi < (1 + β)Lµ

}
and

{
L∑

i=1

Zi > (1− γ)L

}
(124)

occur simultaneously. Then

µ̂L >

(
1 + β

1− γ

)
µ. (125)

Since we will apply the union bound, we balance the exponential rates in (122) and

(123) by settingγ = β
√

2
3µ. Solving

1 + β

1− γ
=

1 + β

1− β
√

2
3µ

= 1 + ε (126)

for β in terms ofε results in

β =
ε

1 +
√

2
3µ + ε

√
2
3µ

. (127)

In order to ensure thatβ ≤ 1 we restrict

ε ≤ 1 + 1

1−
√

2
3µ
− 1 (128)

=
1 +

√
2
3µ

1−
√

2
3µ

. (129)

Note that the right hand side of the expression above is greater than or equal to 1 for all
µ ∈ [0, 1]. Apply the union bound with the complements of the events in (124) using
(127) in the exponent to obtain the first result.

The second part proceeds in a similar fashion. Applying the relative Hoeffding
bounds yields that for anyβ > 0,

Pr

(
L∑

i=1

ZiXi ≤ (1− β)Lµ

)
≤ exp

{
−Lµβ2

2b

}
(130)

≤ exp
{
−Lµβ2

3b

}
, (131)

56

and for anyγ ∈ (0, 1],

Pr

(
L∑

i=1

Zi ≥ (1 + γ)L

)
≤ exp

{
−Lγ2

3b

}
. (132)

Suppose the events{
L∑

i=1

ZiXi > (1− β)Lµ

}
and

{
L∑

i=1

Zi < (1 + γ)L

}
(133)

occur simultaneously. Then

µ̂L >

(
1− β

1 + γ

)
µ. (134)

Because we will apply the union bound, we setγ = β
√

µ to balance the rates in (131)
and (132), and we restrictβ ≤ 1√

µ so thatγ ≤ 1. Solving

1− β

1 + γ
=

1− β

1 + β
√

µ
= 1− ε (135)

for β in terms ofε yields

β =
ε

1 +
√

µ− ε
√

µ
, (136)

and to ensureβ ≤ 1√
µ we restrict

ε ≤ 1−
1− 1√

µ

1 + 1
(137)

=
1 + 1√

µ

2
. (138)

The right hand side of this expression is also greater than or equal to 1 for allµ ∈ [0, 1].
Apply the union bound with the complements of the events in (133) using (136) in the
exponent to obtain the second result.

Before proceeding we make some minor simplifications to the bounds just derived.
These relaxations only effect constants and do not change the rate of convergence.

Observe that1 +
√

2
3µ + ε

√
2
3µ ≤ 3 for all µ ∈ [0, 1] andε ∈ (0, 1). Thus, for any

ε ∈ (0, 1),

Pr (µ̂L ≥ (1 + ε)µ) ≤ 2 exp
{
−Lµε2

27b

}
. (139)

Similarly, 1 +
√

µ− ε′
√

µ ≤ 3 for all µ ∈ [0, 1] andε′ ∈ (0, 1), and so

Pr (µ̂L ≤ (1− ε′)µ) ≤ 2 exp
{
−Lµ(ε′)2

27b

}
. (140)

57

Set

δ = 4 exp
{
−Lµε2

27b

}
. (141)

Then with probability greater than1− δ,1−

√
27b log 4

δ

Lµ

µ < µ̂L <

1 +

√
27b log 4

δ

Lµ

µ. (142)

Next, we will apply our concentration bounds for the individual sufficient statistics,
r̂
(m)
1,t′ andα̂

(m)
t′,t′′ , to show that eacĥθi is not too far away fromθ∗i with high probability.

Recall the exact M-step expressions forπ∗i andA∗
i,j :

π∗i =

∑T
m=1

∑Nm

t′=1 r̄
(m)
1,t′ x

(m)
t′,i∑|S|

k=1

∑T
m=1

∑Nm

t′=1 r̄
(m)
1,t′ x

(m)
t′,k

(143)

A∗
i,j =

∑T
m=1

∑Nm

t′,t′′=1 ᾱ
(m)
t′,t′′x

(m)
t′′,ix

(m)
t′,j∑|S|

k=1

∑T
m=1

∑Nm

t′,t′′=1 ᾱ
(m)
t′,t′′x

(m)
t′′,ix

(m)
t′,k

, (144)

The corresponding expressions forπ̂i andÂi,j are found by replacing each̄r(m)
1,t′ with

r̂
(m)
1,t′ andᾱ

(m)
t′,t′′ with α̂

(m)
t′,t′′ . We obtain the following proposition by bounding both the

numerators and denominators of these expressions using the two-sided relative bound
(142).

Proposition 3. Let L > 0 andδ > 0 be given. Assume that there existsλ > 0 such
that r̄(m)

1,t′ ≥ λ andᾱ
(m)
t′,t′′ ≥ λ for all m = 1, . . . , T andt′, t′′ = 1, . . . , Nm. If

Lm ≥ 27bmL

λ
, (145)

then with probability at least1− (
∑T

m=1 N2
m)δ, |S|⋂

i,j=1

Âi,j >

1−
√

log 4
δ

L

1 +
√

log 4
δ

L

A∗
i,j

⋂ |S|⋂
i=1

π̂i >

1−
√

log 4
δ

L

1 +
√

log 4
δ

L

π∗i

 . (146)

Proof. First recall that there are2
(
Nm

2

)
+ Nm = N2

m sufficient statistics associated
with themth observation: one for each of the2

(
Nm

2

)
possible transitions and one for

each possible initial state. Then, in total there are
∑T

m=1 N2
m sufficient statistics to

58

calculate in the E-step. Applying the union bound in conjunction with (142) we have
that with probability greater than1− (

∑T
m=1 N2

m)δ,

ᾱ
(m)
t′,t′′ −

√
27bmᾱ

(m)
t′,t′′ log 4

δ

Lm
< α̂

(m)
t′,t′′ < ᾱ

(m)
t′,t′′ +

√
27bmᾱ

(m)
t′,t′′ log 4

δ

Lm
, (147)

for all m = 1, . . . , T andt′, t′′ = 1, . . . , Nm, and

r̄
(m)
1,t′ −

√
27bmr̄

(m)
1,t′ log 4

δ

Lm
< r̂

(m)
1,t′ < r̄

(m)
1,t′ +

√
27bmr̄

(m)
1,t′ log 4

δ

Lm
, (148)

for all m = 1, . . . , T andt′ = 1, . . . , Nm. Based on the assumption thatᾱ
(m)
t′,t′′ ≥ λ

andr̄
(m)
1,t′ ≥ λ, takingLm ≥ 27bmL/λ guarantees that

Lm ≥ max

(
max

t′,t′′=1,...,Nm

27bmL

ᾱ
(m)
t′,t′′

; max
t′=1,...,Nm

27bmL

r̄
(m)
1,t′

)
. (149)

Then with probability greater than1− (
∑T

m=1 N2
m)δ,1−

√
log 4

δ

L

 ᾱ
(m)
t′,t′′ < α̂

(m)
t′,t′′ <

1 +

√
log 4

δ

L

 ᾱ
(m)
t′,t′′ , (150)

for all m = 1, . . . , T andt′, t′′ = 1, . . . , Nm, and1−

√
log 4

δ

L

 r̄
(m)
1,t′ < r̂

(m)
1,t′ <

1 +

√
log 4

δ

L

 r̄
(m)
1,t′ , (151)

for all m = 1, . . . , T andt′ = 1, . . . , Nm.
Now, (150) implies that for eachi andj,

T∑
m=1

Nm∑
t′,t′′=1

α̂
(m)
t′,t′′x

(m)
t′′,ix

(m)
t′,j >

1−

√
log 4

δ

L

 T∑
m=1

Nm∑
t′,t′′=1

ᾱ
(m)
t′,t′′x

(m)
t′′,ix

(m)
t′,j ,

and for eachi,

|S|∑
k=1

T∑
m=1

(m)∑
t′,t′′

α̂
(m)
t′,t′′x

(m)
t′′,ix

(m)
t′,k <

1 +

√
log 4

δ

L

 |S|∑
k=1

T∑
m=1

Nm∑
t′,t′′=1

ᾱ
(m)
t′,t′′x

(m)
t′′,ix

(m)
t′,k .

Taking the ratio of these two expressions yields the desired result forÂi,j andA∗
i,j .

Similarly, (151) implies that for eachi,

T∑
m=1

Nm∑
t′=1

r̂
(m)
1,t′ x

(m)
t′,i >

1−

√
log 4

δ

L

 T∑
m=1

Nm∑
t′

r̄
(m)
1,t′ x

(m)
t′,i , (152)

59

and for eachi,

T∑
m=1

Nm∑
t′=1

r̂
(m)
1,t′ x

(m)
t′,i <

1 +

√
log 4

δ

L

 T∑
m=1

Nm∑
t′

r̄
(m)
1,t′ x

(m)
t′,i . (153)

Taking the ratio of these two expressions yields the desired result forπ̂i andπ∗i .

The remainder of the proof of Theorem 2 is now fairly straightforward. Letδ > 0
be the value given in the statement of Theorem 2. Monotonicity of the logarithm in
conjunction with Proposition 3 implies that with probability greater than1− δ,

log Âi,j > log A∗
i,j + log

1−

√√√√ log
4
∑T

m=1 N2
m

δ
L

1 +

√√√√ log
4
∑T

m=1 N2
m

δ
L

 , (154)

for everyi andj, and

log π̂i > log π∗i + log

1−

√√√√ log
4
∑T

m=1 N2
m

δ
L

1 +

√√√√ log
4
∑T

m=1 N2
m

δ
L

 , (155)

for everyi. Multiplying each term by

T∑
m=1

Nm∑
t′,t′′=1

ᾱ
(m)
t′,t′′x

(m)
t′′,ix

(m)
t′,j > 0, (156)

or

T∑
m=1

Nm∑
t′=1

ᾱ
(m)
t′,t′′x

(m)
t′,i > 0, (157)

as appropriate, and then summing overi andj, we obtain that

Q(θ̂;θ′) > Q(θ∗;θ′)

+

 |S|∑
i,j=1

T∑
m=1

Nm∑
t′,t′′=1

ᾱ
(m)
t′,t′′x

(m)
t′′,ix

(m)
t′,j +

|S|∑
i=1

T∑
m=1

Nm∑
t′=1

r̄
(m)
1,t′ x

(m)
t′,i

 log

1−

√
log

4
∑T

m=1 N2
m

δ

L

1 +

√
log

4
∑T

m=1 N2
m

δ

L

 .

60

It follows from the definitions of̄r(m)
1,t′ andᾱ

(m)
t′,t′′ that

∑Nm

t′=1 r̄
(m)
1,t′ = 1 and

∑Nm

t′,t′′=1 ᾱ
(m)
t′,t′′ =

Nm − 1. Thus,

|S|∑
i,j=1

T∑
m=1

Nm∑
t′,t′′=1

ᾱ
(m)
t′,t′′x

(m)
t′′,ix

(m)
t′,j +

|S|∑
i=1

T∑
m=1

Nm∑
t′=1

r̄
(m)
1,t′ x

(m)
t′,i

=
T∑

m=1

Nm∑
t′,t′′=1

ᾱ
(m)
t′,t′′ +

T∑
m=1

Nm∑
t′=1

r̄
(m)
1,t′ (158)

=
T∑

m=1

(Nm − 1) +
T∑

m=1

1 (159)

=
T∑

m=1

Nm, (160)

and with probability greater than1− δ,

Q(θ̂;θ′) > Q(θ∗;θ′) +

(
T∑

m=1

Nm

)
log

1−

√
log

4
∑T

m=1 N2
m

δ

L

1 +

√
log

4
∑T

m=1 N2
m

δ

L

 . (161)

SubtractQ(θ′;θ′) from both sides to obtain that with probability greater than1− δ,

∆(θ̂) > ∆(θ∗) +

(
T∑

m=1

Nm

)
log

1−

√
log

4
∑T

m=1 N2
m

δ

L

1 +

√
log

4
∑T

m=1 N2
m

δ

L

 . (162)

Next, letε > 0 be the value given in the statement of Theorem 2 and set

(
T∑

m=1

Nm

)
log

1−

√
log

4
∑T

m=1 N2
m

δ

L

1 +

√
log

4
∑T

m=1 N2
m

δ

L

 = −ε∆(θ∗). (163)

Solving forL yields

L =

1 + exp
{

−ε∆(θ∗
)∑T

m=1 Nm

}
1− exp

{
−ε∆(θ∗

)∑T
m=1 Nm

}
2

log

(
4
∑T

m=1 N2
m

δ

)
. (164)

Recall the well known inequality:

Lemma 1. u ≥ log(1 + u) for u ≥ 0.

61

Applying Lemma 1 withu = ε∆(θ∗
)∑T

m=1 Nm
≥ 0 gives

ε∆(θ∗)∑T
m=1 Nm

≥ 1 +
ε∆(θ∗)∑T
m=1 Nm

. (165)

Take the exponential, which is a monotonic transformation, and then invert the resulting
expression to obtain

exp

{
−ε∆(θ∗)∑T

m=1 Nm

}
≤

(
1 +

ε∆(θ∗)∑T
m=1 Nm

)−1

. (166)

It follows that

1 + exp
{

−ε∆(θ∗
)∑T

m=1 Nm

}
1− exp

{
−ε∆(θ∗

)∑T
m=1 Nm

} ≤
2
∑T

m=1 Nm + ε∆(θ∗)
ε∆(θ∗)

. (167)

Using this last result in (164), together with the choice ofLm from Proposition 3, we
find that if we use

Lm =
27bm

λ

(
2
∑T

m=1 Nm + ε∆(θ∗)
ε∆(θ∗)

)2

log

(
4
∑T

m=1 N2
m

δ

)
(168)

importance samples for themth observation in the Monte Carlo E-step, then∆(θ̂) ≥
(1 − ε)∆(θ∗) with probability greater than1 − δ. Since∆(θ∗) ≥ 0 by definition we

may takeε = 1. Then∆(θ̂
∗
) ≥ 0 with probability greater than1−δ, and this is exactly

what we wanted to show.

References

[1] International Workshop on Brain Connectivity, 2005. http://www.ccs.
fau.edu/˜bc2005/welcome.html .

[2] J. Bernardo and A. Smith.Bayesian Theory. John Wiley & Sons, 1994.

[3] J. Booth, J. Hobert, and W. Jank. A survey of monte carlo algorithms for max-
imizing the likelihood of a two-stage hierarchical model.Statistical Modelling,
1:333–349, 2001.

[4] R. Boyles. On the convergence of the EM algorithm.Journal of the Royal Statis-
tical Society B, 45(1):47–50, 1983.

[5] B. Caffo, W. Jank, and G. Jones. Ascent-based Monte Carlo EM.Journal of the
Royal Statistical Society B, 67(2):235–252, 2005.

[6] M. Coates, A. Hero, R. Nowak, and B. Yu. Internet tomography.IEEE Signal
Processing Magazine, 19(3):47–65, 2002.

62

[7] M. Figueiredo and A. Jain. Unsupervised learning of finite mixture models.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 24(3):381–396,
March 2002.

[8] W. Hoeffding. Probability inequalities for sums of bounded random variables.
Journal of the American Statistical Association, 58:713–721, 1963.

[9] W. Jank. Stochastic variants of the em algorithm: Monte carlo, quasi-monte
carlo and more. InProc. of the American Statistical Association, Minneapolis,
Minnesota, August 2005.

[10] D. Justice and A. Hero. Estimation of message source and destination from link
intercepts. Submitted toIEEE Trans. on Information Forensics and Security,
April 2005.

[11] E. Klipp, R. Herwig, A. Kowald, C. Wierling, and H. Lehrach.Systems Biology
in Practice: Concepts, Implementation and Application. John Wiley and Sons,
2005.

[12] J. Kubica, A. Moore, D. Cohn, and J. Schneider. cGraph: A fast graph-based
method for link analysis and queries. InProc. IJCAI Text-Mining and Link-
Analysis Workshop, Acapulco, Mexico, August 2003.

[13] J. Liu. Monte Carlo Strategies in Scientific Computing. Springer, 2001.

[14] Y. Liu and H. Zhao. A computational approach for ordering signal transduction
pathway components from genomics and proteomics data.BMC Bioinformatics,
5(158), October 2004.

[15] C. McDiarmid. Concentration. In M. Habib, C. McDiarmid, J. Ramirez-Alfonsin,
and B. Reed, editors,Probabilistic Methods for Algorithmic Discrete Mathemat-
ics, pages 195–248. Springer-Verlag, New York, 1998.

[16] M. Newman, A. Barabasi, and D. Watts.The Structure and Dynamics of Net-
works. Princeton University Pres, 2006.

[17] B. Palsson.Systems Biology: Properties of Reconstructed Networks. Cambridge
University Press, 2006.

[18] M. Rabbat, J. Treichler, S. Wood, and M. Larimore. Understanding the topology
of a telephone network via internally-sensed network tomography. InProc. IEEE
International Confernece on Acoustics, Speech, and Signal Processing, volume 3,
pages 977–980, Philadelphia, PA, March 2005.

[19] C. Robert and G. Casella.Monte Carlo Statistical Methods. Springer Verlag,
New York, 1999.

[20] O. Sporns, D. Chialvo, M. Kaiser, and C. Hilgetag. Organization, development
and function of complex brain networks.Trends in Cognitive Science, 8(9), 2004.

63

[21] S. Wasserman, K. Faust, D. Iacobucci, and M. Granovetter.Social Network Anal-
ysis: Methods and Applications. Cambridge University Press, 1994.

[22] C. Wu. On the convergence properties of the EM algorithm.Annals of Statistics,
11(1):95–103, 1983.

[23] D. Zhu, A. Hero, H. Cheng, R. Khanna, and A. Swaroop. Network constrained
clustering for gene microarray data.Bioinformatics, 21(21):4014–4020, 2005.

64

